首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitrite reductases are key enzymes that perform the first committed step in the denitrification process and reduce nitrite to nitric oxide. In copper nitrite reductases, an electron is delivered from the type 1 copper (T1Cu) centre to the type 2 copper (T2Cu) centre where catalysis occurs. Despite significant structural and mechanistic studies, it remains controversial whether the substrates, nitrite, electron and proton are utilised in an ordered or random manner. We have used crystallography, together with online X-ray absorption spectroscopy and optical spectroscopy, to show that X-rays rapidly and selectively photoreduce the T1Cu centre, but that the T2Cu centre does not photoreduce directly over a typical crystallographic data collection time. Furthermore, internal electron transfer between the T1Cu and T2Cu centres does not occur, and the T2Cu centre remains oxidised. These data unambiguously demonstrate an ‘ordered’ mechanism in which electron transfer is gated by binding of nitrite to the T2Cu. Furthermore, the use of online multiple spectroscopic techniques shows their value in assessing radiation-induced redox changes at different metal sites and demonstrates the importance of ensuring the correct status of redox centres in a crystal structure determination. Here, optical spectroscopy has shown a very high sensitivity for detecting the change in T1Cu redox state, while X-ray absorption spectroscopy has reported on the redox status of the T2Cu site, as this centre has no detectable optical absorption.  相似文献   

2.
We demonstrated recently that two protons are involved in reduction of nitrite to nitric oxide through a proton-coupled electron transfer (ET) reaction catalyzed by the blue Cu-dependent nitrite reductase (Cu NiR) of Alcaligenes xylosoxidans (AxNiR). Here, the functionality of two putative proton channels, one involving Asn90 and the other His254, is studied using single (N90S, H254F) and double (N90S--H254F) mutants. All mutants studied are active, indicating that protons are still able to reach the active site. The H254F mutation has no effect on the catalytic activity, while the N90S mutation results in ~70% decrease in activity. Laser flash-photolysis experiments show that in H254F and wild-type enzyme electrons enter at the level of the T1Cu and then redistribute between the two Cu sites. Complete ET from T1Cu to T2Cu occurs only when nitrite binds at the T2Cu site. This indicates that substrate binding to T2Cu promotes ET from T1Cu, suggesting that the enzyme operates an ordered mechanism. In fact, in the N90S and N90S--H254F variants, where the T1Cu site redox potential is elevated by ~60 mV, inter-Cu ET is only observed in the presence of nitrite. From these results it is evident that the Asn90 channel is the main proton channel in AxNiR, though protons can still reach the active site if this channel is disrupted. Crystallographic structures provide a clear structural rationale for these observations, including restoration of the proton delivery via a significant movement of the loop connecting the T1Cu ligands Cys130 and His139 that occurs on binding of nitrite. Notably, a role for this loop in facilitating interaction of cytochrome c(551) with Cu NiR has been suggested previously based on a crystal structure of the binary complex.  相似文献   

