首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diversification in agricultural cropping patterns is widely practised to delay the build-up of virulent races that can overcome host resistance in pathogen populations. This can lead to balanced polymorphism, but the long-term consequences of this strategy for the evolution of crop pathogen populations are still unclear. The widespread occurrence of sibling species and reproductively isolated sub-species among fungal and oomycete plant pathogens suggests that evolutionary divergence is common. This paper develops a mathematical model of host-pathogen interactions using a simple framework of two hosts to analyse the influences of sympatric host heterogeneity on the long-term evolutionary behaviour of plant pathogens. Using adaptive dynamics, which assumes that sequential mutations induce small changes in pathogen fitness, we show that evolutionary outcomes strongly depend on the shape of the trade-off curve between pathogen transmission on sympatric hosts. In particular, we determine the conditions under which the evolutionary branching of a monomorphic into a dimorphic population occurs, as well as the conditions that lead to the evolution of specialist (single host range) or generalist (multiple host range) pathogen populations.  相似文献   

2.
Species interaction networks, which play an important role in determining pathogen transmission and spread in ecological communities, can shift in response to agricultural landscape simplification. However, we know surprisingly little about how landscape simplification‐driven changes in network structure impact epidemiological patterns. Here, we combine mathematical modelling and data from eleven bipartite plant‐pollinator networks observed along a landscape simplification gradient to elucidate how changes in network structure shape disease dynamics. Our empirical data show that landscape simplification reduces pathogen prevalence in bee communities via increased diet breadth of the dominant species. Furthermore, our empirical data and theoretical model indicate that increased connectance reduces the likelihood of a disease outbreak and decreases variance in prevalence among bee species in the community, resulting in a dilution effect. Because infectious diseases are implicated in pollinator declines worldwide, a better understanding of how land use change impacts species interactions is therefore critical for conserving pollinator health.  相似文献   

3.
4.
A mathematical model for the plant-pollinator-robber interaction is studied to understand the factors leading to the widespread occurrence and stability of such interactions. In the interaction, a flowering plant provides resource for its pollinator and the pollinator has both positive and negative effects on the plant. A nectar robber acts as a plant predator, consuming a common resource with the pollinator, but with a different functional response. Using dynamical systems theory, mechanisms of species coexistence are investigated to show how a robber could invade the plant-pollinator system and persist stably with the pollinator. In addition, circumstances are demonstrated in which the pollinator's positive and negative effects on the plant could determine the robber's invasibility and the three-species coexistence.  相似文献   

5.
In this study, we used data from both experiments and mathematical simulations to analyze the consequences of the interacting effects of intraguild predation (IGP), cannibalism and parasitism occurring in isolation and simultaneously in trophic interactions involving two blowfly species under shared parasitism. We conducted experiments to determine the short-term response of two blowfly species to these interactions with respect to their persistence. A mathematical model was employed to extend the results obtained from these experiments to the long-term consequences of these interactions for the persistence of the blowfly species. Our experimental results revealed that IGP attenuated the strength of the effects of cannibalism and parasitism between blowfly host species, increasing the probability of persistence of both populations. The simulations obtained from the mathematical model indicated that IGP is a key interaction for the long-term dynamics of this system. The presence of different species interacting in a tri-trophic system relaxed the severity of the effects of a particular interaction between two species, changing species abundances and promoting persistence through time. This pattern was related to indirect interactions with a third species, the parasitoid species included in this study.  相似文献   

6.
病原中的活性氧释放研究进展   总被引:1,自引:0,他引:1  
李欣  李红玉 《生态学报》2006,26(7):2382-2386
活性氧的释放在动植物-病原菌互作过程中有着非常重要的作用.一般认为互作中的活性氧来源于动植物细胞生物膜中的氧化还原体系.但近年来随着互作研究的深入,发现动植物病原菌自身也有活性氧的释放以及复杂的调控系统,它们的活性氧释放能力很有可能与其致病性有一定的联系,并可能参与了互作,这些发现对深入了解动植物-病原菌的互作机制具有重要意义.概述了在细菌、真菌等多种动物病原菌中存在的活性氧释放现象,这些微生物活性氧产生的位点、相关功能分子以及调控机制,介绍了目前研究仍然较少但其潜在意义重大的植物病原菌中的活性氧释放现象、可能的调节机制和病理学意义.  相似文献   

