首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Actual and total branched-chain 2-oxo acid dehydrogenase activities were determined in homogenates of incubated diaphragms from fed and starved rats. Incubation in Krebs-Ringer buffer increased the activity state, but caused considerable loss of total activity. Palmitate oxidation rates and citrate synthase activities did not significantly change on incubation. Starved muscles showed a higher extent of activation after 15 min of incubation (not after 30 and 60 min) and a smaller loss of total activity. Experiments with the transaminase inhibitor amino-oxyacetate confirm that the contribution of endogenous amino acids to the oxidation precursor pool is also smaller in diaphragms from starved rats on incubation in vitro. These phenomena together cause the higher 14CO2 production from 14C-labelled branched-chain amino acids and 2-oxo acids in muscles from starved than from fed rats. High concentrations of branched-chain 2-oxo acids, and the presence of 2-chloro-4-methyl-pentanoate, octanoate or ketone bodies, increase the extent of activation of the dehydrogenase complex; glucose and pyruvate had no effect. The observed changes of the activity state by these metabolites are discussed in relation to their interaction with branched-chain 2-oxo acid oxidation in incubated hemidiaphragms.  相似文献   

2.
The pyruvate dehydrogenase and branched-chain 2-oxo acid dehydrogenase activities of Bacillus subtilis were found to co-purify as a single multienzyme complex. Mutants of B. subtilis with defects in the pyruvate decarboxylase (E1) and dihydrolipoamide dehydrogenase (E3) components of the pyruvate dehydrogenase complex were correspondingly affected in branched-chain 2-oxo acid dehydrogenase complex activity. Selective inhibition of the E1 or lipoate acetyltransferase (E2) components in vitro led to parallel losses in pyruvate dehydrogenase and branched-chain 2-oxo acid dehydrogenase complex activity. The pyruvate dehydrogenase and branched-chain 2-oxo acid dehydrogenase complexes of B. subtilis at the very least share many structural components, and are probably one and the same. The E3 component appeared to be identical for the pyruvate dehydrogenase, 2-oxoglutarate dehydrogenase and branched-chain 2-oxo acid dehydrogenase complexes in this organism and to be the product of a single structural gene. Long-chain branched fatty acids are thought to be essential for maintaining membrane fluidity in B. subtilis, and it was observed that the ace (pyruvate dehydrogenase complex) mutant 61142 was unable rapidly to take up acetoacetate, unlike the wild-type, indicative of a defect in membrane permeability. A single pyruvate dehydrogenase and branched-chain 2-oxo acid dehydrogenase complex can be seen as an economical means of supplying two different sets of essential metabolites.  相似文献   

3.
The activities of 2-oxo acid dehydrogenase complexes were measured during hormone-mediated differentiation of 3T3-L1 preadipocytes into adipocytes. Specific activity of leucine-activated branched-chain 2-oxo acid dehydrogenase complex increased approx. 10-fold in 3T3-L1 adipocytes compared with 3T3-L1 preadipocytes. In contrast, specific activity of the 2-oxoglutarate dehydrogenase complex increased by only 3-fold in 3T3-L1 adipocytes. The three catalytic component enzymes of the branched-chain 2-oxo acid dehydrogenase complex and the pyruvate dehydrogenase complex showed concomitant increases in their specific activities. A close similarity in kinetics of induction of the branched-chain 2-oxo acid dehydrogenase complex and the pyruvate dehydrogenase complex in 3T3-L1 adipocytes suggests that a common mechanism may be involved in hormone-dependent increases in the activities of the catalytic components of these two complexes in 3T3-L1 adipocytes during differentiation.  相似文献   