3.
Dissimilatory nitrite reductase catalyses the reduction of nitrite (NO(2)(-)) to nitric oxide (NO). Copper-containing nitrite reductases contain both type 1 and type 2 Cu sites. Electron transfer from redox partners is presumed to be mediated via the type 1 Cu site and used at the catalytic type 2 Cu centre along with the substrate nitrite. At the type 2 Cu site, Asp92 has been identified as a key residue in substrate utilisation, since it hydrogen bonds to the water molecule at the nitrite binding site. We have also suggested that protons enter the catalytic site via Asp92, through a water network that is mediated by His254. The role of these residues has been investigated in the blue copper nitrite reductase from Alcaligenes xylosoxidans (NCIMB 11015) by a combination of point mutation, enzymatic activity measurement and structure determination.In addition, it has been suggested that the enzyme operates via an ordered mechanism where an electron is transferred to the type 2 Cu site largely when the second substrate nitrite is bound and that this is controlled via the lowering of the redox potential of the type 2 site when it is loaded with nitrite. Thus, a small perturbation of the type 1 Cu site should result in a significant effect on the activity of the enzyme. For this reason a mutation of Met144, which is the weakest ligand of the type 1 Cu, is investigated. The structures of H254F, D92N and M144A have been determined to 1.85 A, 1.9 A and 2.2 A resolution, respectively. The D92N and H254F mutants have negligible or no activity, while the M144A mutant has 30 % activity of the native enzyme. Structural and spectroscopic data show that the loss of activity in H254F is due to the catalytic site being occupied by Zn while the loss/reduction of activity in D92N/M144A are due to structural reasons. The D92N mutation results in the loss of the Asp92 hydrogen bond to the Cu-ligated water. Therefore, the ligand is no longer able to perform proton abstraction. Even though the loss of activity in H254F is due to lack of catalytic Cu, the mutation does cause the disruption of the water network, confirming its key role in proton channel. The structure of the H254F mutant is the first case where full occupancy Zn at the type 2 Cu site is observed, but despite the previously noted similarity of this site to the carbonic anhydrase catalytic site, no carbonic anhydrase activity is observed. The H254F and D92N mutant structures provide, for the first time, observation of surface Zn sites which may act as a Zn sink and prevent binding of Zn at the catalytic Cu site in the native enzyme.  相似文献   

4.
Dissimilatory nitrite reductase catalyses the reduction of nitrite to nitric oxide within the key biological process of denitrification. We present biochemical and structural results on two key mutants, one postulated to be important for the interaction with the partner protein and the other for substrate entry. Trp138, adjacent to one of the type-1 Cu ligands, is one of the residues surrounding a small depression speculated to be important in complex formation with the physiological redox partners, azurin I and II. Our data reveal that the Trp138His mutant is fully active using methyl viologen as an artificial electron donor, but there is a large decrease in activity using azurin I. These observations together with its crystal structure at a high resolution of 1.6 A confirm the importance of Trp138 in electron transfer and thus in productive interaction with azurin. A "hydrophobic pocket" on the protein surface has been identified as the channel through which nitrite may be guided to the catalytic type-2 Cu site. Glu133 and His313 at the opening of the pocket are conserved among most blue and green copper nitrite reductases (CuNiRs). The failure to soak the substrate into our high-resolution crystal form of native and mutant CuNiRs has been linked to the observation of an extraneous poly(ethylene glycol) (PEG) molecule interacting with His313. We present the crystal structure of His313Gln and the substrate-bound mutant at high resolutions of 1.65 and 1.72 A, respectively. The observation of the substrate-bound structure for the His313Gln mutant and inhibitory studies with PEG establishes the role of the hydrophobic pocket as the port of substrate entry.  相似文献   

5.
Electron transfer over 12.6 A from the type 1 copper (T1Cu) to the type 2 copper (T2Cu) was investigated in the copper-containing nitrite reductases from two denitrifying bacteria (Alcaligenes xylosoxidans GIFU 1051 and Achromobacter cycloclastes IAN 1013), following pulse radiolytical reduction of T1Cu. In the presence of nitrite, the rate constant for the intramolecular electron transfer of the enzyme from A. xylosoxidans decreased 1/2 fold to 9 x 10(2) s-1 (20 degrees C, pH 7.0) as compared to that for the same process in the absence of nitrite. However, the rate constant increased with decreasing pH to become the same (2 x 10(3) s-1) as that in the absence of nitrite at pH 6.0. A similar result was obtained for the enzyme from A. cycloclastes. The pH profiles of the two enzymes in the presence of nitrite are almost the same as that of the enzyme activity of nitrite reduction. This suggests that the intramolecular electron transfer process is closely linked to the following process of catalytic reduction of nitrite. The difference in redox potential (DeltaE) of T2Cu minus T1Cu was calculated from equilibrium data for the electron transfer. The pH-dependence of DeltaE was in accord with the equation: DeltaE = DeltaE(0)+0.058 log (Kr[H+]+[H+]2)/(K(0)+[H+]), where K(r) and K(0) are the proton dissociation constants for the oxidized and reduced states of T2Cu, respectively. These results raise the possibility that amino acid residues linked by the redox of T2Cu play important roles in the enzyme reaction, being located near T2Cu.  相似文献   