7.
The present study theoretically examines the process by which interspecific mutualism is established with trait matching. The mathematical model includes joint evolution of the mutualistic relationship between two species and regulation of variation of interaction in one-dimensional trait space, assuming abiotic directional selection. The model considers three types of regulation: homeostasis against environmental variation, developmental stability, and acceptability of dissimilar mutualism partners (mutualism kernel). Mainly focusing on the developmental stability, the analysis indicates that the mutualism can evolve when (1) higher levels of developmental stability are more intensively degenerated by deleterious mutations, (2) the basal rate of deleterious mutation is low, (3) trait expression is less influenced by environmental factors, and (4) the specificity of mutualism is high. It also shows that the evolution of developmental stability can promote the evolution of mutualism with trait matching when the deleterious mutation bias disappears at a certain level of developmental instability. Evolution of homeostasis and mutualism kernel can be discussed in the similar way because of formal similarities in the model. In plant–pollinator interactions, it has recently been proposed that evolutionary increments of developmental stability in mutualistic traits might promote plant diversification. The present results partly support this hypothesis with respect to the evolutionary relationship between mutualism and developmental stability.  相似文献   

8.
Most studies on ecological networks consider only a single interaction type (e.g. competitive, predatory or mutualistic), and try to developrules for system stability based exclusively on properties of this interaction type. However, the stability of ecological networks may be more dependent on the way different interaction types are combined in real communities. To address this issue, we start by compiling an ecological network in the Doñana Biological Reserve, southern Spain, with 390 species and 798 mu-tualistic and antagonistic interactions. We characterize network structure by looking at how mutualistic and antagonistic interactions are combined across all plant species. Both the ratio of mutualistic to antagonistic interactions per plant, and the number of basic modules with an antagonistic and a mutualistic interaction are very heterogeneous across plant species, with a few plant species showing very high values for these parameters. To assess the implications of these network patterns on species diversity, we study analytically and by simulation a model of this ecological network. We find that the observed correlation between strong interaction strengths and high mutualistic to antagonistic ratios in a few plant species significantly increases community diversity. Thus, to predict the persistence of biodiversity we need to understand how interaction strength and the architecture of ecological networks with different interaction types are combined.  相似文献   

9.
Dudycha JL  Roach DA 《Oecologia》2003,136(1):141-147
Life-history traits can play important roles in determining the course of ecological species interactions. We explored the consequences of host age on a host-pathogen interaction by quantifying pathogen frequency in an age-structured host population. Our project was motivated by an interest in whether the demographic structure of a host population has consequences for species interactions. In 2 successive years, we planted large cohorts of the perennial herb Plantago lanceolata in its natural environment and observed infection by Fusarium moniliforme, a non-lethal floral fungal pathogen, over 3 years. We documented substantial variation of pathogen frequency across years and between cohorts. Logistic regression revealed that pathogen frequency increased with the number of inflorescences produced and with evidence of prior pathogen presence, whereas it decreased with increasing plant longevity. In addition, interannual variation and an age-year interaction contributed to the observed pathogen frequencies. There was a significant positive effect of age on pathogen frequency overall, but this was not consistent over all ages. Pathogen frequency was higher in 2-year-old plants than in 1-year-olds, suggesting that age-structure can influence the host-pathogen interaction. This pattern did not continue into 3-year-old plants. A possible explanation for this is that selective mortality allows only generally robust plants, and consequently the most resistant plants, to survive to the oldest ages.  相似文献   

10.
Most plant pathogenic bacteria adopt the type III secretion systems to secrete virulence factors and/or avirulence gene products, which trigger the plant hypersensitive response (HR) and the oxidative burst with hydrogen peroxide (H2O2) as the main component. However, the soil-borne plant pathogen Agrobacterium tumefaciens uses the type IV secretion pathway to deliver its oncogenic T-DNA that causes crown gall tumours on many plant species. A. tumefaciens does not elicit a typical HR on those plants. Here, we report that inactivation of one of A. tumefaciens catalases (which converts H2O2 to H2O and O2) by a transposon insertion highly attenuated the bacterial ability to cause tumours on plants and to tolerate H2O2 toxicity, but not the bacterial viability in the absence of exogenous H2O2. This provides the first genetic evidence that the Agrobacterium-plant interaction involves a plant defence response, such as H2O2 production, and that catalase is a virulence factor for a plant pathogen.  相似文献   

11.
Oomycetes from the genus Phytophthora are fungus-like plant pathogens that are devastating for agriculture and natural ecosystems. Due to their particular physiological characteristics, no efficient treatments against diseases caused by these microorganisms are presently available. To develop such treatments, it appears essential to dissect the molecular mechanisms that determine the interaction between Phytophthora species and host plants. Available data are scarce, and genomic approaches were mainly developed for the two species, Phytophthora infestans and Phytophthora sojae. However, these two species are exceptions from, rather than representative species for, the genus. P. infestans is a foliar pathogen, and P. sojae infects a narrow range of host plants, while the majority of Phytophthora species are quite unselective, root-infecting pathogens. To represent this majority, Phytophthora parasitica emerges as a model for the genus, and genomic resources for analyzing its interaction with plants are developing. The aim of this review is to assemble current knowledge on cytological and molecular processes that are underlying plant-pathogen interactions involving Phytophthora species and in particular P. parasitica, and to place them into the context of a hypothetical scheme of co-evolution between the pathogen and the host.  相似文献   

