首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
通过光镜、电镜、DNA Ladder法、流式细胞术、荧光染色对鸭呼肠孤病毒(DRV)诱导鸭胚原代成纤维细胞(DEF)凋亡情况进行检测.结果显示,光镜可见细胞形态学上出现细胞皱缩,染色质浓染边移;电镜观察到细胞胞浆浓缩,细胞核染色质凝聚、部分形成凋亡小体;荧光染色结果显示,在感染后24h有激发绿色荧光的凋亡细胞出现,随着时间的推移,激发红色荧光的死亡细胞数量增多;DNA Ladder检测到感染后24~144h的DNA样品呈梯形条带;流式细胞术于感染后24h检测到凋亡细胞,其数量在72~96h达到高峰,144h开始下降.研究结果表明,DRV在DEF增殖的过程中具有诱导宿主细胞凋亡的作用.  相似文献   

3.
The pseudorabies virus (PrV) gene homologous to herpes simplex virus type 1 (HSV-1) UL53, which encodes HSV-1 glycoprotein K (gK), has recently been sequenced (J. Baumeister, B. G. Klupp, and T. C. Mettenleiter, J. Virol. 69:5560–5567, 1995). To identify the corresponding protein, a rabbit antiserum was raised against a 40-kDa glutathione S-transferase–gK fusion protein expressed in Escherichia coli. In Western blot analysis, this serum detected a 32-kDa polypeptide in PrV-infected cell lysates as well as a 36-kDa protein in purified virion preparations, demonstrating that PrV gK is a structural component of virions. After treatment of purified virions with endoglycosidase H, a 34-kDa protein was detected, while after incubation with N-glycosidase F, a 32-kDa protein was specifically recognized. This finding indicates that virion gK is modified by N-linked glycans of complex as well as high-mannose type. For functional analysis, the UL53 open reading frame was interrupted after codon 164 by insertion of a gG-lacZ expression cassette into the wild-type PrV genome (PrV-gKβ) or by insertion of the bovine herpesvirus 1 gB gene into a PrV gB genome (PrV-gKgB). Infectious mutant virus progeny was obtained only on complementing gK-expressing cells, suggesting that gK has an important function in the replication cycle. After infection of Vero cells with either gK mutant, only single infected cells or small foci of infected cells were visible. In addition, virus yield was reduced approximately 30-fold, and penetration kinetics showed a delay in entry which could be compensated for by phenotypic gK complementation. Interestingly, the plating efficiency of PrV-gKβ was similar to that of wild-type PrV on complementing and noncomplementing cells, pointing to an essential function of gK in virus egress but not entry. Ultrastructurally, virus assembly and morphogenesis of PrV gK mutants in noncomplementing cells were similar to wild-type virus. However, late in infection, numerous nucleocapsids were found directly underneath the plasma membrane in stages typical for the entry process, a phenomenon not observed after wild-type virus infection and also not visible after infection of gK-complementing cells. Thus, we postulate that presence of gK is important to inhibit immediate reinfection.Herpesvirions are complex structures consisting of a nucleoprotein core, capsid, tegument, and envelope. They comprise at least 30 structural proteins (35). Pseudorabies virus (PrV), a member of the Alphaherpesvirinae, is an economically important animal pathogen, causing Aujeszky’s disease in swine. It is also highly pathogenic for most other mammals except higher primates, including humans (28, 45), and a wide range of cultured cells from different species support productive virus replication, reflecting the wide in vivo host range. Envelope glycoproteins play major roles in the early and late interactions between virion and host cell. They are required for virus entry and participate in release of free virions and viral spread by direct cell-to-cell transmission (27, 37). For PrV, 10 glycoproteins, designated gB, gC, gD, gE, gG, gH, gI, gL, gM, and gN, have been characterized (20, 27); these