6.
The successful modeling of metalloproteins is an important step in understanding their structure and function. Toward this goal, models of the noncoupled copper centers found in the enzymes peptidyl α-hydroxylating monooxygenase (PHM), dopamine β-monooxygenase (DBM), and nitrite reductase (NiR) were designed into the small soluble protein azurin. The models are significant because they maintain the existing type 1 (T1) copper, electron transfer site of azurin while including the second designed type 2 (T2) copper center that mimics the T2 catalytic sites in the target enzymes. UV–vis absorption and EPR spectroscopy data of the model sites are consistent with T2 centers and establish copper binding at the sites, thus modeling those found in PHM/DBM and NiR. Importantly the models’ approximate 11–13 Å separation between the T1 and T2 copper sites is comparable with the separations in the native systems. This, along with the power to tune the T1 site redox potential in azurin, allows for the future evaluation of relevant activity assays in these models.  相似文献   

7.
The nitrite reductase (Nir) isolated from Pseudomonas chlororaphis DSM 50135 is a blue enzyme, with type 1 and type 2 copper centers, as in all copper-containing Nirs described so far. For the first time, a direct determination of the reduction potentials of both copper centers in a Cu-Nir was performed: type 2 copper (T2Cu), 172 mV and type 1 copper (T1Cu), 298 mV at pH 7.6. Although the obtained values seem to be inconsistent with the established electron-transfer mechanism, EPR data indicate that the binding of nitrite to the T2Cu center increases its potential, favoring the electron-transfer process. Analysis of the EPR spectrum of the turnover form of the enzyme also suggests that the electron-transfer process between T1Cu and T2Cu is the fastest of the three redox processes involved in the catalysis: (a) reduction of T1Cu; (b) oxidation of T1Cu by T2Cu; and (c) reoxidation of T2Cu by NO(2) (-). Electrochemical experiments show that azurin from the same organism can donate electrons to this enzyme.  相似文献   

8.
Enzyme-catalysed electron transfer reactions are often controlled by protein motions and coupled to chemical change such as proton transfer. We have investigated the nature of this control in the blue copper-dependent nitrite reductase from Alcaligenes xylosoxidans (AxNiR). Inter-Cu electron transfer from the T1Cu site to the T2Cu catalytic site in AxNiR occurs via a proton-coupled electron transfer mechanism. Here we have studied the kinetics of both electron and proton transfer independently using laser-flash photolysis for native AxNiR and its proton-channel mutant N90S. In native AxNiR, both inter-Cu electron transfer and proton transfer exhibit similar rates, and show an unusual dependence on the nitrite concentration. An initial decrease in the observed rates at low nitrite concentrations is followed by an increase in the observed rates at high nitrite concentrations (> 5 mm). In N90S, in which the T1Cu reduction potential is elevated by 60 mV, no inter-Cu electron transfer or proton transfer was observed in the absence of nitrite. Only in the presence of nitrite were both processes detected, with similar [nitrite] dependence, but the nitrite dependence was different compared with native enzyme. The substrate dependence in N90S was similar to that observed in steady-state assays, suggesting that this substitution resulted in proton-coupled electron transfer becoming rate-limiting. A pH perturbation experiment with native AxNiR revealed that protonation triggers inter-Cu electron transfer and generation of NO. Our results show a strong coupling of inter-Cu electron transfer and proton transfer for both native AxNiR and N90S, and provide novel insights into the controlled delivery of electrons and protons to the substrate-utilization T2Cu active site of AxNiR.  相似文献   