12.
The interaction between Arabidopsis thaliana and the bacterium Pseudomonas syringae is being developed as a model experimental system for plant pathology research. Race-specific ("gene-for-gene") resistance has been demonstrated for this interaction, and pathogen genes that determine avirulence have been isolated and characterized. Because certain lines of both Arabidopsis and soybean are resistant to bacteria carrying the avirulence genes avrRpt2 and avrB, extremely similar pathogen recognition mechanisms are apparently present in these two plant species. Isogenic bacterial strains that differ by the presence of single avirulence genes are being used to analyze plant resistance. Plant resistance genes have been identified in crosses between resistant and susceptible lines. The extensive map-based cloning tools available in Arabidopsis are being used to isolate these resistance genes. In a related project, ethylene-insensitive Arabidopsis mutants are being used to examine the role of ethylene in disease development. Ethylene apparently mediates symptom formation in susceptible plants and is not required for resistance, suggesting possible strategies for enhancement of disease tolerance in crops.  相似文献   

13.
In this paper, the attainability of ESS of the evolutionary game among n players under the frequency-independent selection is studied by means of a mathematical model describing the dynamical development and a concept of stability (strongly determined stability). It is assumed that natural selection and small mutations cause the phenotype to change gradually in the direction of fitness increasing. It is shown that (1) the ESS solution is not always evolutionarily attainable in the evolutionary dynamics, (2) in the game where the interaction between two species is completely competitive, the Nash solution is always attainable, and (3) one of two species may attain the state of minimum fitness as a result of evolution. The attainability of ESS is also examined in two game models on the sex ratio of wasps and aphids in light of our criterion of the attainability of ESS.  相似文献   

14.
When a potential pathogen attempts to infect a plant, biochemical and molecular communication takes place and leads to the induction of plant defence mechanisms. In the case of efficient defence, visible symptoms are restricted and the pathogen does not multiply (incompatible interaction); when defence is inefficient, the plant becomes rapidly infected (compatible interaction). During the last 30 years, a growing body of knowledge on plant-pathogen interactions has been gathered, and a large number of studies investigate the induction of various plant defence reactions by pathogens or by pathogen-derived compounds. However, as most papers focus on incompatible interactions, there is still a lack of understanding about the similarities and differences between compatible and incompatible situations. This review targets the question of specificity in Solanaceae-pathogen interactions, by comparing defence patterns in plants challenged with virulent or avirulent pathogens (or with pathogen-associated molecular patterns from these). A special emphasis is made on analysing whether defence reactions in Solanaceae depend primarily on the type of elicitor, on the plant genotype/species, or on the type of interaction (compatible or incompatible).  相似文献   

15.
Many plants form associations with arbuscular mycorrhizal fungi (AMF) because they profit from improved phosphorus nutrition and from protection against pathogens. Whereas mycorrhiza-induced pathogen protection is well understood in agricultural plant species, it is rarely studied in wild plants. As many pathogens infest plants in the first days after germination, mycorrhiza-induced pathogen protection may be especially important in the first few weeks of plant establishment.Here, we investigated interacting effects of AMF and the seedling pathogen Pythium ultimum on the performance of six- to seven-week-old seedlings of six wild plant species of the family Asteraceae in a full factorial experiment.Plant species differed in their response to AMF, the pathogen and their interactions. AMF increased and the pathogen decreased plant biomass in one and three species, respectively. Two plant species were negatively affected by AMF in the absence, but positively or not affected in the presence of the pathogen, indicating protection by AMF. This mycorrhiza-induced pathogen protection is especially surprising as we could not detect mycorrhizal structure in the roots of any of the plants.Our results show that even seedlings without established intraradical hyphal network can profit from AMF, both in terms of growth promotion in the absence of a pathogen and pathogen protection. The function of AMF is highly species-specific, but tends to be similar for more closely related plant species, suggesting a phylogenetic component of mycorrhizal function. Further studies should test a wider range of plant species, as our study was restricted to one plant family, and investigate whether plants profit from early mycorrhizal benefits in the long term.  相似文献   