glycoproteins are involved in the attachment of virion to host cell (gC and gD), fusion of viral envelope and cellular cytoplasmic membrane (gB, gD, gH, and gL), spread from infected to noninfected cells (gB, gE, gH, gI, gL, and gM), and egress (gC, gE, and gI) (27, 37). Homologs of these glycoproteins are also present in other alphaherpesviruses (37). The gene coding for a potential 11th PrV glycoprotein, gK, has been described recently (3), but the protein and its function have not been identified.The product of the homologous UL53 open reading frame (ORF) of herpes simplex virus type 1 (HSV-1) is gK (13, 32). gK was detected in nuclear membranes and in membranes of the endoplasmic reticulum but was not observed in the plasma membrane (14). Also, it did not appear to be present in purified virion preparations (15). The latter result was surprising since earlier studies identified several mutations in HSV-1 gK resulting in syncytium-inducing phenotypes (7, 14), which indicates participation of gK in membrane fusion events during HSV-1 infection. Moreover, HSV-1 mutants in gK exhibited a delayed entry into noncomplementing cells, which is difficult to reconcile with absence of gK from virions (31). Mutants deficient for gK expression have been isolated and investigated by different groups (16, 17). Mutant F-gKβ carries a lacZ gene insertion in the HSV-1 strain F gK gene, which interrupts the ORF after codon 112 (16). In mutant ΔgK, derived from HSV-1 KOS, almost all of the UL53 gene was deleted (17). Both mutants formed small plaques on Vero cells, and virus yield was reduced to an extent which varied with the different confluencies of the infected cells, cell types, and mutants used for infection. However, both HSV-1 gK mutants showed a defect in efficient translocation of virions from the cytoplasm to the extracellular space, and only a few enveloped virions were present in the extracellular space after infection of Vero cells (16, 17). The authors therefore suggested that HSV-1 gK plays a role in virion transport during egress.Different routes of final envelopment and egress of alphaherpesvirions are discussed. It has been suggested that HSV-1 nucleocapsids acquire their envelope at the inner nuclear membrane and are transported as enveloped particles through the endoplasmic reticulum to the Golgi stacks, where glycoproteins are modified in situ during transport (5, 6, 19, 39), although other potential egress pathways cannot be excluded (4). In contrast, maturation of varicella-zoster virus and PrV involves primary envelopment at the nuclear membrane, followed by release of nucleocapsids into the cytoplasm and secondary envelopment in the trans-Golgi area (10, 12, 43). Final egress of virions appears to occur via transport vesicles containing one or more virus particles by fusion of vesicle and cell membrane. The possibility of different routes of virion egress is supported by studies of other proteins involved in egress, e.g., the UL20 proteins of HSV-1 and PrV and the PrV UL3.5 protein, which lacks a homolog in the HSV-1 genome (1, 8, 9). In UL20-negative HSV-1, virions accumulated in the perinuclear cisterna of Vero cells (1), while PrV UL20 virions accumulated and were retained in cytoplasmic vesicles (9). PrV UL3.5 is important for budding of nucleocapsids into Golgi-derived vesicles during secondary envelopment (8). Thus, there appear to be profound differences in the egress pathways. Since HSV-1 gK was also implicated in egress, we were interested in identifying the PrV homolog and analyzing its function.  相似文献   

