首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
D K Choi  T Ito  F Tsukahara  M Hirai  Y Sakaki 《Gene》1999,237(1):135-142
Proteins with RNA recognition motifs (RRMs) participate in many aspects of RNA metabolism, and some of them are required for the accomplishment of normal development. The neuroblastoma apoptosis-related RNA binding protein (NAPOR) is an ELAV-type RNA-binding protein with three characteristic RNP2/RNP1-type RRMs, which we identified as a gene induced during apoptosis of neuroblastoma cells. Here we isolated and characterized the cDNA for mNapor, the mouse homolog of NAPOR. The mNapor encodes mRNA sharing striking homology with that of NAPOR, not only in its open reading frame (98.5%) but also in the 3'-untranslated region (80.1%), and is mapped to chromosome 2 A2-A3, a region syntenic to the human NAPOR locus. In situ hybridization analysis revealed that the expression pattern of mNapor is spatially and temporally coincident with the occurrence of programmed cell death, suggesting its involvement in the development of the central nervous system in which apoptosis plays a crucial role.  相似文献   

2.
Lai CW  Chan ZR  Yang DG  Lo WH  Lai YK  Chang MD  Hu YC 《FEBS letters》2006,580(16):3829-3834
It has been shown that severe acute respiratory syndrome-associated coronavirus (SARS-CoV) 3a and 7a proteins, but not membrane (M) protein, induce apoptosis in mammalian cells. Upon expression of SARS-CoV M protein using the baculovirus/insect cell expression system, however, we found that the expressed M protein triggered accelerated apoptosis in insect cells, as characterized by rapid cell death, elevated cytotoxicity, cell shrinkage, nuclear condensation and DNA fragmentation. Conversely, the M protein expressed in mammalian cells did not induce apoptosis. This is the first report describing the induction of apoptosis by SARS-CoV M protein in animal cells and possible implications are discussed.  相似文献   

3.
Rohon Beard (RB) cells are embryonic primary sensory neurons that are removed by programmed cell death during larval development in zebrafish. RB somatosensory functions are taken over by neurons of the dorsal root ganglia (DRG), suggesting that RB cell death may be triggered by the differentiation of these ganglia, as has been proposed to be the case in Xenopus. However, here we show that the timing of RB cell death correlates with reduced expression of trkC1, the receptor for neurotrophin NT-3, but not with the appearance of DRG, which differentiate only after most RB cells die. trkC1 is expressed in subpopulations of RB neurons during development, and cell death is initiated only in trkC1-negative neurons, suggesting a role for TrkC1 and its ligand, NT-3, in RB cell survival. In support of this, antibodies that deplete NT-3 induce RB cell death while exogenous application of NT-3 reduces death. In addition, we show that RB cell death can be prevented using a caspase inhibitor, zVADfmk, showing that during normal development, RB cells die by a caspase-dependent programmed cell death pathway possibly triggered by reduced signaling via TrkC1.  相似文献   

4.
It has been reported that interferon (IFN)-gamma should inhibit in vitro mouse embryo growth by direct cell toxicity. However, the mechanism involved has not been clearly established. In the present study, this question was addressed using the embryonic stem (ES) cell model. It was found that IFN-gamma, induces a dose-dependent apoptosis in ES cells, as assessed by trypan-blue staining, by Annexin-V labeling and DNA analysis, Moreover, IFN-gamma treatment cooperates with Fas-mediated apoptosis, a phenomenon that has been recently reported. As Bcl-2 oncoprotein functions as a death repressor molecule in an evolutionarily conserved cell death pathway, its expression was analyzed by flow cytometry. It was demonstrated that Bcl-2 is expressed in ES cells. When compared to untreated ES cells, IFN-gamma-treated, apoptotic cells expressed a lower Bcl-2 level and a normal level of Fas, whereas surviving cells expressed a normal level of Bcl-2 but a lower Fas expression. Altogether, these data suggest that IFN-gamma may influence early mouse embryo development by promoting apoptosis, which may constitute a novel mechanism of IFN-gamma embryotoxicity.  相似文献   

