首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 979 毫秒
1.
Oxidative stress has been implicated in numerous degenerative diseases of aging, including heart diseases. However, there is still a need to identify biomarkers of oxidative stress-related events, such as protein modification by the lipid peroxidation product 4-hydroxynonenal (HNE) in these diseases in humans. The objective of this study was to assess if circulating levels of HNE-protein adducts (i) can be assessed with precision by GCMS and (ii) vary with disease progression and aging in a model of cardiomyopathy that displays enhanced oxidative stress, namely the spontaneously hypertensive rats (SHR). We modified a previously published isotope dilution GCMS method that quantifies HNE and its inactive metabolite, 1,4-dihydroxynonene (DHN), bound to thiol proteins following treatment with NaB(2)H(4) and Raney nickel, to increase its sensitivity (20-fold), precision, and robustness. Levels of these adducts were measured in blood and plasma collected from SHR and control Wistar rats at 7, 15, 22, and 30 weeks of age. Levels of protein-bound HNE, which were quantitated with good precision in the nanomolar range in blood, but not in plasma, were significantly increased by disease (SHR) and age (P < 0.0001 for both). Compared to Wistar rats, SHR showed greater blood levels of HNE-protein adducts at 22 and 30 weeks. Levels of protein-bound DHN, which were detected in blood and in plasma, were not affected by disease or age. Collectively, the results of this study conducted in an animal model of cardiomyopathy demonstrate that changes in blood HNE-protein thioether adducts with disease progression and aging can be assessed with good precision by the described GCMS method. This method may prove to be useful in evaluating the occurrence and impact of oxidative stress-related events involving bioactive HNE in heart diseases and aging in humans.  相似文献   

2.
Myocardial ischaemia is associated with the generation of lipid peroxidation products such as HNE (4-hydroxy-trans-2-nonenal); however, the processes that predispose the ischaemic heart to toxicity by HNE and related species are not well understood. In the present study, we examined HNE metabolism in isolated aerobic and ischaemic rat hearts. In aerobic hearts, the reagent [(3)H]HNE was glutathiolated, oxidized to [(3)H]4-hydroxynonenoic acid, and reduced to [(3)H]1,4-dihydroxynonene. In ischaemic hearts, [(3)H]4-hydroxynonenoic acid formation was inhibited and higher levels of [(3)H]1,4-dihydroxynonene and [(3)H]GS-HNE (glutathione conjugate of HNE) were generated. Metabolism of [(3)H]HNE to [(3)H]4-hydroxynonenoic acid was restored upon reperfusion. Reperfused hearts were more efficient at metabolizing HNE than non-ischaemic hearts. Ischaemia increased the myocardial levels of endogenous HNE and 1,4-dihydroxynonene, but not 4-hydroxynonenoic acid. Isolated cardiac mitochondria metabolized [(3)H]HNE primarily to [(3)H]4-hydroxynonenoic acid and minimally to [(3)H]1,4-dihydroxynonene and [(3)H]GS-HNE. Moreover, [(3)H]4-hydroxynonenoic acid was extruded from mitochondria, whereas other [(3)H]HNE metabolites were retained in the matrix. Mitochondria isolated from ischaemic hearts were found to contain 2-fold higher levels of protein-bound HNE than the cytosol, as well as increased [(3)H]GS-HNE and [(3)H]1,4-dihydroxynonene, but not [(3)H]4-hydroxynonenoic acid. Mitochondrial HNE oxidation was inhibited at an NAD(+)/NADH ratio of 0.4 (equivalent to the ischaemic heart) and restored at an NAD(+)/NADH ratio of 8.6 (equivalent to the reperfused heart). These results suggest that HNE metabolism is inhibited during myocardial ischaemia owing to NAD(+) depletion. This decrease in mitochondrial metabolism of lipid peroxidation products and the inability of the mitochondria to extrude HNE metabolites could contribute to myocardial ischaemia/reperfusion injury.  相似文献   