4.
Intact particles of Friend leukemia virus derived from infectious mouse serum absorb only trace amounts of cytotoxic anti-FMR antibodies, but physical disruption of the virions by freezing and thawing, by ether extraction or by detergent treatment releases large amounts of FMR antigenic activity. Thus this antigen, previously considered to occur mainly as a neo-antigen on the surfaces of virus-infected cells and as a soluble substance in the serum of infected mice, may be primarily a virion component.  相似文献   

5.
Depending upon the cellular and physiologic context, the overexpression of the MYC proto-oncogene results in rapid cell growth, proliferation and/or induction of apoptosis. What determines the precise consequences upon MYC activation is not clear. We have found that cyclin-dependent kinase 2 (CDK2) is required by MYC to induce apoptosis. MYC-induced apoptosis was suppressed in mouse embryonic fibroblasts (MEF) knocked out for Cdk2 or normal human fibroblasts (NHF) upon expression of the CDK2 inhibitor p27 or treated with RNAi directed at CDK2. Knockout of Cdk2 did not prevent MYC from inducing p53 and Bim. The inhibition of CDK2 did not prevent apoptosis induced by the DNA damaging agent etoposide. Our results surprisingly suggest that CDK2 defines whether MYC induction causes apoptosis.  相似文献   

6.
《Cell》1998,94(6):739-750
Apoptosis is essential for the precise regulation of cellular homeostasis and development. The role in vivo of Apaf1, a mammalian homolog of C. elegans CED-4, was investigated in gene-targeted Apaf1−/− mice. Apaf1-deficient mice exhibited reduced apoptosis in the brain and striking craniofacial abnormalities with hyperproliferation of neuronal cells. Apaf1-deficient cells were resistant to a variety of apoptotic stimuli, and the processing of Caspases 2, 3, and 8 was impaired. However, both Apaf1−/− thymocytes and activated T lymphocytes were sensitive to Fas-induced killing, showing that Fas-mediated apoptosis in these cells is independent of Apaf1. These data indicate that Apaf1 plays a central role in the common events of mitochondria-dependent apoptosis in most death pathways and that this role is critical for normal development.  相似文献   

7.
8.
N-ethylmaleimide–sensitive fusion protein (NSF) and α-SNAP play key roles in vesicular traffic through the secretory pathway. In this study, NH2- and COOH-terminal truncation mutants of α-SNAP were assayed for ability to bind NSF and stimulate its ATPase activity. Deletion of up to 160 NH2-terminal amino acids had little effect on the ability of α-SNAP to stimulate the ATPase activity of NSF. However, deletion of as few as 10 COOH-terminal amino acids resulted in a marked decrease. Both NH2-terminal (1–160) and COOH-terminal (160–295) fragments of α-SNAP were able to bind to NSF, suggesting that α-SNAP contains distinct NH2- and COOH-terminal binding sites for NSF. Sequence alignment of known SNAPs revealed only leucine 294 to be conserved in the final 10 amino acids of α-SNAP. Mutation of leucine 294 to alanine (α-SNAP(L294A)) resulted in a decrease in the ability to stimulate NSF ATPase activity but had no effect on the ability of this mutant to bind NSF. α-SNAP (1–285) and α-SNAP (L294A) were unable to stimulate Ca2+-dependent exocytosis in permeabilized chromaffin cells. In addition, α-SNAP (1–285), and α-SNAP (L294A) were able to inhibit the stimulation of exocytosis by exogenous α-SNAP. α-SNAP, α-SNAP (1–285), and α-SNAP (L294A) were all able to become incorporated into a 20S complex and recruit NSF. In the presence of MgATP, α-SNAP (1–285) and α-SNAP (L294A) were unable to fully disassemble the 20S complex and did not allow vesicle-associated membrane protein dissociation to any greater level than seen in control incubations. These findings imply that α-SNAP stimulation of NSF ATPase activity may be required for 20S complex disassembly and for the α-SNAP stimulation of exocytosis.  相似文献   

9.
1. We investigated the survival of neurons under serum-free conditions without any exogenous signal molecules, using primary cultures of rat cerebral cortex.2. Survival activity, measured with Alamar Blue, showed a cell density dependency under serum-free conditions.3. The addition of fetal bovine serum suppressed the apoptotic cell death accompanied by DNA-laddering and fragmentation specific in low-density cultures, resulting in the disappearance of the cell density dependency of survival.4. These findings suggest that serum factors may substitute for endogenous survival factors from cortical neurons in high-density cultures.  相似文献   

10.
11.
12.
The insulin-like growth factors (IGFs) are capable of blocking apoptosis in many cell lines in vitro, potentially via activation of the IGF-I receptor (IGF-IR). We have previously shown that lower doses of the sphingolipid analogue C2-ceramide are required to induce apoptosis in IGF-IR-minus vs -positive murine fibroblasts, indicating a protective feedback loop in the latter and corroborating evidence that the IGF-IR functions as a survival receptor [1, 2]. Since, unexpectedly, C2-ceramide was capable of activating MAP kinase, phosphorylating the IGF-I receptor, and promoting entry into the G2 phase of the cell cycle, we wished to further determine the mechanisms involved. Using IGF-IR-positive fibroblasts we demonstrate here for the first time that ceramide is capable of activating a tyrosine kinase which acts at the level of the IGF-IR to increase cell death. We also demonstrate that in the presence of sodium orthovanadate, ceramide-induced death is increased, and the phosphorylation of a 75-kDa protein which associates with the IGF-I receptor is enhanced. Although the identity of this protein is not known, we speculate that it may link into the Raf kinase signaling pathway; indeed, inhibitors of MEKK reduce ceramide-induced apoptosis, thus substantiating this theory [1, 2]. Although calcium mobilization did cause apoptosis in these cells, it was not required as a mediator of ceramide-induced apoptosis. Finally, the potential hydrolysis of ceramide to sphingosine-1-phosphate was not the cause of increased MAP kinase activation, substantiating the role of an IGF-IR interacting tyrosine kinase, which may be involved in apoptosis.  相似文献   

