首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Continuous exposure of young rats to the almond-like odor of acetophenone or cyclohexanone for up to 4 months, resulted in distinct but similar patterns of degenerating mitral cells in their olfactory bulbs. Rats favored their exposure odor in olfactory preference tests (Fig. 2) and their acuity for it was not altered (Fig. 3). However, they appeared to exhibit a deficit in detecting a similar but novel odor. The results suggest that the remaining normal mitral cells in the bulbs of these animals are those stimulated by the exposure odor. Cells which show signs of degeneration (Fig. 4) may receive little or no input from the periphery. Controls exposed to a similar but non-odorous environment showed evidence of non-selective mitral cell degeneration. In addition they had a lower acuity for acetophenone and cyclohexanone than animals reared in a normal rat colony (Fig. 3). Anatomical and behavioral data from odor exposed and control groups, suggest that partial regeneration of altered mitral cells may have occurred during a 5 month period following exposure. Overall the results provide further evidence for a topographical projection of the olfactory receptor epithelium onto the olfactory bulb and spatial coding of different odors in the bulb.  相似文献   

2.
On the basis of its primary circuit it has been postulated that the olfactory bulb (OB) is analogous to the retina in mammals. In retina, repeated exposure to the same visual stimulus results in a neural representation that remains relatively stable over time, even as the meaning of that stimulus to the animal changes. Stability of stimulus representation at early stages of processing allows for unbiased interpretation of incoming stimuli by higher order cortical centers. The alternative is that early stimulus representation is shaped by previously derived meaning, which could allow more efficient sampling of odor space providing a simplified yet biased interpretation of incoming stimuli. This study helps place the olfactory system on this continuum of subjective versus objective early sensory representation. Here we show that odor responses of the output cells of the OB, mitral cells, change transiently during a go–no-go odor discrimination task. The response changes occur in a manner that increases the ability of the circuit to convey information necessary to discriminate among closely related odors. Remarkably, a switch between which of the two odors is rewarded causes mitral cells to switch the polarity of their divergent responses. Taken together these results redefine the function of the OB as a transiently modifiable (active) filter, shaping early odor representations in behaviorally meaningful ways.  相似文献   

3.
Encoding and decoding of overlapping odor sequences   总被引:3,自引:0,他引:3  
Broome BM  Jayaraman V  Laurent G 《Neuron》2006,51(4):467-482
Odors evoke complex responses in locust antennal lobe projection neurons (PNs)-the mitral cell analogs. These patterns evolve over hundreds of milliseconds and contain information about odor identity and concentration. In nature, animals often encounter many odorants in short temporal succession. We explored the effects of such conditions by presenting two different odors with variable intervening delays. PN ensemble representations tracked stimulus changes and, in some delay conditions, reached states that corresponded neither to the representation of either odor alone nor to the static mixture of the two. We then recorded from Kenyon cells (KCs), the PNs' targets. Their responses were consistent with the PN population's behavior: in some conditions, KCs were recruited that did not fire during single-odor or mixture stimuli. Thus, PN population dynamics are history dependent, and responses of individual KCs are consistent with piecewise temporal decoding of PN output over large sections of the PN population.  相似文献   

4.
Body odors provide a rich source of sensory information for other animals. There is considerable evidence to suggest that short-term fluctuations in body odor can be caused by diet; however, few, if any, previous studies have demonstrated that specific compounds can directly mask or alter mouse urinary odor when ingested and thus alter another animal's behavior. To investigate whether the ingestion of citronellal, a monoterpene aldehyde that produces an intense aroma detected by both humans and mice, can alter mouse urinary odor, mice (C57BL6J) were trained in a Y maze to discriminate between the urinary odors of male donor mice that had ingested either citronellal in aqueous solution or a control solution. Trained mice could discriminate between urinary odors from the citronellal ingestion and control groups. A series of generalization tests revealed that citronellal ingestion directly altered mouse urinary odor. Moreover, trained mice that had successfully discriminated between urinary odors from donor mice of different ages failed to detect age-related changes in urine from male mice that had ingested 50 ppm of citronellal. This study is the first to show that ingestion of a xenobiotic can alter mouse urinary odor and confuse the behavioral responses of trained mice to age-related scents.  相似文献   