5.
ABSTRACT: MEK Partner 1 (MP1 or MAPKSP1) is a scaffold protein that has been reported to function in multiple signaling pathways, including the ERK, PAK and mTORC pathways. Several of these pathways influence the biology of breast cancer, but MP1's functional significance in breast cancer cells has not been investigated. In this report, we demonstrate a requirement for MP1 expression in estrogen receptor (ER) positive breast cancer cells. MP1 is widely expressed in both ER-positive and negative breast cancer cell lines, and in non-tumorigenic mammary epithelial cell lines. However, inhibition of its expression using siRNA duplexes resulted in detachment and apoptosis of several ER-positive breast cancer cell lines, but not ER-negative breast cancer cells or non-tumorigenic mammary epithelial cells. Inhibition of MP1 expression in ER-positive MCF-7 cells did not affect ERK activity, but resulted in reduced Akt1 activity and reduced ER expression and activity. Inhibition of ER expression did not result in cell death, suggesting that decreased ER expression is not the cause of cell death. In contrast, pharmacological inhibition of PI3K signaling did induce cell death in MCF-7 cells, and expression of a constitutively active form of Akt1 partially rescued the cell death observed when the MP1 gene was silenced in these cells. Together, these results suggest that MP1 is required for pro-survival signaling from the PI3K/Akt pathway in ER-positive breast cancer cells.  相似文献   

6.
Lymphocyte homeostasis is regulated by mechanisms that control lymphocyte proliferation and apoptosis. Activation-induced cell death is mediated by the expression of death ligands and receptors, which, when triggered, activate an apoptotic cascade. Bovine T cells transformed by the intracellular parasite Theileria parva proliferate in an uncontrolled manner and undergo clonal expansion. They constitutively express the death receptor Fas and its ligand, FasL but do not undergo apoptosis. Upon elimination of the parasite from the host cell by treatment with a theilericidal drug, cells become increasingly sensitive to Fas/FasL-induced apoptosis. In normal T cells, the sensitivity to death receptor killing is regulated by specific inhibitor proteins. We found that anti-apoptotic proteins such as cellular (c)-FLIP, which functions as a catalytically inactive form of caspase-8, and X-chromosome-linked inhibitor of apoptosis protein (IAP) as well as c-IAP, which can block downstream executioner caspases, are constitutively expressed in T. parva-transformed T cells. Expression of these proteins is rapidly down-regulated upon parasite elimination. Antiapoptotic proteins of the Bcl-2 family such as Bcl-2 and Bcl-x(L) are also expressed but, in contrast to c-FLIP, c-IAP, and X-chromosome-linked IAP, do not appear to be tightly regulated by the presence of the parasite. Finally, we show that, in contrast to the situation in tumor cells, the phosphoinositide 3-kinase/Akt pathway is not essential for c-FLIP expression. Our findings indicate that by inducing the expression of antiapoptotic proteins, T. parva allows the host cell to escape destruction by homeostatic mechanisms that would normally be activated to limit the continuous expansion of a T cell population.  相似文献   

7.
Abstract: The observation that delayed death of CA1 neurons after global ischemia is inhibited by protein synthesis inhibitors suggests that the delayed death of these neurons is an active process that requires new gene expression. Delayed death in CA1 has some of the characteristics of apoptotic death; however, candidate proapoptotic proteins have not been identified in the CA1 after ischemia. We studied the expression of Bax protein and mRNA, a member of the bcl-2 family that is an effector of apoptotic cell death, after global ischemia in the four-vessel global ischemia model in the rat and compared these results with the expression of the antiapoptotic gene bcl-2 . Bax mRNA and protein are both expressed in CA1 before delayed death, whereas bcl-2 protein is not expressed. Bcl-2 protein expression, but not that of Bax, is increased in CA3, a region that is ischemic but less susceptible to ischemic injury. In the dentate gyrus, both Bax and bcl-2 proteins are expressed. The selective expression of Bax in CA1 supports the hypothesis that Bax could contribute to delayed neuronal death in these vulnerable neurons by an independent mechanism or by forming heterodimers with gene family members other than bcl-2.  相似文献   