3.
Time course of oxidative modification of forebrain neural proteins was investigated in the rat model of global and partial cerebral ischemia/reperfusion. Animals were subjected to 4-vessel occlusion for 15 min (global ischemia). After the end of ischemia and at different reperfusion times (2, 24 and 48 h), lipoperoxidation-dependent and direct oxidative modification neural protein markers were measured in the forebrain total membrane fraction (tissue homogenate). Ischemia itself causes significant changes only in levels of tryptophan and bityrosine fluorescence when compared to controls. All tested parameters of protein modification altered significantly and were maximal at later reperfusion stage. Content of carbonyl group in re-flow period steadily increased and culminated at 48 h of reperfusion. The highest increase in the fluorescence of bityrosines was detected after 24 h of reperfusion and was statistically significant to both sham operated and ischemic groups. The changes in fluorescence intensity of tryptophan decreased during a reperfusion time dependent manner. Formation of lysine conjugates with lipoperoxidation end-products significantly increased only at later stages of reperfusion. Total forebrain membranes from animals subjected to 3-vessel occlusion model to 15 min (partial ischemia) show no altered content of oxidatively modified proteins compared to controls. Restoration of blood flow for 24 h significantly decreased only fluorescence of aromatic tryptophan. Partial forebrain ischemia/reperfusion resulted in no detectable significant changes in oxidative products formation in extracerebral tissues (liver and kidney) homogenates. Our results suggest that global ischemia/reperfusion initiates both the lipoperoxidation-dependent and direct oxidative modifications of neural proteins. The findings support the view that spatial and temporal injury at later stages of ischemic insult at least partially involves oxidative stress-induced amino acid modification. The results might have important implications for the prospective post-ischemic antioxidant therapy.  相似文献   

4.
Structural changes in vessels under the influence of ischemia play an important role in the pathogenesis of many diseases, most important of which are stroke and myocardial infarction or myocardial insult. Over the years, information has been gathered, which implicate a role for ischemic vascular changes in the pathogenesis of crush-syndrome, atherosclerosis and other vascular diseases. When blood vessels are damaged they become unresponsive to a stimulus, which normally elicits vasodilatation and can lead to intraluminal thrombosis and ischemic events. The aim of this review is to explore the structural changes seen in vessels affected by ischemia reperfusion injury. With ischemia, the development of observable changes to vascular structure is multifactorial. One key factor is reperfusion ischemic injury. Moreover, the duration of the ischemic event is an important factor when determining both the prognosis and the type of morphological change that is observable in affected vessel walls. In this regard, the deleterious progression of blood flow impairment and its severity depends on the specific organ involved and the type of tissue affected. Further, there are regional differences within affected tissues and the degree of microvascular injury is well correlated with differences in the nature and severity of the ischemic event. Any method aimed at preventing and treating ischemic reperfusion injuries in vessels, based on these investigations, should likewise be able to decrease the early signs of brain, cerebrovascular and heart injury and preserve normal cellular architecture.  相似文献   

5.
Antioxidant status following acute ischemic limb injury: A rabbit model   总被引:6,自引:0,他引:6  
Although ischemic injury to skeletal muscle is a matter of great clinical importance, relatively little is known about the mechanisms which determine systemic responses. One purpose of this study is to elucidate the systemic antioxidant status following an episode of acute ischemic limb injury and subsequent reperfusion.

Twelve New Zealand white rabbits were used in this study. After the animals were anesthetized, an ischemic insult was created in the right hind limb for twelve hours, followed by four hours of reperfusion. Several series of blood samples were obtained. At the end of the experiment, the animals were killed and necropsies undertaken in order to evaluate the antioxidant status of various visceral organs.

The results link ischemia and reperfusion injury to a significant decline in antioxidative activity in various tissues. The weakening in antioxidant status after ischemic limb injury was most pronounced in the heart tissue, followed in descending order by the spleen, skeletal muscle, lung, liver, and kidney tissue. The levels of specific antioxidants and reactive oxygen species in various organs changed significantly, and the changes were tissue specific. Endogenous radical scavenging systems were not entirely overwhelmed in most of the tissues studied. But higher levels of malondialdehyde (MDA) found in cardiac tissue suggest that the production of oxygen free radicals is accelerated by an ischemic injury. Based on the study, we believe that the cardiac tissue is particularly susceptible to the effects of ischemia and reperfusion injury. Damage to cardiac tissue is probably the major cause of mortality following acute ischemic injury in a limb.  相似文献   