4.
Hepatocytes isolated from rats fed on a chow diet or a low-protein (8%) diet were used to study the effects of various factors on flux through the branched-chain 2-oxo acid dehydrogenase complex. The activity of this complex was also determined in cell-free extracts of the hepatocytes. Hepatocytes isolated from chow-fed rats had greater flux rates (decarboxylation rates of 3-methyl-2-oxobutanoate and 4-methyl-2-oxopentanoate) than did hepatocytes isolated from rats fed on the low-protein diet. Oxidizable substrates tended to inhibit flux through the branched-chain 2-oxo acid dehydrogenase, but inhibition was greater with hepatocytes isolated from rats fed on the low-protein diet. 2-Chloro-4-methylpentanoate (inhibitor of branched-chain 2-oxo acid dehydrogenase kinase), dichloroacetate (inhibitor of both pyruvate dehydrogenase kinase and branched-chain 2-oxo acid dehydrogenase kinase) and dibutyryl cyclic AMP (inhibitor of glycolysis) were effective stimulators of branched-chain oxo acid decarboxylation with hepatocytes from rats fed on a low-protein diet, but had little effect with hepatocytes from rats fed on chow diet. Activity measurements indicated that the branched-chain 2-oxo acid dehydrogenase complex was mainly (96%) in the active (dephosphorylated) state in hepatocytes from chow-fed rats, but only partially (50%) in the active state in hepatocytes from rats fed on a low-protein diet. Oxidizable substrates markedly decreased the activity state of the enzyme in hepatocytes from rats fed on a low-protein diet, but had much less effect in hepatocytes from chow-fed rats. 2-Chloro-4-methylpentanoate and dichloroacetate increased the activity state of the enzyme in hepatocytes from rats fed on a low-protein diet, but had no effect on the activity state of the enzyme in hepatocytes from chow-fed rats. The results indicate that protein starvation greatly increases the sensitivity of the hepatic branched-chain 2-oxo acid dehydrogenase complex to regulation by covalent modification.  相似文献   

5.
1. A branched-chain 2-oxo acid dehydrogenase was partially purified from ox liver mitochondria. 2. The preparation oxidized 4-methyl-2-oxopentanoate, 3-methyl-2-oxobutyrate and D- and L-3-methyl-2-oxopentanoate. The apparent Km values for the oxo acids and for thiamin pyrophosphate, CoA, NAD+ and Mg2+ were determined. 3. The oxidation of each oxo acid was inhibited by isovaleryl (3-methylbutyryl)-CoA (competitive with CoA) and by NADH (competitive with NAD+); Ki values were determined. 4. The preparation showed substrate inhibition with each 2-oxo acid. The oxidative decarboxylation of 4-methyl-2-oxo[1-14C]pentanoate was inhibited by 3-methyl-2-oxobutyrate and DL-3-methyl-2-oxopentanoate, but not by pyruvate. The Vmax. with 3-methyl-2-oxobutyrate as variable substrate was not increased by the presence of each of the other 2-oxo acids. 5. Ox heart pyruvate dehydrogenase did not oxidize these branched-chain 2-oxo acids and it was not inhibited by isovaleryl-CoA. The branched-chain 2-oxo acid dehydrogenase activity (unlike that of pyruvate dehydrogenase) was not inhibited by acetyl-CoA. 6. It is concluded that the branched-chain 2-oxo acid dehydrogenase activity is distinct from that of pyruvate dehydrogenase, and that a single complex may oxidize all three branched-chain 2-oxo acids.  相似文献   

6.
1. Incubation of mitochondria from heart, liver and kidney with [32P]phosphate allowed 32P incorporation into two intramitochondrial proteins, the decarboxylase alpha-subunit of the pyruvate dehydrogenase complex (mol.wt 42000) and a protein of mol.wt. 48000. 2. This latter protein incorporated 32P more slowly than did pyruvate dehydrogenase, was not precipitated by antibody to pyruvate dehydrogenase and showed behaviour distinct from that of pyruvate dehydrogenase towards high-speed centrifugation and pyruvate dehydrogenase phosphate phosphatase. 3. 32P incorporation into the protein was greatly diminished by the presence of 0.1 mM-4-methyl-2-oxopentanoate, but enhanced by pyruvate (1 mM), hypo-osmotic treatment of mitochondria and, under some conditions, by uncoupler. 4. The activity of branched-chain 2-oxo acid dehydrogenase was assayed in parallel experiments. Under appropriate conditions the enzyme was inhibited when 32P incorporation was increased and activated when incorporation was decreased. The data suggest that the 48000-mol.wt. phosphorylated protein is identical with the decarboxylase subunit of branched-chain 2-oxo acid dehydrogenase and that this enzyme may be controlled by a phosphorylation-dephosphorylation cycle akin to that for pyruvate dehydrogenase. 5. Strict correlation between activity and 32P incorporation was not observed, and a scheme for the regulation of the enzyme is proposed to account for these discrepancies.  相似文献   

