首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Previous studies have shown that cultivation of undifferentiated human embryonic stem (hES) cells requires human fibroblasts (hF) or mouse embryonic fibroblast (mEF) feeders or a coating matrix such as laminin, fibronectin or Matrigel in combination with mEF or hF conditioned medium. We here demonstrate a successful feeder-free and matrix-free culture system in which undifferentiated hES cells can be cultured directly on plastic surfaces without any supportive coating, in a hF conditioned medium. The hES cells cultured directly on plastic surfaces grow as colonies with morphology very similar to cells cultured on Matrigel(TM). Two hES cell lines SA167 and AS034.1 were adapted to matrix-free growth (MFG) and have so far been cultured up to 43 passages and cryopreserved successfully. The lines maintained a normal karyotype and expressed the expected marker profile of undifferentiated hES cells for Oct-4, SSEA-3, SSEA-4, TRA-1-60, TRA-1-81 and SSEA-1. The hES cells formed teratomas in SCID mice and differentiated in vitro into derivates of all three germ layers. Thus, the MFG-adapted hES cells appear to retain pluripotency and to remain undifferentiated. The present culture system has a clear potential to be scaleable up to a manufacturing level and become the preferred culture system for various applications such as cell therapy and toxicity testing.  相似文献   

4.
Wang Y  Xu C  Wang H  Liu J  Hui S  Li N  Liu F  Li J 《Human cell》2012,25(1):16-23
We describe the derivation and characterization of three novel human embryonic stem (hES) cell lines (YT1, YT2, YT3). One hES line (YT1) was obtained from six discarded blastocysts in a culture medium supplemented with 12 ng/ml basic fibroblast growth factor (bFGF), and two lines (YT2,YT3)were obtained from three discarded blastocysts in the same medium but supplemented with 16 ng/ml bFGF. These cell lines were derived by partial or whole embryo culture followed by further expansion after manual dissection of the passaged cells. These cells were passaged continuously for more than 6 or 8 months and possessed all of the typical features of pluripotent hES cell lines, such as typical morphological characteristics and the expression of hES-specific markers (TRA-1-60, TRA-1-81, SSEA-4, SSEA-3, alkaline phosphatase, Oct4, Nanog) and pluripotency-related genes (Oct4, Nanog, TDGF1, Sox2, EBAF, Thy-1, FGF4, Rex1). The lines maintained normal karyotypes after long-term cultivation. The karyotype of YT1 and YT3 was 46,XX, and that of YT2 was 46, XY. Pluripotency was confirmed by in vitro and in vivo differentiation, and genetic identity was demonstrated by DNA fingerprinting.Our results indicate that higher concentrations of bFGF at the early culture stage support efficient the hES cell derivation.  相似文献   

5.
Human embryonic stem cell lines derived from the Chinese population   总被引:17,自引:0,他引:17  
Fang ZF  Jin F  Gai H  Chen Y  Wu L  Liu AL  Chen B  Sheng HZ 《Cell research》2005,15(5):394-400
Six human embryonic stem cell lines were established from surplus blastocysts. The cell lines expressed alkaline phosphatase and molecules typical of primate embryonic stem cells, including Oct-4, Nanog, TDGF1, Sox2, EBAF, Thy-1, FGF4, Rex-1, SSEA-3, SSEA-4, TRA-1-60 and TRA-1-81. Five of the six lines formed embryoid bodies that expressed markers of a variety of cell types; four of them formed teratomas with tissue types representative of all three embryonic germ layers. These human embryonic stem cells are capable of producing clones of undifferentiated morphology, and one of them was propagated to become a subline. Human embryonic stem cell lines from the Chinese population should facilitate stem cell research and may be valuable in studies of population genetics and ecology.  相似文献   

6.
Human embryonic stem (hES) cells were originally isolated and maintained on mouse embryonic fibroblast (MEF) feeder layers in the presence of fetal bovine serum (FBS). However, if the hES cells are to be used for therapeutic applications, it is preferable to regulatory authorities that they be derived and cultured in animal-free conditions to prevent mouse antigen contamination that would exacerbate an immune response to foreign proteins, and the potential risk of transmission of retroviral and other zoonotic pathogens to humans. As a step towards this goal, we derived a new hES cell line (MISCES-01) on human adult skin fibroblasts as feeder cells using serum replacement (SR) medium. The MISCES-01 cells have a normal diploid karyotype (46XX), express markers of pluripotency (OCT4, GCTM-2, TRA-1-60, TRA-1-81, SSEA-3, SSEA-4, and alkaline phosphatase) and following in vitro and in vivo differentiation, give rise to derivatives of the three primary germ layers. This cell line can be obtained for research purposes from the Australian Stem Cell Centre (http://www.stemcellcentre.edu.au).  相似文献   

7.
Human embryonic stem (hES) cells hold great promise in regenerative medicine. Although hES cells have unlimited self-renewal potential, they tend to differentiate spontaneously in culture. TRA-1-81 is a biomarker of undifferentiated hES cells. Quantitative characterization of TRA-1-81 expression level in a single cell helps capture the “turn-on” signal and understand the mechanism of early differentiation. Here, we report on our examination of TRA-1-81 distribution and association on a hES cell membrane using an atomic force microscope (AFM). Our results suggest that aggregated distribution of TRA-1-81 antigen is characteristic for undifferentiated hES cells. We also evaluated the TRA-1-81 expression level at ∼17,800 epitopes and ∼700 epitopes per cell on an undifferentiated cell and a spontaneously differentiated cell, respectively. The method in this study can be adapted in examining other surface proteins on various cell types, thus providing a general tool for investigating protein distribution and association at the single cell level.  相似文献   