8.
Caspases are key effectors of programmed cell death in metazoans. In Drosophila, four caspases have been described so far. Here we describe the identification and characterization of the fifth Drosophila caspase, DECAY. DECAY shares a high degree of homology with the members of the mammalian caspase-3 subfamily, particularly caspase-3 and caspase-7. DECAY lacks a long prodomain and thus appears to be a class II effector caspase. Ectopic expression of DECAY in cultured cells induces apoptosis. Recombinant DECAY exhibited substrate specificity similar to the mammalian caspase-3 subfamily. Low levels of decay mRNA are ubiquitously expressed in Drosophila embryos during early stages of development but its expression becomes somewhat spatially restricted in some tissues. During oogenesis decay mRNA was detected in egg chambers of all stages consistent with a role for DECAY in apoptosis of nurse cells. Relatively high levels of decay mRNA are expressed in larval salivary glands and midgut, two tissues which undergo histolysis during larval/pupal metamorphosis, suggesting that DECAY may play a role in developmentally programmed cell death in Drosophila.  相似文献   

9.
Cyclin-dependent kinase 5 is predominantly expressed in postmitotic neurons and plays a role in neurite elongation during development. It has also been postulated to play a role in apoptosis in a variety of cells, including neurons, but little is known about the generality and functional significance of cdk5 expression in neuronal apoptosis in living brain. We have therefore examined its expression and that of its known activators, p35, p39 and p67, in models of induced apoptosis in neurons of the substantia nigra. We find that cdk5 is expressed in apoptotic profiles following intrastriatal injection of 6-hydroxydopamine and axotomy. It is expressed exclusively in profiles which are in late morphologic stages of apoptosis. In these late stages, derivation of the profiles from neurons, and localization of expression to the nucleus, can be demonstrated by co-labeling with a neuron-specific nuclear marker, NeuN. In another model of induced apoptotic death in nigra, produced by developmental striatal lesion, kinase activity increases in parallel with cell death. While mRNAs for all three cdk5 activators are expressed in nigra during development, only p35 protein is expressed in apoptotic profiles. We conclude that cdk5/p35 expression is a general feature of apoptotic neuron death in substantia nigra neurons in vivo.  相似文献   

10.
Epstein-Barr virus (EBV) is associated with a number of human cancers, and latent EBV gene expression has been reported to interfere with cell cycle checkpoints and cell death pathways. Here we show that latent EBV can compromise the mitotic spindle assembly checkpoint and rescue Burkitt's lymphoma (BL)-derived cells from caspase-dependent cell death initiated in aberrant mitosis. This leads to unscheduled mitotic progression, resulting in polyploidy and multi- and/or micronucleation. The EBV latent genes responsible for this phenotype are expressed from the P3HR1 strain of virus and several viruses with similar genomic deletions that remove the EBNA2 gene. Although EBNA2 and the latent membrane proteins are not expressed, the EBNA3 proteins are present in these BL cells. Survival of the EBV-positive cells is not consistently associated with EBV lytic gene expression or with the genes that are expressed in EBV latency I BL cells (i.e., EBNA1, EBERs, and BARTs) but correlates with reduced expression of the cellular proapoptotic BH3-only protein Bim. These data suggest that a subset of latent EBV gene products may increase the likelihood of damaged DNA being inherited because of the impaired checkpoint and enhanced survival capacity. This could lead to greater genetic diversity in progeny cells and contribute to tumorigenesis. Furthermore, since it appears that this restricted latent EBV expression interferes with the responses of Burkitt's lymphoma-derived cells to cytotoxic drugs, the results of this study may have important therapeutic implications in the treatment of some BL.  相似文献   