13.
Activation of executioner caspases during receptor-mediated apoptosis in type II cells requires the engagement of the mitochondrial apoptotic pathway. Although it is well established that recruitment of mitochondria in this context involves the cleavage of Bid to truncated Bid (tBid), the precise post-mitochondrial signaling responsible for executioner caspase activation is controversial. Here, we used distinct clones of type II Jurkat T-lymphocytes in which the mitochondrial apoptotic pathway had been inhibited to investigate the molecular requirements necessary for Fas-induced apoptosis. Cells overexpressing either Bcl-2 or Bcl-xL were protected from apoptosis induced by agonistic anti-Fas antibody. By comparison, Apaf-1-deficient Jurkat cells were sensitive to anti-Fas, exhibiting Bid cleavage, Bak activation, the release of cytochrome c and Smac, and activation of executioner caspase-3. Inhibiting downstream caspase activation with the pharmacological inhibitor Z-DEVD-fmk or by expressing the BIR1/BIR2 domains of X-linked inhibitor of apoptosis protein (XIAP) decreased all anti-Fas-induced apoptotic changes. Additionally, pretreatment of Bcl-xL-overexpressing cells with a Smac mimetic sensitized these cells to Fas-induced apoptosis. Combined, our findings strongly suggest that Fas-mediated activation of executioner caspases and induction of apoptosis do not depend on apoptosome-mediated caspase-9 activation in prototypical type II cells.  相似文献   

14.
Mov10 and APOBEC3G (A3G) localize to cytoplasmic granules called processing bodies (P bodies), incorporate into human immunodeficiency virus type 1 (HIV-1) virions, and inhibit viral replication. The functional relevance of Mov10/A3G P-body localization to virion incorporation and antiviral activity has not been fully explored. We found that a helicase V mutant of Mov10 exhibits significantly reduced localization to P bodies but still efficiently inhibits viral infectivity via virion incorporation. Disruption of the P bodies by DDX6 knockdown also confirmed Mov10 antiviral activity without P-body localization. In addition, overexpression of SRP19, which binds to 7SL RNA, depleted A3G from P bodies but did not affect its virion incorporation. Sucrose gradient sedimentation assays revealed that the majority of Mov10, A3G, HIV-1 RNA, and Gag formed high-molecular-mass (HMM) complexes that are converted to low-molecular-mass (LMM) complexes after RNase A treatment. In contrast, the P-body markers DCP2, LSM1, eIF4e, DDX6, and AGO1 were in LMM complexes, whereas AGO2, an effector protein of the RNA-induced silencing complex that localizes to P bodies, was present in both LMM and HMM complexes. Depletion of AGO2 indicated that RNA-induced silencing function is required for Mov10''s ability to reduce Gag expression upon overexpression, but not its virion incorporation or effect on virus infectivity. We conclude that the majority of Mov10 and A3G are in HMM complexes, whereas most of the P-body markers are in LMM complexes, and that virion incorporation and the antiviral activities of Mov10 and A3G do not require their localization to P bodies.  相似文献   

15.
It is known that phorbol esters can protect IL-2-dependent lymphocytes against apoptosis induced by IL-2 withdrawal. However, the mechanism of this effect remains unclear. In this article we show that apoptosis induced by IL-2 withdrawal in the CTLL-2 cell line correlates with a decrease in intracellular pH (pHi). Supplementing the incubation medium with phorbol esters during IL-2 deprivation protects CTLL-2 cells against both apoptosis and intracellular acidification. Interestingly, IL-4 also supports short-term cell survival and maintenance of normal pHi. The protein kinase inhibitor staurosporine prevents the protective effects of IL-2, PMA, and IL-4 on apoptosis and intracellular acidification. In contrast, inhibition of the Na+/H+ antiporter by 5-N-ethyl-N-isopropyl amiloride reverts the protective effects of PMA and IL-4, but only weakly affects IL-2-mediated suppression of apoptosis. Taken together, these results indicate that intracellular acidification may be an important event during apoptosis induced by IL-2 deprivation in the CTLL-2 cell line. Moreover, they suggest a key role for protein kinase C activation both in the maintenance of pHi and in the suppression of apoptosis, through mechanisms which rely on the activation of the Na+/H+ antiporter to a different extent, depending on the rescuing factor employed.  相似文献   