9.
Cu-containing nitrite reductases (NiRs) perform the reduction of nitrite to NO via an ordered mechanism in which the delivery of a proton and an electron to the catalytic type 2 Cu site is highly orchestrated. Electron transfer from a redox partner protein, azurin or pseudoazurin, to the type 1 Cu site is assumed to occur through the formation of a protein-protein complex. We report here a new crystal form in space group P2(1)2(1)2(1) of the Met144Leu mutant of NiR from Alcaligenes xylosoxidans (AxNiR), revealing a head-to-head packing motif involving residues around the hydrophobic patch of domain 1. Superposition of the structure of azurin II with that of domain 1 of one of the Met144Leu molecules provides the first glimpse of an azurin II-NiR protein-protein complex. Mutations of two of the residues of AxNiR, Trp138His (Barrett et al. in Biochemistry 43:16311-16319, 2004) and Met87Leu, highlighted in the AxNiR-azurin complex, results in substantially decreased activity when azurin is used as the electron donor instead of methyl viologen, providing direct evidence for the importance of this region for complex formation.  相似文献   

10.
The electron-transfer reactions of site-specific mutants of the blue copper protein azurin from Pseudomonas aeruginosa with its presumed physiological redox partners cytochrome c551 and nitrite reductase were investigated by temperature-jump and stopped-flow experiments. In the hydrophobic patch of azurin Met44 was replaced by Lys, and in the His35 patch His35 was replaced by Phe, Leu and Gln. Both patches were previously thought to be involved in electron transfer. 1H-NMR spectroscopy revealed only minor changes in the three-dimensional structure of the mutants compared to wild-type azurin. Observed changes in midpoint potentials could be attributed to electrostatic effects. The slow relaxation phase observed in temperature-jump experiments carried out on equilibrium mixtures of wild-type azurin and cytochrome c551 was definitively shown to be due to a conformational relaxation involving His35. Analysis of the kinetic data demonstrated the involvement of the hydrophobic but not the His35 patch of azurin in the electron transfer reactions with both cytochrome c551 and nitrite reductase.  相似文献   

11.
The crystallographic structures of several copper-containing nitrite reductases are now available. Despite this wealth of structural data, no definitive information is available as to whether the reaction proceeds by an ordered mechanism where nitrite binds to the oxidised type 2 site, followed by an internal electron transfer from the type 1 Cu, or whether binding occurs to the reduced type 2 Cu centre, or a random mechanism operates. We present here the first structural information on both types of Cu centres for the reduced form of NiR from Alcaligenes xylosoxidans (AxNiR) using X-ray absorption spectroscopy. The reduced type 2 Cu site EXAFS shows striking similarity to the EXAFS data for reduced bovine superoxide dismutase (Cu2Zn2 SOD), providing strong evidence for the loss of the water molecule from the catalytic Cu site in NiR on reduction resulting in a tri-coordinate Cu site similar to that in Cu2Zn2 SOD. The reduced type 2 Cu site of AxNiR is shown to be unable to bind inhibitory ligands such as azide, and to react very sluggishly with nitrite leading to only a slow re-oxidation of the the type 1 centre. These observations provide strong evidence that turnover of AxNiR proceeds by an ordered mechanism in which nitrite binds to the oxidised type 2 Cu centres before electron transfer from the reduced type 1 centre occurs. We propose that the two links between the Cu sites of AxNiR, namely His129-Cys130 and His89-Asp92-His94 are utilised for electron transfer and for communicating the status of the type 2 Cu site, respectively. Nitrite binding at type 2 Cu is sensed by the proton abstracting group Asp92 and the type 2 Cu ligand His94, and relayed to the type 1 Cu site via His89 thus triggering an internal electron transfer. The similarity of the type 2 Cu NiR catalytic site to the reduced Cu site of SOD is examined in some detail together with the biochemical evidence for the SOD activity of AxNiR.  相似文献   