11.
We report that CCR3 is not expressed on freshly isolated peripheral and germinal B cells, but is up-regulated after stimulation with IL-2 and IL-4 (approximately 98% CCR3(+)). Ligation of CCR3 by eotaxin/chemokine ligand (CCL) 11 induces apoptosis in IL-2- and IL-4-stimulated primary CD19(+) (approximately 40% apoptotic cells) B cell cultures as well as B cell lines, but has no effect on chemotaxis or cell adhesion. Freshly isolated B cells express low levels of CD95 and CD95 ligand (CD95L) (19 and 21%, respectively). Expression is up-regulated on culture in the presence of a combination of IL-2, IL-4, and eotaxin/CCL11 (88% CD95 and 84% CD95L). We therefore propose that ligation of such newly induced CCR3 on peripheral and germinal B cells by eotaxin/CCL11 leads to the enhanced levels of CD95 and CD95L expression. Ligation of CD95 by its CD95L expressed on neigboring B cells triggers relevant death signaling pathways, which include an increase in levels of Bcl-2 expression, its functional activity, and the release of cytochrome c from the mitochondria into the cytosol. These events initiate a cascade of enzymatic processes of the caspase family, culminating in programmed cell death. Interaction between CCR3 and eotaxin/CCL11 may, besides promoting allergic reactions, drive activated B cells to apoptosis, thereby reducing levels of Ig production, including IgE, and consequently limit the development of the humoral immune response. The apoptotic action of eotaxin/CCL11 suggests a therapeutic modality in the treatment of B cell lymphoma.  相似文献   

12.
Aquatic birnavirus induces post-apoptotic necrotic cell death via a newly synthesized protein-dependent pathway. However, the involvement of viral genome-encoded protein(s) in this death process remains unknown. In the present study, we demonstrated that the submajor capsid protein, VP3, up-regulates the pro-apoptotic protein, Bad, in fish and mouse cells. Western blot analysis revealed that VP3 was expressed in CHSE-214 cells at 4 h post-infection (pi), indicating an early role during viral replication. We cloned the VP3 gene and tested its function in fish and mouse cells; VP3 overexpression induced apoptotic cell death by TUNEL assay. In addition, it up-regulated Bad gene expression in zebrafish ZLE cells by threefold at 12 h post-transfection (pt) and in mouse NIH3T3 cells by tenfold at 24 h pt. VP3 up-regulation of Bad expression altered mitochondria function, inducing mitochondrial membrane potential (MMP) loss and activating initiator caspase-9 and effector caspase-3. Furthermore, reduced Bad expression (65% reduction), MMP loss (up to 40%), and enhanced cell viability (up to 60%) upon expression of VP3 antisense RNA in CHSE-214 cells at 24 h post-IPNV infection was observed. Finally, overexpression of the anti-apoptotic gene, zfBcl-xL, reduced VP3-induced apoptotic cell death and caspase-3 activation at 24 h in fish cells. Taken together, these results suggest that aquatic birnavirus VP3 induces apoptosis via up-regulation of Bad expression and mitochondrial disruption, which activates a downstream caspase-3-mediated death pathway that is blocked by zfBcl-xL.  相似文献   

13.
Trophoblast cells express a singular miRNA expression profile which varies during pregnancy and whose alteration may be associated with pregnancy complications. miR-21, a widely known oncomir, is highly expressed in human placenta but its role in regulating trophoblast cells remains unclear. The aim of this study was to investigate miR-21 functions and targets in HTR-8/SVneo immortalized trophoblast and JEG-3 choriocarcinoma cells, which are trophoblast cell models that differ in their cellular origin. Cells were transfected with miR-21-antagomir, -mimic or their respective controls. Following, cell proliferation (BrdU), migration (Transwell and scratch wound-healing assays), invasion (Matrigel assays) and apoptosis (flow cytometry, TUNEL assay and Western blotting) were assessed. Expression of the potential miR-21 targets phosphatase and tensin homolog (PTEN) and programmed cell death 4 (PDCD4) were analyzed by Western blotting. Inhibition of miR-21 decreased cell proliferation, migration, and invasion in JEG-3 and HTR-8/SVneo cells and additionally, induced apoptosis in JEG-3 cells. Silencing of miR-21 enhanced PDCD4 expression only in JEG-3 cells, and PTEN expression only in HTR-8/SVneo cells. Inhibition of miR-21 significantly increased phosphorylation of AKT in HTR-8/SVneo cells. In conclusion, miR-21 has cell-specific targets depending upon the origin of trophoblastic cells. Furthermore, miR-21 regulates major cellular processes including cell growth, migration, invasion and apoptosis suggesting that its impairment may lead to placental disorders.  相似文献   