7.
Rates of transamination and decarboxylation of [1-14C]leucine at a physiological concentration (0.1 mM) were measured in the perfused rat heart. In hearts from fasted rats, metabolic flux through the branched-chain 2-oxo acid dehydrogenase reaction was low initially, but increased gradually during the perfusion period. The increase in 14CO2 production was accompanied by an increase in the amount of active branched-chain 2-oxo acid dehydrogenase complex present in the tissue. In hearts from rats fed ad libitum, extractable branched-chain dehydrogenase activity was low initially, but increased rapidly during perfusion, and high rates of decarboxylation were attained within the first 10 min. Infusion of glucagon, adrenaline, isoprenaline, or adrenaline in the presence of phentolamine all produced rapid, transient, inhibition (40-50%) of the formation of 4-methyl-2-oxo[1-14C]pentanoate and 14CO2 within 1-2 min, but the specific radioactivity of 4-methyl-2-oxo[14C]pentanoate released into the perfusate remained constant. Glucagon and adrenaline infusion also resulted in transient decreases (16-24%) in the amount of active branched-chain 2-oxo acid dehydrogenase. In hearts from fasted animals, infusion for 10 min of adrenaline, phenylephrine, or adrenaline in the presence of propranolol, but not infusion of glucagon or isoprenaline, stimulated the rate of 14CO2 production 3-fold, and increased 2-fold the extractable branched-chain 2-oxo acid dehydrogenase activity. These results demonstrate that stimulation of glucagon or beta-adrenergic receptors in the perfused rat heart causes a transient inhibition of branched-chain amino acid metabolism, whereas alpha-adrenergic stimulation causes a slower, more sustained, enhancement of branched-chain amino acid metabolism. Both effects reflect interconversion of the branched-chain 2-oxo acid dehydrogenase complex between active and inactive forms. Also, these studies suggest that the concentration of branched-chain 2-oxo acid available for decarboxylation can be regulated by adrenaline and glucagon.  相似文献   

8.
The potential for branched-chain 2-oxo acid dehydrogenase complex (BCOADC) activity to be controlled by feedback inhibition was investigated by calculating the Elasticity Coefficients for several feedback inhibitors. We suggest that feedback inhibition is a quantitatively important regulatory mechanism by which branched-chain 2-oxo acid dehydrogenase activity is regulated. The potential for control of enzyme activity is greater for NADH than for the acyl-CoA products, and suggests that factors that alter the redox potential may physiologically regulate BCOADC activity through a feedback inhibitory mechanism in vivo. Local pH may also be an important regulatory control factor.  相似文献   

9.
Starvation does not change the actual activity per g of tissue of the branched-chain 2-oxo acid dehydrogenase in skeletal muscles, but affects the total activity to a different extent, depending on the muscle type. The activity state (proportion of the enzyme present in the active state) does not change in diaphragm and decreases in quadriceps muscle. Liver and kidney show an increase of both activities, without a change of the activity state. In heart and brain no changes were observed. Related to organ wet weights, the actual activity present in the whole-body muscle mass decreases on starvation, whereas the activities present in liver and kidney do not change, or increase slightly. Exercise (treadmill-running) of untrained rats for 15 and 60 min causes a small increase of the actual activity and the activity state of the branched-chain 2-oxo acid dehydrogenase complex in heart and skeletal muscle. Exercise for 1 h, furthermore, increased the actual and the total activity in liver and kidney, without a change of the activity state. In brain no changes were observed. The actual activity per g of tissue in skeletal muscle was less than 2% of that in liver and kidney, both before and after exercise and starvation. Our data indicate that the degradation of branched-chain 2-oxo acids predominantly occurs in liver and to a smaller extent in kidney and skeletal muscle in fed, starved and exercised rats.  相似文献   