12.
Nitrite reductase of Alcaligenes xylosoxidans contains three blue type 1 copper centers with a function in electron transfer and three catalytic type 2 copper centers. The mutation H139A, in which the solvent-exposed histidine ligand of the type 1 copper ion was changed to alanine, resulted in the formation of a colorless protein containing 4.4 Cu atoms per trimer. The enzyme was inactive with reduced azurin as the electron donor, and in contrast to the wild-type enzyme, no EPR features assignable to type 1 copper centers were observed. Instead, the EPR spectrum of the H139A enzyme, with parameters of g(1) = 2.347 and A(1) = 10 mT, was typical of type 2 copper centers. On the addition of nitrite, the EPR features developed spectral features with increased rhombicity, with g(1) = 2.29 and A(1) = 11 mT, arising from the type 2 catalytic site. As assessed by visible spectroscopy, ferricyanide (E degree = +430 mV) was unable to oxidize the H139A enzyme, and this required a 30-fold excess of K(2)IrCl(6) (E degree = +867 mV). Oxidation resulted in the EPR spectrum developing additional axial features with g(1) = 2.20 and A(1) = 9.5 mT, typical of type 1 copper centers. The oxidized enzyme after separation from the excess of K(2)IrCl(6) by gel filtration was a blue-green color with absorbance maxima at 618 and 420 nm. The instability of the protein prevented the precise determination of the midpoint potential, but these properties indicate that it is in the range 700-800 mV, an increase of at least approximately 470 mV compared with the native enzyme. This high potential, which is consistent with a trigonal planar geometry of the Cu ion, effectively prevents azurin-mediated electron transfer from the type 1 center to the catalytic type 2 Cu site. However, with dithionite as reductant, 20% of the activity of the wild-type enzyme was observed, indicating that the direct reduction of the catalytic site by dithionite can occur. When CuSO(4) was added to the crude extract before isolation of the enzyme, the Cu content of the purified H139A enzyme increased to 5.7 Cu atoms per trimer. The enzyme remained colorless, and the activity with dithionite as a donor was not significantly increased. The additional copper in such preparations was associated with an axial type 2 Cu EPR signal with g(1) = 2.226 and A(1) = 18 mT, and which were not changed by the addition of nitrite, consistent with the activity data.  相似文献   

13.
The homotrimeric copper-containing nitrite reductase (NiR) contains one type-1 and one type-2 copper center per monomer. Electrons enter through the type-1 site and are shuttled to the type-2 site where nitrite is reduced to nitric oxide. To investigate the catalytic mechanism of NiR the effects of pH and nitrite on the turnover rate in the presence of three different electron donors at saturating concentrations were measured. The activity of NiR was also measured electrochemically by exploiting direct electron transfer to the enzyme immobilized on a graphite rotating disk electrode. In all cases, the steady-state kinetics fitted excellently to a random-sequential mechanism in which electron transfer from the type-1 to the type-2 site is rate-limiting. At low [NO(-)(2)] reduction of the type-2 site precedes nitrite binding, at high [NO(-)(2)] the reverse occurs. Below pH 6.5, the catalytic activity diminished at higher nitrite concentrations, in agreement with electron transfer being slower to the nitrite-bound type-2 site than to the water-bound type-2 site. Above pH 6.5, substrate activation is observed, in agreement with electron transfer to the nitrite-bound type-2 site being faster than electron transfer to the hydroxyl-bound type-2 site. To study the effect of slower electron transfer between the type-1 and type-2 site, NiR M150T was used. It has a type-1 site with a 125-mV higher midpoint potential and a 0.3-eV higher reorganization energy leading to an approximately 50-fold slower intramolecular electron transfer to the type-2 site. The results confirm that NiR employs a random-sequential mechanism.  相似文献   

14.
Summary Biological electron transfer is not well understood. The question is addressed in this contribution with reference to the so-called blue copper proteins, each of which has a single copper atom at its active centre. The redox activity (as probed by the electron self exchange reaction) of the Cu centre seems not to be affected. The electron self exchange reaction is known to proceed through His-117, and the hydrophobic patch is most important in the formation of the azurin/azurin encounter complex. Ph effects have not been observed on the three-dimensional structure ofA. denitrificans azurin, which may indicate that if present at all these have no direct physiological implications. Mutants are in process of construction.  相似文献   