5.
Yee  KK; Costanzo  RM 《Chemical senses》1998,23(5):513-519
Following recovery from olfactory nerve transection, animals regain their ability to discriminate between odors. Odor discrimination is restored after new neurons establish connections with the olfactory bulb. However, it is not known if the new connections alter odor quality perception. To address this question, 20 adult hamsters were first trained to discriminate between cinnamon and strawberry odors. After reaching criterion (> or = 90% correct response), half of the animals received a bilateral nerve transection (BTX) and half a surgical sham procedure. Animals were not tested again until day 40, a point in recovery when connections are re-established with the bulb. When BTX animals were tested without food reinforcement, they could not perform the odor discrimination task. Sham animals, however, could discriminate, demonstrating that the behavioral response had not been extinguished during the 40 day period. When reinforcement was resumed, BTX animals were able to discriminate between cinnamon and strawberry after four test sessions. In addition, their ability to discriminate between these two familiar odors was no different than that of BTX and sham animals tested with two novel odors, baby powder and coffee. These findings suggest that, after recovery from nerve transection, there are alterations in sensory perception and that restoration of odor quality discrimination requires that the animal must again learn to associate individual odor sensations with a behavioral response.   相似文献   

6.
The olfactory cortex encompasses several anatomically distinct regions each hypothesized to provide differential representation and processing of specific odors. Studies exploring whether or not the diversity of olfactory bulb input to olfactory cortices has functional meaning, however, are lacking. Here we tested whether two anatomically major olfactory cortical structures, the olfactory tubercle (OT) and piriform cortex (PCX), differ in their neural representation and processing dynamics of a small set of diverse odors by performing in vivo extracellular recordings from the OT and PCX of anesthetized mice. We found a wealth of similarities between structures, including odor-evoked response magnitudes, breadth of odor tuning, and odor-evoked firing latencies. In contrast, only few differences between structures were found, including spontaneous activity rates and odor signal-to-noise ratios. These results suggest that despite major anatomical differences in innervation by olfactory bulb mitral/tufted cells, the basic features of odor representation and processing, at least within this limited odor set, are similar within the OT and PCX. We predict that the olfactory code follows a distributed processing stream in transmitting behaviorally and perceptually-relevant information from low-level stations.  相似文献   

7.
This video demonstrates a technique to establish the presence of a normally functioning olfactory system in a mouse. The test helps determine whether the mouse can discriminate between non-social odors and social odors, whether the mouse habituates to a repeatedly presented odor, and whether the mouse demonstrates dishabituation when presented with a novel odor. Since many social behavior tests measure the experimental animal’s response to a familiar or novel mouse, false positives can be avoided by establishing that the animals can detect and discriminate between social odors. There are similar considerations in learning tests such as fear conditioning that use odor to create a novel environment or olfactory cues as an associative stimulus. Deficits in the olfactory system would impair the ability to distinguish between contexts and to form an association with an olfactory cue during fear conditioning. In the odor habitation/dishabituation test, the mouse is repeatedly presented with several odors. Each odor is presented three times for two minutes. The investigator records the sniffing time directed towards the odor as the measurement of olfactory responsiveness. A typical mouse shows a decrease in response to the odor over repeated presentations (habituation). The experimenter then presents a novel odor that elicits increased sniffing towards the new odor (dishabituation). After repeated presentation of the novel odor the animal again shows habituation. This protocol involves the presentation of water, two or more non-social odors, and two social odors. In addition to reducing experimental confounds, this test can provide information on the function of the olfactory systems of new knockout, knock-in, and conditional knockout mouse lines.  相似文献   

8.
Bathyplectes curculionis (Thomson) is an introduced natural enemy of the alfalfa weevil in North America. The wasp requires carbohydrate foods as an adult. Adult wasps have increased longevity and fecundity when provided access to pea aphid, Acyrthosiphon pisum (Harris), honeydew in the laboratory, and adults respond positively to the presence of pea aphids in alfalfa fields. However, it is unknown how these wasps find aphid honeydew in the field. In a series of Y-tube olfactometer experiments, we evaluated the response of naïve and experienced adult female B. curculionis to odors from pea aphids, alfalfa, and pea aphids on alfalfa. Naïve adult females did not respond positively to pea aphid odor even when hungry. But adult females were able to learn aphid odor, and the mechanism of learning appears to be associative rather than by sensitization. Naïve females also showed no preference for alfalfa odor but learned alfalfa odor through sensitization. The wasps did not distinguish between alfalfa with aphids and alfalfa without aphids, even after exposure to aphids or alfalfa with aphids. However, they preferred pea aphid odor to alfalfa odor after a feeding experience in the presence of pea aphid odors. But after exposure to mixed odors of aphids and alfalfa while feeding, B. curculionis females preferred the odor of alfalfa to the odor of pea aphids. These results suggest that alfalfa odors mask or override aphid odors when aphids are associated with alfalfa (as happens naturally), thus interfering with the wasp's ability to respond to learned aphid odors. Therefore, although the wasps are capable of learning to find pea aphids and their honeydew in a simplified laboratory setting, it appears unlikely that they do so in the field.  相似文献   