14.
15.
FLT3/FLK2, a member of the receptor tyrosine kinase family, plays a critical role in maintenance of hematopoietic homeostasis, and the constitutively active form of the FLT3 mutation is one of the most common genetic abnormalities in acute myelogenous leukemia. In murine hematopoiesis, Flt3 is not expressed in self-renewing hematopoietic stem cells, but its expression is restricted to the multipotent and the lymphoid progenitor stages at which cells are incapable of self-renewal. We extensively analyzed the expression of Flt3 in human (h) hematopoiesis. Strikingly, in both the bone marrow and the cord blood, the human hematopoietic stem cell population capable of long-term reconstitution in xenogeneic hosts uniformly expressed Flt3. Furthermore, human Flt3 is expressed not only in early lymphoid progenitors, but also in progenitors continuously along the granulocyte/macrophage pathway, including the common myeloid progenitor and the granulocyte/macrophage progenitor. We further found that human Flt3 signaling prevents stem and progenitors from spontaneous apoptotic cell death at least through up-regulating Mcl-1, an indispensable survival factor for hematopoiesis. Thus, the distribution of Flt3 expression is considerably different in human and mouse hematopoiesis, and human FLT3 signaling might play an important role in cell survival, especially at stem and progenitor cells that are critical cellular targets for acute myelogenous leukemia transformation.  相似文献   

16.
During development of the nervous system, large numbers of neurons are overproduced and then eliminated by programmed cell death. Puma is a BH3-only protein that is reported to be involved in the initiation of developmental programmed cell death in rodent retinal neurons. The expression and cellular localization of Puma in retinal tissues during development are not, however, well known. Here the authors report the expression pattern of Puma during retinal development in the rat. During the period of programmed cell death in the retina, Puma was expressed in some members of each retinal neuron, including retinal ganglion cells, amacrine cells, bipolar cells, horizontal cells, and photoreceptor cells. Although the developmental programmed cell death of cholinergic amacrine cells is known to be independent of Puma, this protein was expressed in almost all their dendrites and somata of cholinergic amacrine cells at postnatal age 2 to 3 weeks, and it continued to be detected in cholinergic dendrites in the inner plexiform layer for up to 8 weeks after birth. These results suggest that Puma has some significant roles in retinal neurons after eye opening, especially that of cholinergic amacrine cells, in addition to programmed cell death of retinal neurons before eye opening.  相似文献   

17.
18.
19.
20.
We investigated the mechanisms of anti-IgM antibody-induced cell death in a recently established human surface IgM+ IgD+ B lymphoma cell line, B104, the growth of which is irreversibly inhibited by anti-IgM antibody but not by anti-IgD antibody, and compared it with the cell death of T cells via TCR/CD3 complex and with the cell death of a murine anti-IgM antibody-sensitive B lymphoma cell line, WEHI-231. The rapid time course of B104 cell death and its requirements for de novo macromolecular synthesis and Ca2+ influx suggest that anti-IgM antibody-induced B104 cell death is an active Ca(2+)-dependent programmed cell death. Moreover, cyclosporin A rescued B104 cells from this lethal signal, via surface IgM, suggesting that the intracellular mechanisms involved are quite similar to those of T cell death. DNA fragmentation, which has been reported in TCR/CD3 complex-mediated T cell death, apoptosis, was not involved in the B104 cell death process, but the possible involvement of DNA single-strand breaks was suggested. Observations under light microscopy and transmission electron microscopy indicated that the morphologic features of dying B104 cells resembled necrosis rather than apoptosis. B104 cell death was shown to be quite distinct from that of WEHI-231 in cell death kinetics, the mode of cell death, and the response to cyclosporin A. These data collectively indicate that the death of B104 cells resulting from surface IgM cross-linking represents a hitherto undefined mode of programmed cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号