15.
We have constructed a disulfide dimer of S118C azurin, in which two copper centers are coupled through a relatively short covalent pathway, and studied its electron transfer properties. The dimer exhibits intriguing mechanistic properties. Due to the strain in the molecule, caused by the limited accessibility of Cys118, anti-cooperativity occurs in the two step oxidation of the dimer with a difference in redox potential between the two half reactions of 33 mV. Upon oxidation, the dimer favours the semi-reduced over the fully oxidized state, as the Cu(I) site in the semi-reduced dimer is able to stabilize the strained dimer complex. The internal electron transfer is surprisingly slow, which could be partially due to an increase in reorganization energy.  相似文献   

16.
Nitrous oxide reductase is the terminal component of a respiratory chain that utilizes N2O in lieu of oxygen. It is a homodimer carrying in each subunit the electron transfer site, CuA, and the substrate-reducing catalytic centre, CuZ. Spectroscopic data have provided robust evidence for CuA as a binuclear, mixed-valence metal site. To provide further structural information on the CuA centre of N2O reductase, site directed mutagenesis and Cu K-edge X-ray absorption spectroscopic investigation have been undertaken. Candidate amino acids as ligands for the CuA centre of the enzyme from Pseudomonas stutzeri ATCC14405 were substituted by evolutionary conserved residues or amino acids similar to the wild-type residues. The mutations identified the amino acids His583, Cys618, Cys622 and Met629 as ligands of Cu1, and Cys618, Cys622 and His626 as the minimal set of ligands for Cu2 of the CuA centre. Other amino acid substitutions indicated His494 as a likely ligand of CuZ, and an indirect role for Asp580, compatible with a docking function for the electron donor. Cu binding and spectroscopic properties of recombinant N2O reductase proteins point at intersubunit or interdomain interaction of CuA and CuZ. Cu K-edge X-ray absorption spectra have been recorded to investigate the local environment of the Cu centres in N2O reductase. Cu K-edge Extended X-ray Absorption Fine Structure (EXAFS) for binuclear Cu chemical systems show clear evidence for Cu backscattering at approximately 2.5 A. The Cu K-edge EXAFS of the CuA centre of N2O reductase is very similar to that of the CuA centre of cytochrome c oxidase and the optimum simulation of the experimental data involves backscattering from a histidine group with Cu-N of 1.92 A, two sulfur atoms at 2.24 A and a Cu atom at 2. 43 A, and allows for the presence of a further light atom (oxygen or nitrogen) at 2.05 A. The interpretation of the CuA EXAFS is in line with ligands assigned by site-directed mutagenesis. By a difference spectrum approach, using the Cu K-edge EXAFS of the holoenzyme and that of the CuA-only form, histidine was identified as a major contributor to the backscattering. A structural model for the CuA centre of N2O reductase has been generated on the basis of the atomic coordinates for the homologous domain of cytochrome c oxidase and incorporating our current results and previous spectroscopic data.  相似文献   

17.
The Cu-containing nitrite reductase from Hyphomicrobium denitrificans (HydNIR) has been spectroscopically and functionally characterized. The visible absorption spectrum implies that the enzyme has two type 1 Cu ions in one subunit (ca. 50 kDa). The electron paramagnetic resonance (EPR) spectrum of HydNIR is simulated assuming the sum of three distinct S = 1/2 systems: two type 1 Cu signals (axial and rhombic symmetries) and one type 2 Cu signal. The intramolecular electron transfer reaction from the type 1 Cu to the type 2 Cu at pH 6.0 does not occur in the absence of nitrite, but a very slow electron transfer reaction is observed in the presence of nitrite. The apparent first-order rate constants for the intramolecular electron transfer reactions (k(ET(intra))) in the presence of nitrite and also the apparent catalytic rate constants (k(cat)) of HydNIR decrease gradually with increasing pH in the range of pH 4.5-7.5. These pH profiles are substantially similar to each other, suggesting that the intramolecular electron transfer process is linked to the subsequent nitrite reduction process.  相似文献   