9.
Lipton PA  Alvarez P  Eichenbaum H 《Neuron》1999,22(2):349-359
Firing patterns of neurons in the orbitofrontal cortex (OF) were analyzed in rats trained to perform a task that encouraged incidental associations between distinct odors and the places where their occurrence was detected. Many of the neurons fired differentially when the animals were at a particular location or sampled particular odors. Furthermore, a substantial fraction of the cells exhibited odor-specific firing patterns prior to odor presentation, when the animal arrived at a location associated with that odor. These findings suggest that neurons in the OF encode cross-modal associations between odors and locations within long-term memory.  相似文献   

10.
Associative cortex features in the first olfactory brain relay station   总被引:1,自引:0,他引:1  
Synchronized firing of mitral cells (MCs) in the olfactory bulb (OB) has been hypothesized to help bind information together in olfactory cortex (OC). In this survey of synchronized firing by suspected MCs in awake, behaving vertebrates, we find the surprising result that synchronized firing conveys information on odor value ("Is it rewarded?") rather than odor identity ("What is the odor?"). We observed that as?mice learned to discriminate between odors, synchronous firing responses to the rewarded and unrewarded odors became divergent. Furthermore, adrenergic blockage decreases the magnitude of odor divergence of synchronous trains, suggesting that MCs contribute to decision-making through adrenergic-modulated synchronized firing. Thus, in the olfactory system information on stimulus reward is found in MCs one synapse away from the sensory neuron.  相似文献   

11.
Our natural body odor goes through several stages of age-dependent changes in chemical composition as we grow older. Similar changes have been reported for several animal species and are thought to facilitate age discrimination of an individual based on body odors, alone. We sought to determine whether humans are able to discriminate between body odor of humans of different ages. Body odors were sampled from three distinct age groups: Young (20-30 years old), Middle-age (45-55), and Old-age (75-95) individuals. Perceptual ratings and age discrimination performance were assessed in 41 young participants. There were significant differences in ratings of both intensity and pleasantness, where body odors from the Old-age group were rated as less intense and less unpleasant than body odors originating from Young and Middle-age donors. Participants were able to discriminate between age categories, with body odor from Old-age donors mediating the effect also after removing variance explained by intensity differences. Similarly, participants were able to correctly assign age labels to body odors originating from Old-age donors but not to body odors originating from other age groups. This experiment suggests that, akin to other animals, humans are able to discriminate age based on body odor alone and that this effect is mediated mainly by body odors emitted by individuals of old age.  相似文献   

12.
Khan AG  Thattai M  Bhalla US 《Neuron》2008,57(4):571-585
Many species of mammals are very good at categorizing odors. One model for how this is achieved involves the formation of "attractor" states in the olfactory processing pathway, which converge to stable representations for the odor. We analyzed the responses of rat olfactory bulb mitral/tufted (M/T) cells using stimuli "morphing" from one odor to another through intermediate mixtures. We then developed a phenomenological model for the representation of odors and mixtures by M/T cells and show that >80% of odorant responses to different concentrations and mixtures can be expressed in terms of smoothly summing responses to air and the two pure odorants. Furthermore, the model successfully predicts M/T cell responses to odor mixtures when respiration dependence is eliminated. Thus, odor mixtures are represented in the bulb through summation of components, rather than distinct attractor states. We suggest that our olfactory coding model captures many aspects of single and mixed odor representation in M/T cells.  相似文献   