16.
Cellular migration and contractility are fundamental processes that are regulated by a variety of concerted mechanisms such as cytoskeleton rearrangements, focal adhesion turnover, and Ca2+ oscillations. TRPM4 is a Ca2+-activated non-selective cationic channel (Ca2+-NSCC) that conducts monovalent but not divalent cations. Here, we used a mass spectrometry-based proteomics approach to identify putative TRPM4-associated proteins. Interestingly, the largest group of these proteins has actin cytoskeleton-related functions, and among these nine are specifically annotated as focal adhesion-related proteins. Consistent with these results, we found that TRPM4 localizes to focal adhesions in cells from different cellular lineages. We show that suppression of TRPM4 in MEFs impacts turnover of focal adhesions, serum-induced Ca2+ influx, focal adhesion kinase (FAK) and Rac activities, and results in reduced cellular spreading, migration and contractile behavior. Finally, we demonstrate that the inhibition of TRPM4 activity alters cellular contractility in vivo, affecting cutaneous wound healing. Together, these findings provide the first evidence, to our knowledge, for a TRP channel specifically localized to focal adhesions, where it performs a central role in modulating cellular migration and contractility.  相似文献   

17.
18.
The enteric protozoan parasite Entamoeba histolytica is the causative agent of human amebiasis. During infection, adherence of E. histolytica through Gal/GalNAc lectin on the surface of the amoeba can induce caspase-3-dependent or -independent host cell death. Phosphorylinositol 3-kinase (PI3K) and protein kinase C (PKC) in E. histolytica play an important function in the adhesion, killing, or phagocytosis of target cells. In this study, we examined the role of amoebic PI3K and PKC in amoeba-induced apoptotic cell death in Jurkat T cells. When Jurkat T cells were incubated with E. histolytica trophozoites, phosphatidylserine (PS) externalization and DNA fragmentation in Jurkat cells were markedly increased compared to those of cells incubated with medium alone. However, when amoebae were pretreated with a PI3K inhibitor, wortmannin before being incubated with E. histolytica, E. histolytica-induced PS externalization and DNA fragmentation in Jurkat cells were significantly reduced compared to results for amoebae pretreated with DMSO. In addition, pretreatment of amoebae with a PKC inhibitor, staurosporine strongly inhibited Jurkat T cell death. However, E. histolytica-induced cleavage of caspase-3, -6, and -7 were not inhibited by pretreatment of amoebae with wortmannin or staurosporin. In addition, we found that amoebic PI3K and PKC have an important role on amoeba adhesion to host compartment. These results suggest that amebic PI3K and PKC activation may play an important role in caspase-independent cell death in Entamoeba-induced apoptosis.  相似文献   

19.
Our previous studies provided evidence that E10R, a vaccinia virus protein belonging to the ERV1/ALR family, has a redox function and is required for virion assembly. Repression of E10R prevented the formation of intramolecular disulfide bonds of the G4L glutaredoxin, the L1R membrane protein, and the structurally related F9L protein. Here, we demonstrate an oxidation pathway (E10R(SS) --> G4L(SS) --> L1R(SS), F9L(SS)) in which G4L occupies an intermediate position. By reacting free thiols with 4-acetamido-4'-malemideylstilbene-2,2'-disulfonic acid, alkylated and nonalkylated disulfide-bonded forms of G4L could be resolved from each other by polyacrylamide gel electrophoresis. The cysteines of intracellular G4L were in both disulfide and reduced forms, whereas those of E10R, L1R, and F9L and virion-associated G4L were mostly disulfide bonded. Repression of G4L expression prevented the formation of disulfide bonds in both L1R and F9L but not E10R. Both cysteines of G4L were required for L1R and F9L disulfide bond formation or for trans-complementation of virus infectivity when G4L expression was repressed. No role in the E10R-G4L redox pathway was found for O2L, a nonessential glutaredoxin encoded by vaccinia virus. We suggest that cytoplasmic G4L is a redox shuttle between membrane-associated E10R and L1R or F9L.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号