18.
In Cu-containing nitrite reductase from Alcaligenes faecalis S-6 the axial methionine ligand of the type-1 site was replaced (M150G) to make the copper ion accessible to external ligands that might affect the enzyme's catalytic activity. The type-1 site optical spectrum of M150G (A(460)/A(600)=0.71) differs significantly from that of the native nitrite reductase (A(460)/A(600)=1.3). The midpoint potential of the type-1 site of nitrite reductase M150G (E(M)=312(+/-5)mV versus hydrogen) is higher than that of the native enzyme (E(M)=213(+/-5)mV). M150G has a lower catalytic activity (k(cat)=133(+/-6)s(-1)) than the wild-type nitrite reductase (k(cat)=416(+/-10)s(-1)). The binding of external ligands to M150G restores spectral properties, midpoint potential (E(M)<225mV), and catalytic activity (k(cat)=374(+/-28)s(-1)). Also the M150H (A(460)/A(600)=7.7, E(M)=104(+/-5)mV, k(cat)=0.099(+/-0.006)s(-1)) and M150T (A(460)/A(600)=0.085, E(M)=340(+/-5)mV, k(cat)=126(+/-2)s(-1)) variants were characterized. Crystal structures show that the ligands act as allosteric effectors by displacing Met62, which moves to bind to the Cu in the position emptied by the M150G mutation. The reconstituted type-1 site has an otherwise unaltered geometry. The observation that removal of an endogenous ligand can introduce allosteric control in a redox enzyme suggests potential for structural and functional flexibility of copper-containing redox sites.  相似文献   

19.
The reaction between reduced Pseudomonas nitrite reductase and nitrite has been studied by stopped-flow and rapid-freezing EPR spectroscopy. The interpretation of the kinetics at pH 8.0 is consistent with the following reaction mechanism (where k1 and k3 much greater than k2). [formula: see text] The bimolecular step (Step 1) is very fast, being lost in the dead time of a rapid mixing apparatus; the stoichiometry of the complex has been estimated to correspond to one NO2- molecule/heme d1. The final species is the fully reduced enzyme with NO bound to heme d1; and at all concentrations of nitrite, there is no evidence for dissociation of NO or for further reduction of NO to N2O. Step 2 is assigned to an internal electron transfer from heme c to reduced NO-bound heme d1 occurring with a rate constant of 1 s-1; this rate is comparable to the rate of internal electron transfer previously determined when reducing the oxidized enzyme with azurin or cytochrome c551. When heme d1 is NO-bound, the rate at which heme c can accept electrons from ascorbate is remarkably increased as compared to the oxidized enzyme, suggesting an increase in the redox potential of the latter heme.  相似文献   

20.
Cytochrome c(551) from Pseudomonas aeruginosa is a monomeric redox protein of 82 amino-acid residues, involved in dissimilative denitrification as the physiological electron donor of cd(1) nitrite reductase. The distribution of charged residues on the surface of c(551) is very anisotropic: one side is richer in acidic residues whereas the other shows a ring of positive side chains, mainly lysines, located at the border of an hydrophobic patch which surrounds the heme crevice. In order to map in cytochrome c(551) the surface involved in electron transfer, we have introduced specific mutations in three residues belonging to the hydrophobic patch, namely Val23-->Asp, Pro58-->Ala and Ile59-->Glu. The effect of these mutations was analyzed studying both the self-exchange rate and the electron-transfer activity towards P. aeruginosa cd(1) nitrite reductase, the physiological partner and P. aeruginosa azurin, a copper protein often used as a model redox partner in vitro. Our results show that introduction of a negative charge in the hydrophobic patch severely hampers both homonuclear and heteronuclear electron transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号