13.
Brody CD  Hopfield JJ 《Neuron》2003,37(5):843-852
Spike synchronization across neurons can be selective for the situation where neurons are driven at similar firing rates, a "many are equal" computation. This can be achieved in the absence of synaptic interactions between neurons, through phase locking to a common underlying oscillatory potential. Based on this principle, we instantiate an algorithm for robust odor recognition into a model network of spiking neurons whose main features are taken from known properties of biological olfactory systems. Here, recognition of odors is signaled by spike synchronization of specific subsets of "mitral cells." This synchronization is highly odor selective and invariant to a wide range of odor concentrations. It is also robust to the presence of strong distractor odors, thus allowing odor segmentation within complex olfactory scenes. Information about odors is encoded in both the identity of glomeruli activated above threshold (1 bit of information per glomerulus) and in the analog degree of activation of the glomeruli (approximately 3 bits per glomerulus).  相似文献   

14.
Testosterone-dependent olfactory signals emitted by male are well known to accelerate female puberty in mice (Vandenbergh effect). However, it remains unclear whether these chemosignals also influence adult expression of male-directed odor preference. Therefore, we exposed female mice to intact or castrated male bedding (vs clean bedding as control) during the peripubertal period (postnatal day (PD) 21–38) and measured male-directed odor preference in adulthood. At PD45 or PD60, females exposed to intact male odors, and thus showing puberty acceleration, preferred to investigate odors from intact males over females or castrated males. Females exposed to castrated male odors did not show puberty acceleration but preferred male (intact or castrated) over female odors. Finally, control females did not show any odor preference when tested at PD45, although a preference for male odors emerged later (PD60). In a second experiment, females that were exposed to intact male odors after pubertal transition (PD36–53) also preferred intact male over castrated male odors. In conclusion, our results indicate that peripubertal exposure to male odors induced early expression of male-directed odor preference regardless of puberty-accelerating effect and that induction of male-directed odor preference is not specific to the peripubertal period.  相似文献   

15.
In many rodent species, including Syrian hamsters, the expression of appropriate social behavior depends critically on the perception and identification of conspecific odors. The behavioral response to these odors is mediated by a network of steroid-sensitive ventral forebrain nuclei including the medial amygdala (Me), posterior bed nucleus of the stria terminalis (BNST), and medial preoptic area (MPOA). Although it is well-known that Me, BNST, and MPOA are densely interconnected and each uniquely modulates odor-guided social behaviors, the degree to which conspecific odor information and steroid hormone cues are directly relayed between these nuclei is unknown. To answer this question, we injected the retrograde tracer, cholera toxin B (CTB), into the BNST or MPOA of male subjects and identified whether retrogradely-labeled cells in Me and BNST 1) expressed immediate early genes (IEGs) following exposure to male and/or female odors or 2) expressed androgen receptor (AR). Although few retrogradely-labeled cells co-localized with IEGs, a higher percentage of BNST- and MPOA-projecting cells in the posterior Me (MeP) expressed IEGs in response to female odors than to male odors. The percentage of retrogradely-labeled cells that expressed IEGs did not, however, differ between and female and male odor-exposed groups in the anterior Me (MeA), posterointermediate BNST (BNSTpi), or posteromedial BNST (BNSTpm). Many retrogradely-labeled cells co-localized with AR, and a higher percentage of retrogradely-labeled MeP and BNSTpm cells expressed AR than retrogradely-labeled MeA and BNSTpi cells, respectively. Together, these data demonstrate that Me, BNST, and MPOA interact as a functional circuit to process sex-specific odor cues and hormone information in male Syrian hamsters.  相似文献   

16.
Fantana AL  Soucy ER  Meister M 《Neuron》2008,59(5):802-814
Center-surround receptive fields are a fundamental unit of brain organization. It has been proposed that olfactory bulb mitral cells exhibit this functional circuitry, with excitation from one glomerulus and inhibition from a broad field of glomeruli within reach of the lateral dendrites. We investigated this hypothesis using a combination of in vivo intrinsic imaging, single-unit recording, and a large panel of odors. Assuming a broad inhibitory field, a mitral cell would be influenced by >100 contiguous glomeruli and should respond to many odors. Instead, the observed response rate was an order of magnitude lower. A quantitative model indicates that mitral cell responses can be explained by just a handful of glomeruli. These glomeruli are spatially dispersed on the bulb and represent a broad range of odor sensitivities. We conclude that mitral cells do not have center-surround receptive fields. Instead, each mitral cell performs a specific computation combining a small and diverse set of glomerular inputs.  相似文献   