16.
Pathogens have been shown to contribute to the possibility of coexistence of competing plant species by creating ecological distinction between the coexisting species. This coexistence promoting mechanism resembles intra-specific density dependence as found in Lotka-Volterra models. However, plant species adapt in their level of resistance against pathogen infection and this adaptation has been shown to be traded-off by a reduction in growth rate. A model is developed to show that taking into account the possible adaptation of plant species to increase their resistance against pathogen infection by generalist pathogens has consequences for the coexistence of the plant species. The results show that in systems where plants adapt to the pathogen infection, coexistence becomes impossible. The implication of this finding is that plant pathogens might contribute less to the coexistence of plant species than is commonly thought.  相似文献   

17.
Ionically based cardiac action potential (AP) models are based on equations with singular Jacobians and display time-dependent AP and ionic changes (transients), which may be due to this mathematical limitation. The present study evaluated transients during long-term simulated activity in a mathematical model of the canine atrial AP. Stimulus current assignment to a specific ionic species contributed to stability. Ionic concentrations were least disturbed with the K(+) stimulus current. All parameters stabilized within 6-7 h. Inward rectifier, Na(+)/Ca(2+) exchanger, L-type Ca(2+), and Na(+)-Cl(-) cotransporter currents made the greatest contributions to stabilization of intracellular [K(+)], [Na(+)], [Ca(2+)], and [Cl(-)], respectively. Time-dependent AP shortening was largely due to the outward shift of Na(+)/Ca(2+) exchange related to intracellular Na(+) (Na) accumulation. AP duration (APD) reached a steady state after approximately 40 min. AP transients also occurred in canine atrial preparations, with the APD decreasing by approximately 10 ms over 35 min, compared with approximately 27 ms in the model. We conclude that model APD and ionic transients stabilize with the appropriate stimulus current assignment and that the mathematical limitation of equation singularity does not preclude meaningful long-term simulations. The model agrees qualitatively with experimental observations, but quantitative discrepancies highlight limitations of long-term model simulations.  相似文献   

18.
Although pollinators can play a central role in determining the structure and stability of plant communities, little is known about how their adaptive foraging behaviours at the individual level, e.g. flower constancy, structure these interactions. Here, we construct a mathematical model that integrates individual adaptive foraging behaviour and population dynamics of a community consisting of two plant species and a pollinator species. We find that adaptive foraging at the individual level, as a complementary mechanism to adaptive foraging at the species level, can further enhance the coexistence of plant species through niche partitioning between conspecific pollinators. The stabilizing effect is stronger than that of unbiased generalists when there is also strong competition between plant species over other resources, but less so than that of multiple specialist species. This suggests that adaptive foraging in mutualistic interactions can have a very different impact on the plant community structure from that in predator–prey interactions. In addition, the adaptive behaviour of individual pollinators may cause a sharp regime shift for invading plant species. These results indicate the importance of integrating individual adaptive behaviour and population dynamics for the conservation of native plant communities.  相似文献   

19.
Population dynamics of two-host species under direct transmission of an infectious disease or a pathogen is studied based on the Holt–Pickering mathematical model, which accounts for the influence of the pathogen on the population of the two-host species. Through rigorous analysis and a numerical scheme of study, circumstances are specified under which the shared pathogen leads to the coexistence of the two-host species in either a persistent or periodic form. This study shows the importance of intrinsic growth rates or the differences between birth rates and death rates of the two host susceptibles in controlling these circumstances. It is also demonstrated that the periodicity may arise when the positive intrinsic growth rates are very small, but the periodicity is very weak which may not be observed in an empirical investigation.   相似文献   

20.
Evidence for maintenance of sex by pathogens in plants   总被引:6,自引:0,他引:6  
The predominance of outcrossing despite the substantial transmission advantage of self-fertilization remains a paradox. Theory suggests that selection can favor outcrossing if it enables the production of offspring that are less susceptible to pathogen attack than offspring produced via self-fertilization. Thus, if pathogen pressure is contributing to the maintenance of outcrossing in plants, there may be a positive correlation between the number of pathogen species attacking plant species and the outcrossing rate of the plant species. We tested this hypothesis by examining the association between outcrossing rate and the number of fungal pathogen species that attack a large, taxonomically diverse set of seed plants. We show that plant species attacked by more fungal pathogen species have higher outcrossing rates than plants with fewer enemies. This relationship persists after correcting for study bias among natural and agricultural species of plants. We also accounted for the nested hierarchy of relationships among plant lineages by conducting phylogenetically independent contrasts (PICs) within genera and families that were adequately represented in our dataset. A meta-analysis of the correlation between pathogen and outcrossing PICs shows that there is a positive correlation between pathogen species number and outcrossing rates. This pattern is consistent with the hypothesis that pathogen-mediated selection may contribute to the maintenance of outcrossing in species of seed plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号