10.
Purified branched-chain 2-oxo acid dehydrogenase (BCODH) and pyruvate dehydrogenase (PDH) had apparent Km values (microM) for 2-oxobutyrate of 26 and 114, with a relative Vmax. (% of Vmax. for 3-methyl-2-oxobutyrate and pyruvate) of 38 and 45% respectively. The phosphorylation state of both complexes in extracts of mitochondria from rat liver, kidney, heart and skeletal muscle was shown to influence oxidative decarboxylation of 2-oxobutyrate. Inhibitory antibodies to BCODH and an inhibitor of PDH (3-fluoropyruvate) were used with mitochondrial extracts to determine the relative contribution of both complexes to oxidative decarboxylation of 2-oxobutyrate. Calculated rates of 2-oxobutyrate decarboxylation in mitochondrial extracts, based on the kinetic constants given above and the activities of both complexes, were the same as the measured rates. Hydroxyapatite chromatography of extracts of mitochondria from rat liver revealed only two peaks of oxidative decarboxylation of 2-oxobutyrate, with one peak associated with PDH and the other with BCODH. Competition studies with various 2-oxo acids revealed a different inhibition pattern with mitochondrial extracts from liver compared with those from heart or skeletal muscle. We conclude that both intramitochondrial complexes are responsible for oxidative decarboxylation of 2-oxobutyrate. However, the BCODH is probably the more important complex, particularly in liver, on the basis of kinetic analyses, activity or phosphorylation state of both complexes, competition studies, and the apparent physiological concentration of pyruvate, 2-oxobutyrate and the branched-chain 2-oxo acids.  相似文献   

11.
Isolated adipocytes from rat epididymal fat-pads were incubated with [32P]Pi, and intracellular phosphoproteins were then analysed by SDS/polyacrylamide-gel electrophoresis and autoradiography. A phosphorylated polypeptide of apparent Mr 46,000 was identified as the alpha-subunit of branched-chain 2-oxo acid dehydrogenase complex by immunoprecipitation using antiserum raised against the homogeneous E1 component of branched-chain 2-oxo acid dehydrogenase complex. Immunoprecipitation of this phosphoprotein is blocked in a competitive manner by purified branched-chain 2-oxo acid dehydrogenase complex. Peptide mapping of the isolated phosphoprotein indicates that two sites on the polypeptide are phosphorylated in the intact cells. Addition of branched-chain 2-oxo acids to the incubation medium causes diminution in the extent of labelling of both phosphorylation sites on the alpha-subunit, an effect presumably mediated via their known inhibitory action on branched-chain 2-oxo acid dehydrogenase kinase. These observations provide direct evidence for phosphorylation of branched-chain 2-oxo acid dehydrogenase complex in intact cells.  相似文献   

12.
Actual and total activities of the branched-chain 2-oxo acid dehydrogenase complex were determined in homogenates of quadriceps muscle, heart, liver, kidney and brain from rats of 0-70 days age. All rat tissues except quadriceps muscle showed a marked increase of total activity between 0 and 21 days, heart and kidney also after weaning. The actual activity rose after birth in liver, kidney and brain and after weaning in liver, kidney and heart. The activity state was always about 100% in liver and varied between 40-60% in kidney and brain, 10-23% in heart and 6-12% in quadriceps muscle. The actual activities measured indicate, that the degradation of branched-chain 2-oxo acids mainly takes place in the liver of the newborn, suckling and young-adult rat.  相似文献   

13.
Autoantibodies present in the disease primary biliary cirrhosis react by immunoblotting with four major yeast mitochondrial antigens of 58 kDa, 55 kDa, 52 kDa and 45 kDa, tentatively identified as the lipoate acetyl transferases (E2) of the pyruvate dehydrogenase, component X of E2 pyruvate dehydrogenase, E2 of 2-oxo glutarate dehydrogenase and E2 of branched-chain 2-oxo acid dehydrogenase complexes respectively. The synthesis of these antigens is sensitive to catabolite repression. The reactive antigens are present in mit- mutants of yeast which have specific defects in the mitochondrial apocytochrome b, cytochrome oxidase subunit II and H+ -ATPase subunits 8 and 9, and in mtDNA-less rho O petite mutants, but a significant increase in the sensitivity to catabolite repression was observed in these mutants in particular in the mtDNA-less strains.  相似文献   