17.
Reentrainment following phase shifts of the light-dark (LD) cycle is accelerated in Octodon degus in the presence of olfactory social cues (i.e., odors) produced by conspecifics. However, not all odors from conspecifics were effective in facilitating reentrainment after a phase advance. In the current experiments, we examined whether nonanimal odors, odors from another species, or conspecific odors, including those manipulated by steroid hormones, can cause the same increased reentrainment of wheel-running activity as odors from an intact, adult female degu. A variety of odors, each selected to probe a particular aspect of the reentrainment acceleration phenomenon, were presented to a group of phase-shifting female degus. The shifting females (test animals) responded to odors of intact, female degu donors with decreased reentrainment time, but odors of ovariectomized (OVX), OVX with a single hormone replacement capsule (estradiol or progesterone) or phase-shifting females had no effect. Multiple males were effective odor donors, whereas a single male was ineffective in earlier studies. Rats and cloves were not effective in accelerating reentrainment. Furthermore, odors from rats delayed reentrainment. We conclude that the odors that effectively accelerate degu reentrainment after a phase advance of the LD cycle are species specific. We also report that repeated phase shifts, followed by complete recovery of phase relationships, do not alter the rate of recovery from a phase shift over time. These data suggest that in O. degus, a social species, odors may reinforce and strengthen the salience of the photic zeitgeber and/or facilitate synchronization of rhythms between animals.  相似文献   

18.
Predator odors have been found to induce unconditioned fear in adult animals and provide the opportunity to study the mechanisms underlying unlearned and learned fear. Predator threats change across an animal's lifetime, as do abilities that enable the animal to learn or engage in different defensive behaviors. Thus, the objective of this study was to determine the combination of factors that successfully induce unlearned fear to predator odor across development. Infant, juvenile, adolescent, and adult rats were exposed to one of the three odor stimuli (control odor, cat urine, or cat fur) in either a small or large chamber. Though all ages displayed fear-related behavior to cat odors, differences were reflected only in freezing behavior and not, as expected, risk-assessment. Infant and juvenile animals also increased freezing to cat urine compared to the control odor, possibly because these age groups possess limited defensive options to cope with threat and so may respond with freezing to all predator stimuli. Unexpectedly, chamber size had no effect on either freezing or risk-assessment in this study. Once the parameters of unconditioned fear are understood, they can be exploited to develop a learning paradigm to predator odors that could be used in early life.  相似文献   

19.
Franks KM  Isaacson JS 《Neuron》2006,49(3):357-363
Olfactory information is first encoded in a combinatorial fashion by olfactory bulb glomeruli, which individually represent distinct chemical features of odors. This information is then transmitted to piriform (olfactory) cortex, via axons of olfactory bulb mitral and tufted (M/T) cells, where it is presumed to form the odor percept. However, mechanisms governing the integration of sensory information in mammalian olfactory cortex are unclear. Here we show that single M/T cells can make powerful connections with cortical pyramidal cells, and coincident input from few M/T cells is sufficient to elicit spike output. These findings suggest that odor coding is broad and distributed in olfactory cortex.  相似文献   

20.
In rodents, where chemical signals play a particularly important role in determining intersexual interactions, various studies have shown that male behavior and physiology is sensitive to female odor cues. Here we examined the effects of brief (1 min) and more prolonged (60 min) preexposure to the odors of a novel estrous female on the behavioral and hormonal responses of sexually experienced and inexperienced male mice, Mus musculus, to subsequent predator (cat and weasel) odor exposure and potential predator risk. Brief, but not prolonged, preexposure to the odors of an estrous female decreased the aversion and avoidance responses of male mice to cat odor in a Y-maze preference test, with the extent of responses being affected by a males prior sexual experience. Similarly, brief, but not prolonged, preexposure to female odors markedly attenuated the analgesic responses elicited in male mice by weasel odor. Brief exposure to a novel estrous female by itself had no significant immediate effects on either corticosterone or testosterone levels in the males. However, brief, but not prolonged, preexposure to the odors of an estrous female attenuated the marked increase in corticosterone and decrease in testosterone that were induced in males by exposure to weasel odor. The decreases in aversive responses to, and effects of, predator odor exposure that are induced by brief exposure to a novel estrous female may reflect a greater risk taking and boldness in males that could directly facilitate access to an immediately, and possibly transiently, available novel sexually receptive female.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号