6.
Previous studies demonstrated that preconditioning of a heart by repeated stunning can reduce the cellular injury to the heart from subsequent acute ischemic insult. To examine the possible biochemical mechanism for such myocardial preservation afforded by preconditioning, swine heart was subjected to four episodes of 5 min. stunning by occluding the left anterior descending coronary artery (LAD), followed by 10 min. of reperfusion after each stunning. Heart was then made regionally ischemic for 60 min. by LAD occlusion, followed by 6 hrs. reperfusion. Control heart was perfused for 60 min., followed by 60 min. ischemia and 6 hrs. reperfusion. The results of our studies indicated the stimulation of a number of antioxidative enzymes, including Mn-superoxide dismutase (Mn-SOD), catalase, glutathione peroxidase, and glutathione reductase, after repeated stunning and reperfusion. In addition, a number of new proteins were expressed after preconditioning the heart, including some oxidative-stress related proteins and 72 kDa heat-shock protein. These results suggest that preconditioning of a heart by repeated stunning may lead to strengthening of the oxidative defense system of the heart, which is likely to play a role in myocardial preservation during subsequent ischemic and reperfusion injury.  相似文献   

7.
To understand the subcellular basis of contractile failure due to ischemia-reperfusion injury, effects of 20, 60, and 90 min of global ischemia followed by 30 min of reperfusion were examined in isolated guinea pig hearts. Cardiac ultrastructure and function as well as Ca2+ transport abilities of both mitochondrial and microsomal fractions were determined in control, ischemic, and reperfused hearts. Hearts were unable to generate any contractile force after 20 min of ischemia and showed a 75% recovery upon reperfusion. However, there were no significant changes in the subcellular Ca2+ transport in the 20-min ischemic or reperfused hearts. When hearts were made ischemic for 60 and 90 min, the recovery of contractile force on reperfusion was 50 and 7%, respectively. There was a progressive decrease in mitochondrial and microsomal Ca2+ binding and uptake activities after 60 and 90 min of ischemia; these changes were evident at various times of incubation period and at different concentrations of Ca2+. Mitochondrial Ca2+ transport changes were only partially reversible upon reperfusion after 60 and 90 min of ischemia, whereas the microsomal Ca2+ binding, uptake and Ca2+ ATPase activities deteriorated further upon reperfusion of the 90-min ischemic hearts. Ultrastructural changes increased with the duration of the ischemic insult and reperfusion injury was extensive in the 90-min ischemic hearts. These data show that the lack of recovery of contractile function upon reperfusion after a prolonged ischemic insult was accompanied by defects in sarcoplasmic reticulum Ca2+ transporting properties and structural damage.  相似文献   

8.
Real-time monitoring of spin-trapped oxygen-derived free radicals released by the isolated ischemic and reperfused rat heart has been achieved by ESR analysis of the coronary effluents using continuous flow detection and high-speed acquisition techniques. Two nitrone spin traps 5,5-dimethyl pyrroline 1-oxide (Me2PnO) and 3,3,5,5-tetramethyl pyrroline 1-oxide (MePnO) have been separately perfused at a concentration of 40 mM during a sequence of 50 min of low-flow ischemia (1 ml/min) followed by 30 min of global ischemia and subsequent reperfusion at the control flow rate (14 ml/min). ESR spectra were sequentially obtained in 5-min or 30-s blocks during low-flow ischemia and reperfusion, respectively. 1. The results show the formation of OH. free radicals in the ischemic and reperfused heart, as demonstrated by the observation of Me2PnO-OH (aN = aH = 14.9 G; g = 2.0053) and Me4PnO-OH (aN = 15.2 G, aH = 16.8 G; g = 2.0055) spin adducts. There is no evidence of significant biological carbon-centered or peroxyl free radicals spin-adduct formation in the coronary effluents or in lipid extracts analyzed after reflow. 2. The OH. generation began 15-20 min after the onset of ischemia and was moderate, peaking at 30-40 min. During reperfusion, an intense formation of OH. spin adducts was observed, with a maximum at 30-60 s and a further gradual decrease over the following 2 min. 3. Cumulative integrated values of the amount of spin adducts released during the ischemic period show a Me2PnO-OH level fourfold greater than that of Me4PnO-OH. It was 2.5 times greater during reflow, reflecting slower kinetics with the more stable Me4PnO. 4. The original ESR detection technique developed in this study allows accurate real-time quantitative monitoring of the oxygen-derived free radicals generated during myocardial injury. It might provide a quick and reliable new means for assessing the efficacy of free-radical inhibitors.  相似文献   