14.
Highly purified branched-chain 2-oxo acid dehydrogenase complex (BCOADC) oxidizes 4-methylthio-2-oxobutyrate and 2-oxobutyrate, with Km values of 67 microM and 18 microM respectively. The Vmax. for oxidation of these substrates is 27% and 53% respectively of that for 3-methyl-2-oxobutyrate. Highly purified pyruvate dehydrogenase complex (PDC) oxidizes 2-oxobutyrate (Km 100 microM; Vmax. 49% of that for pyruvate) but not 4-methylthio-2-oxobutyrate, whereas 2-oxoglutarate dehydrogenase complex will not utilize either 2-oxo acid as substrate. BCOADC kinase is inhibited by both 4-methylthio-2-oxobutyrate and 2-oxobutyrate, with half-maximal inhibition by 45 microM and 50 microM respectively. Phosphorylation of BCOADC in isolated adipocytes is inhibited by both 4-methylthio-2-oxobutyrate and 2-oxobutyrate, consistent with their inhibitory action of BCOADC kinase. Phosphorylation of PDC is decreased by 2-oxobutyrate, but not by 4-methylthio-2-oxobutyrate.  相似文献   

15.
The activity of liver branched-chain 2-oxo acid dehydrogenase complex was measured in rats fed on low-protein diets and given adrenaline, glucagon, insulin or dibutyryl cyclic AMP in vivo. Administration of glucagon or adrenaline (200 micrograms/100 g body wt.) resulted in a 4-fold increase in the percentage of active complex. As with glucagon and adrenaline, treatment of rats with cyclic AMP (5 mg/100 g body wt.) resulted in marked activation of branched-chain 2-oxo acid dehydrogenase. Insulin administration (1 unit/100 g body wt.) also resulted in activation of enzyme; however, these effects were less than those observed with glucagon and adrenaline. In contrast with the results obtained with low-protein-fed rats, administration of adrenaline (200 micrograms/100 g body wt.) to rats fed with an adequate amount of protein resulted in only a modest (14%) increase in the activity of the complex. The extent to which these hormones activate branched-chain 2-oxo acid dehydrogenase appears to be correlated with their ability to stimulate amino acid uptake into liver.  相似文献   

16.
An assay is described to define the proportion of the branched-chain 2-oxo acid dehydrogenase complex that is present in the active state in rat tissues. Activities are measured in homogenates in two ways: actual activities, present in tissues, by blocking both the kinase and phosphatase of the enzyme complex during homogenization, preincubation, and incubation with 1-14C-labelled branched-chain 2-oxo acid, and total activities by blocking only the kinase during the 5 min preincubation (necessary for activation). The kinase is blocked by 5 mM-ADP and absence of Mg2+ and the phosphatase by the simultaneous presence of 50 mM-NaF. About 6% of the enzyme is active in skeletal muscle of fed rats, 7% in heart, 20% in diaphragm, 47% in kidney, 60% in brain and 98% in liver. An entirely different assay, which measures activities in crude tissue extracts before and after treatment with a broad-specificity protein phosphatase, gave similar results for heart, liver and kidney. Advantages of our assay with homogenates are the presence of intact mitochondria, the simplicity, the short duration and the high sensitivity. The actual activities measured indicate that the degradation of branched-chain 2-oxo acids predominantly occurs in liver and kidney and is limited in skeletal muscle in the fed state.  相似文献   