9.
The effect of a localized hepatic injury, regional ischemia/reperfusion, on the expression of connexin 32 (Cx32) was studied. Cx32 is the component of the major hepatic gap junction. Two regions of the injured liver were analyzed: the area directly affected by the ischemic insult (ischemic liver), and the remainder of the organ (nonischemic liver). In the ischemic liver, there were simultaneous reductions in Cx32 mRNA steady-state levels and the encoding polypeptide from the plasma membrane within 1 h of reperfusion. In contrast, Cx32 mRNA steady-state levels were only reduced after 4 h of reperfusion in the nonischemic liver. This reduction of Cx32 mRNA levels was followed by the disappearance of Cx32 on the plasma membrane within 24 h of the insult. Administration of actinomycin D prior to the ischemic insult prevented the reduction in Cx32 mRNA in both ischemic and nonischemic liver regions. Protein synthesis was blocked during the first hour of reperfusion in the ischemic liver but not in the nonischemic liver. To mimic this effect, animals were treated with cycloheximide in absence of the ischemic insult. A reduction in Cx32 mRNA and polypeptide in the liver was observed in cycloheximide treated animals. This finding suggests that the decrease in Cx32 expression in the ischemic, but not in the nonischemic, liver may be due to the inhibition of protein synthesis during ischemia/reperfusion. These observations suggest that an ischemic insult produces a selective deteriorating effect on Cx32 expression in both ischemic and nonischemic liver regions probably through different mechanisms. J. Cell. Physiol. 171:20–27, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

10.
Preconditioning of the heart can be achieved by an ischemia/reperfusion stimulus, but also by stretching of the heart by an acute volume overload. Since manipulations of the extracellular osmolality affects cell size, we hypothesized that hyperosmotic pretreatment of the isolated perfused rat heart could reduce infarct size following regional ischemia (RI). Langendorff perfused rat hearts were subjected to 30 min RI by ligature of the main branch of the left coronary artery followed by 120 min reperfusion (control group). Ischemic preconditioning (IP-5') was achieved by 5 min total global ischemia and 5 min reperfusion prior to RI. Hyperosmotic pretreatment was accomplished by perfusion with a hyperosmotic buffer (600 mOsm/kg H2O by adding mannitol) for 1 min, 2 min or 5 min. At the end of the experiments, the hearts were cut into 2 mm slices, incubated with triphenyltetrazoliumchloride before scanning and computerized for estimation of infarct size. The average infarct size (as percentage of area at risk) in the control group was 42% and was significantly reduced to 16% by ischemic preconditioning and to 17% by 2 min hyperosmotic pretreatment. Neither 1 min nor 5 min hyperosmotic pretreatment reduced infarct size as compared to the controls. The infarct reducing effect of 2 min hyperosmotic pretreatment was not blunted by inhibition of protein kinase C (chelerytrine chloride), the Na+/H+-exchanger (HOE 694) or stretch-activated anion channels (gadolinium chloride). The results indicate that short-lasting hyperosmotic perturbations of the extracellular environment may precondition the heart to a subsequent ischemic insult.  相似文献   

11.
Fenton RA  Dickson EW  Dobson JG 《Life sciences》2005,77(26):3375-3388
Brief, nonlethal episodes of ischemia in the mammalian heart provide cardioprotection against the detrimental effects of a longer duration ischemia. The manifestation of this preconditioning (PC) phenomenon is initiated by the enhanced phosphorylation state of signal transduction proteins. We reported previously that PC is decreased in the aged rat myocardium. Although the mechanism responsible for this loss is not understood, a reduction in the phosphorylation of critical proteins associated with PC may be postulated. Experiments were conducted to investigate whether PC in the aged heart can be restored with the inhibition of endogenous protein phosphatases thereby enhancing phosphorylation of signaling proteins. Levels of phosphatase activities were also assessed with adult heart aging. Hearts from young adult (3-4 mo.) and aged (21-22 mo.) Fischer-344 rats were perfused in the presence or absence of okadaic acid (OKA; 0.1 microM). Aged adult hearts were either not preconditioned or were preconditioned with two PC cycles (5 min ischemia/5 min reperfusion). Myocardial cellular death that developed with a subsequent ischemia was determined with triphenyltetrazolium. With PC, 55% of the aged heart after ischemia was no longer viable. OKA administered before or after ischemia reduced this ischemia-induced cellular death by 29%. Without PC, OKA reduced viability 18% only when present before and after the ischemic episode. OKA in the ischemic young heart during reperfusion reduced the loss of viability 31%. The Protein Phosphatase 2A (PP2A) activity was found to be up to 82% greater in ventricular myocardium of aged rats. In conclusion, aging-induced changes in protein dephosphorylation may be one mechanism reducing the manifestation of preconditioning in the aged heart.  相似文献   

12.
Quantification of 4-hydroxy-2-nonenal (HNE) bound to circulating proteins may prove to be useful in evaluating the role of this bioactive lipoperoxidation by-product in the pathogenesis of various diseases. Recently, we developed a quantitative gas chromatography–mass spectrometry (GCMS) assay of total protein-bound HNE (HNE-P) in blood after reduction with NaB2H4 and cleavage with Raney nickel. Whereas it has been assumed that Raney nickel cleaves only Michael adducts of HNE to cysteine via a thioether bond (HNE-SP), results from this study demonstrate that our GCMS method also detects with precision picomoles of HNE adducts via nitrogen residues (HNE-NP). Specifically, evidence was obtained using various study models, including polyamino acids consisting of cysteine, lysine, and histidine and a biologically relevant molecule, albumin. Furthermore, we show that dinitrophenylhydrazine treatment before Raney nickel treatment can be used to discriminate and quantify the various HNE-P molecular species in plasma and blood samples from normal rats, which range between 0.15 and 3 pmol/mg protein or 10 to 600 nM. However, whereas HNE-SP predominated in whole blood, we detected HNE-NP only in plasma. We also identified another significant MS signal, which we attribute to protein-bound 1,4-dihydroxynonane (DHN-P) presumably formed from the enzymatic reduction of HNE-P. The distribution profile of all these species in plasma differed from that observed when physiologically relevant concentrations of albumin and HNE were incubated in vitro. Furthermore, interestingly, hypercholesterolemic rabbits showed higher plasma levels of HNE-NP, but not of DHN-P. Beyond documenting the presence of various types of HNE-P in circulating proteins, our results emphasize the importance of enzymatic mechanisms in situ as a factor determining their distribution in the various blood compartments under various conditions.  相似文献   

13.
The in vivo oxidation of perfused [14C]-labeled fatty acids has been shown to decrease dramatically in hypoxic hearts. This study addresses the influence of ischemia and reperfusion on the enzymic activities of beta-oxidation of fatty acids in mitochondria and of peroxisomal origin. The rate of beta-oxidation of fatty acids in the isolated mitochondria from myocardium of swine fed control diet declined about 20% by the ischemic insult induced by hypothermic cardioplegic arrest. Upon reperfusion, the rate of mitochondrial beta-oxidation returned to a normal level. In clofibrate-fed animals, the rate of mitochondrial beta-oxidation did not vary significantly between control, ischemic, and perfused tissues. Furthermore, neither in control nor in clofibrate-fed animals did the rates of peroxisomal beta-oxidation of fatty acids vary significantly in the ischemic or reperfused tissues as compared to that of preischemic controls. These results suggest that ischemia does not contribute to any loss of enzymic activity in beta-oxidation of fatty acid cycles either in mitochondria or peroxisomes. Furthermore, the feeding of 0.5% (w/w) clofibrate to pigs increased the rate of mitochondrial beta-oxidation of fatty acids only by 50% while that of peroxisomes increased threefold. A similar threefold increase in catalase activity was also produced by clofibrate feeding. These results suggest that the heart plays a role in the hypolipidemic action of clofibrate.  相似文献   

14.
4-hydroxynonenal (HNE) is a major aldehydic product of lipid peroxidation known to exert a multitude of biological, cytotoxic, and signal effects. Mammalian cells possess highly active pathways of HNE metabolism. The metabolic fate of HNE was investigated in various mammalian cells and organs such as hepatocytes, intestinal enterocytes, renal tubular cells, aortic and brain endothelial cells, synovial fibroblasts, neutrophils, thymocytes, heart, and tumor cells. The experiments were carried out at 37 degrees C at initial HNE concentrations between 1 microM--that means in the range of physiological and pathophysiologically relevant HNE levels--to 100 microM. In all cell types which were investigated, 90-95% of 100 microM HNE were degraded within 3 min of incubation. At 1 microM HNE the physiological blood serum level of about 0.1-0.2 microM was restored already after 10-30 s. As primary products of HNE in hepatocytes and other cell types the glutathione-HNE-1:1-conjugate, the hydroxynonenoic acid and the corresponding alcohol of HNE, the 1,4-dihydroxynonene, were identified. Furthermore, the beta-oxidation of hydroxynonenoic acid including the formation of water was demonstrated. The quantitative share of HNE binding to proteins was low with about 2-8% of total HNE consumption. The glycine-cysteine-HNE, cysteine-HNE adducts and the mercapturic acid from glutathione-HNE adduct were not formed in the most cell types, but in kidney cells and neutrophils. The rapid metabolism underlines the role of HNE degrading pathways in mammalian cells as important part of the secondary antioxidative defense mechanisms in order to protect proteins from modification by aldehydic lipid peroxidation products.  相似文献   