17.
A new method is described that allows the parallel purification of the pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase multienzyme complexes from ox heart without the need for prior isolation of mitochondria. All the assayable activity of the 2-oxo acid dehydrogenase complexes in the disrupted tissue is made soluble by the inclusion of non-ionic detergents such as Triton X-100 or Tween-80 in the buffer used for the initial extraction of the enzyme complexes. The yields of the pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase complexes are many times greater than those obtained by means of previous methods. In terms of specific catalytic activity, banding pattern on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, sedimentation properties and possession of the regulatory phosphokinase bound to the pyruvate dehydrogenase complex, the 2-oxo acid dehydrogenase complexes prepared by the new method closely resemble those described by previous workers. The greatly improved yield of 2-oxo acid dehydrogenase complexes occasioned by the use of Triton X-100 or Tween-80 as solubilizing agent supports the possibility that the bulk of the pyruvate dehydrogenase complex is associated in some way with the mitochondrial inner membrane and is not free in the mitochondrial matrix space.  相似文献   

18.
At 0.1 mM 2-oxo[1-14C]isocaproate or 2-oxo[1-14C]isovalerate plots of the reciprocal of the rate of 14CO2 formation by branched-chain 2-oxo acid dehydrogenase complex in mitochondria vs alpha-cyanocinamate concentration were linear up to high inhibitor concentrations, indicating that the monocarboxylate carrier-mediated transport was the rate-limiting step. At low (0.025 mM) concentration of 2-oxo[1-14C]isocaproate or 2-oxo[1-14C]isovalerate the 1/v vs I plots became nonlinear indicating that the branched-chain 2-oxo acid dehydrogenase activity determined the rate of 14CO2 formation. Inhibition of branched-chain 2-oxo acid dehydrogenase complex by clofibric acid or arsenite showed that at 0.1 mM 2-oxoisovalerate the activity of the complex became the rate-limiting step of the pathway. The availability of the 2-oxoisocaproate or 2-oxoisovalerate seems to affect the phosphorylation and the activity of the branched-chain 2-oxo acid dehydrogenase complex only at low, physiological concentrations of these substrates (less than 0.025 mM).  相似文献   

19.
Branched-chain 2-oxo acid dehydrogenase catalyses the first irreversible step in the degradation of the branched-chain amino acids leucine, isoleucine and valine. With specifically labelled 4-methyl-2-oxo[1-14C]pentanoate as substrate, the enzyme's activity was measured in rat liver homogenates. Activity (per g wet wL of liver or per mg of protein) increased most rapidly during the perinatal period (2 days before to 1 day after birth), reaching approximately adult values by the time of weaning. The apparent Vmax, of the enzyme increased with age, but its Km appeared unchanged. The data suggest that hepatic branched-chain 2-oxo acid dehydrogenase is induced or activated during the perinatal period. The enzyme's activity at birth was unaffected by maternal diabetes, or by treating the mother with pharmacological doses of corticosterone or 3,3',5-tri-iodothyronine, during the last 5 days of pregnancy.  相似文献   

20.
Pyruvate dehydrogenase (PDH), branched-chain 2-oxo acid dehydrogenase (BCDH) and 2-oxoglutarate dehydrogenase (OGDH) are multienzyme complexes that play crucial roles in several common metabolic pathways. These enzymes belong to a family of 2-oxo acid dehydrogenase complexes that contain multiple copies of three different components (E1, E2 and E3). For the Thermus thermophilus enzymes, depending on its substrate specificity (pyruvate, branched-chain 2-oxo acid or 2-oxoglutarate), each complex has distinctive E1 (E1p, E1b or E1o) and E2 (E2p, E2b or E2o) components and one of the two possible E3 components (E3b and E3o). (The suffixes, p, b and o identify their respective enzymes, PDH, BCDH and OGDH.) Our biochemical characterization demonstrates that only three specific E3*E2 complexes can form (E3b*E2p, E3b*E2b and E3o*E2o). X-ray analyses of complexes formed between the E3 components and the peripheral subunit-binding domains (PSBDs), derived from the corresponding E2-binding partners, reveal that E3b interacts with E2p and E2b in essentially the same manner as observed for Geobacillus stearothermophilus E3*E2p, whereas E3o interacts with E2o in a novel fashion. The buried intermolecular surfaces of the E3b*PSBDp/b and E3o*PSBDo complexes differ in size, shape and charge distribution and thus, these differences presumably confer the binding specificities for the complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号