15.
Aldo-keto reductase family 1 member B1 (AKR1B1, 1B1 in brief) and aldo-keto reductase family 1 member B10 (AKR1B10, 1B10 in brief) are two proteins with high similarities in their amino acid sequences, stereo structures, and substrate specificity. However, these two proteins exhibit distinct tissue distributions; 1B10 is primarily expressed in the gastrointestinal tract and adrenal gland, whereas 1B1 is ubiquitously present in all tissues/organs, suggesting their difference in biological functions. This study evaluated in parallel the enzyme activity of 1B1 and 1B10 toward alpha, beta-unsaturated carbonyl compounds with cellular and dietary origins, including acrolein, crotonaldehyde, 4-hydroxynonenal, trans-2-hexenal, and trans-2,4-hexadienal. Our results showed that 1B10 had much better enzyme activity and turnover rates toward these chemicals than 1B1. By detecting the enzymatic products using high-performance liquid chromatography, we measured their activity to carbonyl compounds at low concentrations. Our data showed that 1B10 efficiently reduced the tested carbonyl compounds at physiological levels, but 1B1 was less effective. Ectopically expressed 1B10 in 293T cells effectively eliminated 4-hydroxynonenal at 5 μM by reducing to 1,4-dihydroxynonene, whereas endogenously expressed 1B1 did not. The 1B1 and 1B10 both showed enzyme activity to glutathione-conjugated carbonyl compounds, but 1B1 appeared more active in general. Together our data suggests that 1B10 is more effectual in eliminating free electrophilic carbonyl compounds, but 1B1 seems more important in the further detoxification of glutathione-conjugated carbonyl compounds.  相似文献   

16.
The cytotoxic lipid peroxidation product 4-hydroxynonenal (HNE1) is rapidly metabolized in enterocytes. The degradation of HNE and other aldehydic products of lipid peroxidation processes seems to be an antioxidative defense system. The metabolism of HNE was studied in suspensions of rat enterocytes at 37 degrees C, pH 7.4 and at initial HNE concentration of 100 microM. About 70% of the HNE were degraded within three minutes of incubation. Main products of HNE which were identified in enterocytes were the glutathione-HNE-1:1-conjugate, the hydroxynonenoic acid and the 1,4-dihydroxynonene. Furthermore, the formation of metabolites of the tricarboxylic acid cycle is suggested. The quantitative share of HNE binding to proteins was low with about 1% of total HNE consumption after three minutes of incubation.  相似文献   

17.
Myocardial taurine,development and vulnerability to ischemia   总被引:1,自引:0,他引:1  
Modi P  Suleiman MS 《Amino acids》2004,26(1):65-70
Summary. Depleting intracellular taurine in heart cells improves their resistance to ischemia and reperfusion injury. The aim of this work was to see whether physiologically low levels of endogenous taurine also reflect a reduced vulnerability of the myocardium to cardiac insults. The myocardial concentration of taurine was measured during different stages of development and compared with vulnerability to ischemia and reperfusion injury in the rat and in pediatric patients undergoing cardiac surgery.Rat hearts with relatively lower levels of taurine were significantly more resistant to an ischemic inult and there was a strong negative correlation between taurine content and recovery. Childrens hearts had significantly lower taurine levels compared to infants hearts which was consistent with their known increased resistance to an ischemic cardioplegic insult (Imura et al., 2001). This work shows that the changes in the concentration of myocardial taurine during development correlate with vulnerability to ischemia where low myocardial taurine is associated with improved recovery upon reperfusion.  相似文献   

18.
We assessed the role of A(1) adenosine receptor (A(1)AR) activation by endogenous adenosine in the modulation of ischemic contracture and postischemic recovery in Langendorff-perfused mouse hearts subjected to 20 min of total ischemia and 30 min of reperfusion. In control hearts, the rate-pressure product (RPP) and first derivative of pressure development over time (+dP/dt) recovered to 57 +/- 3 and 58 +/- 3% of preischemia, respectively. Diastolic pressure remained elevated at 20 +/- 2 mmHg (compared with 3 +/- 1 mmHg preischemia). Interstitial adenosine, assessed by microdialysis, rose from approximately 0.3 to 1.9 microM during ischemia compared with approximately 15 microM in rat heart. Nonetheless, these levels will near maximally activate A(1)ARs on the basis of effects of exogenous adenosine and 2-chloroadenosine. Neither A(1)AR blockade with 200 nM 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) during the ischemic period alone nor A(1)AR activation with 50 nM N(6)-cyclopentyladenosine altered rapidity or extent of ischemic contracture. However, ischemic DPCPX treatment significantly depressed postischemic recovery of RPP and +dP/dt (44 +/- 3 and 40 +/- 4% of preischemia, respectively). DPCPX treatment during the reperfusion period alone also reduced recovery of RPP and +dP/dt (to 44 +/- 2 and 47 +/- 2% of preischemia, respectively). These data indicate that 1) interstitial adenosine is lower in mouse versus rat myocardium during ischemia, 2) A(1)AR activation by endogenous adenosine or exogenous agonists does not modify ischemic contracture in murine myocardium, 3) A(1)AR activation by endogenous adenosine during ischemia attenuates postischemic stunning, and 4) A(1)AR activation by endogenous adenosine during the reperfusion period also improves postischemic contractile recovery.  相似文献   

19.
Ischemic tolerance can be developed by prior ischemic non-injurious stimulus preconditioning. The molecular mechanisms underlying ischemic tolerance are not yet fully understood. The purpose of this study is to evaluate the effect of preconditioning/preischemia on ischemic brain injury. We examined the endoplasmic reticulum stress response (unfolded protein response (UPR)) by measuring the mRNA and protein levels of specific genes such as ATF6, GRP78, and XBP1 after 15 min 4-VO ischemia and different times of reperfusion (1, 3, and 24 h). The data from the group of naïve ischemic rats were compared with data from the group of preconditioned animals. The results of the experiments showed significant changes in the gene expression at the mRNA level in the all ischemic/reperfusion phases. The influence of preischemia on protein level of XBP was significant in later ischemic times and at 3 h, the reperfusion reached 230% of the controls. The protein levels of GRP78 in preischemic animals showed a significant increase in ischemic and reperfusion times. They exceeded to 50% levels of corresponding naïve ischemic/reperfusion groups. Preconditioning also induced remarkable changes in the levels of ATF6 protein in the ischemic phase (about 170%). The levels of ATF6 remained elevated in earlier reperfusion times (37 and 62%, respectively) and persisted significantly elevated after 24 h of reperfusion. This data suggest that preconditioning paradigm (preischemia) underlies its neuroprotective effect by the attenuation of ER stress response after acute ischemic/reperfusion insult.  相似文献   

20.
Survival of cardiac patients undergoing heart surgery depends critically upon the recovery of myocardial energy metabolism during reperfusion of ischemic myocardium. The present study compares various parameters of myocardial energy metabolism using an isolated in situ pig heart. The left anterior descending (LAD) coronary artery was occluded for 60 min, followed by 60 min of global hypothermic cardioplegic arrest and 60 min of reperfusion. Free radical scavengers [superoxide dismutase SOD and catalase] were used to protect the ischemic heart from reperfusion injury. In both control and SOD plus catalase-treated groups, ATP, creatine phosphate (CP), ATP/ADP ratio, energy charge and phosphorylation potential dropped significantly during ischemic insult. After reperfusion, CP, ATP/ADP ratio and phosphorylation potential improved significantly, but they were restored to control level only in treated animals. In either case, free energy of ATP hydrolysis (delta G) lowered only by 5% during ischemia, but recovered promptly upon reperfusion. SOD and catalase also improved coronary blood flow and reduced creatine kinase release compared to those of untreated animals, suggesting improved myocardial recovery upon reperfusion. Our results suggest that SOD and catalase significantly improve the myocardial recovery during reperfusion by enhancing rephosphorylation steps, and the value of delta G is more critical compared to those of ATP and CP for myocardial recovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号