8.
Mouse embryonic fibroblasts (MEFs) are the most commonly used feeder cells for pluripotent stem cells. However, autogeneic feeder (AF) cells have several advantages such as no xenogeneic risks and reduced costs. In this report, we demonstrate that common marmoset embryonic stem (cmES) cells can be maintained on common marmoset AF (cmAF) cells. These cmES cells were maintained on cmAF cells for 6 months, retaining their morphology, normal karyotype, and expression patterns for the pluripotent markers Oct-3/4, Nanog, SSEA-3, SSEA-4, TRA-1-60, and TRA-1-81, as well as their ability to differentiate into cardiac and neural cells. Antibody array analysis revealed equivalent protein expression profiles between cmES cells maintained on cmAF cells and MEFs. In addition, similarly prepared human embryonic stem (hES) and induced pluripotent stem (hiPS) cell-derived AF cells supported the growth of and maintained the morphology and pluripotent marker expressions of hES and hiPS cells, respectively. DNA microarray analysis revealed that these hES and hiPS cells had mRNA expression profiles similar to those of hES and hiPS cells maintained on MEFs, respectively. Taken together, these findings imply that AF cells can replace MEFs in the routine maintenance of primate pluripotent stem cells.  相似文献   

9.
目的:探讨建立合适的小鼠孤雌胚胎干细胞建系方法。方法:采用氯化锶联合细胞松弛素B激活B6D2F1杂交小鼠卵母细胞,所获得的囊胚与桑椹胚分别用于孤雌胚胎干细胞的建系,观察两者的建系成功率。结果:共建立了12株小鼠孤雌胚胎干细胞系,这些细胞SSEA-1抗原阳性,SSEA-4,TRA-1-81,TRA-1-60表面抗原阴性,具有AKP活性,保持正常染色体核型,体内外分化分别形成畸胎瘤和拟胚体。结论:采用囊胚和去透明带的桑葚胚建立孤雌胚胎干细胞系获得成功。该方法为人类纯合子的胚胎干细胞建系提供基础,在自体细胞治疗领域中具有潜在的应用价值。  相似文献   

10.
Human embryonic stem (hES) cells are pluripotent cells derived from the inner cell mass of blastocysts. Their unique properties of self-renewal and pluripotency make them an attractive tool for basic research as well as a potential cell resource for therapy. However, each hES cell line demonstrates different identity. It is desirable to obtain more fully characterized hES cell lines with newly developed technologies associated with hES cell culture. Here, we report our experience of efficient derivation of three new Chinese hES cell lines (SHhES2, SHhES3, and SHhES4) from in vitro fertilization discarded embryos donated by women with polycystic ovary syndrome. These cell lines were derived under conditions minimizing exposure to animal components and maintained at an undifferentiated state for long-term culture. They retained a normal karyotype and expressed ALP, OCT4, SOX2, SSEA-4, TRA-1-60 and TRA-1-81. RT-PCR analysis also revealed high expression levels of pluripotency markers such as OCT4, LEFTY A, SOX2, TDGF-1, THY1, FGF4, NANOG, and REX1. When suspended in low-attachment culture dishes, embryoid bodies formed and were comprised of various differentiated cell types from all three embryonic germ layers. However, well-shaped teratomas were only harvested from line SHhES2, not from SHhES3 and SHhES4, indicating that the differentiation ability in vivo differs among the three cell lines. Collectively, the three new hES cell lines were established and fully characterized. The effort paves the way toward generating hES cell lines without contamination by animal components. All of these cell lines are available by contact Ying Jin at yjin@sibs.ac.cn.  相似文献   

11.
12.
13.
Comparative characteristics of three human embryonic stem cell lines   总被引:3,自引:0,他引:3  
Human embryonic stem (hES) cells have unique features including unlimited growth capacity, expression of specific markers, normal karyotypes and an ability to differentiate. Many investigators have tried to use hES cells for cell-based therapy, but there is little information about the properties of available hES cell lines. We compared the characteristics of three hES cell lines. The expression of SSEA-1, -3, -4, and APase, was examined by immunocytochemistry, and Oct-4 expression was analyzed by RT-PCR. Differentiation of the hES cells in vitro and in vivo led to the formation of embryoid bodies (EBs) or teratomas. We examined the expression of tissue-specific markers in the differentiated cells by semiquantitative RT-PCR, and the ability of each hES cell line to proliferate was measured by flow cytometry of DNA content and ELISA. The three hES cell lines were similar in morphology, marker expression, and teratoma formation. However there were significant differences (P < 0.05) between the differentiated cells formed by the different cell lines in levels of expression of tissue-specific markers such as renin, kallikrein, Glut-2, beta- and delta-globin, albumin, and alpha1-antitrypsin (alpha1-AT). The hES cell lines also differed in proliferative activity. Our observations should be useful in basic and clinical hES cell research.  相似文献   

14.
Feeder-free growth of undifferentiated human embryonic stem cells   总被引:59,自引:0,他引:59  
Previous studies have shown that maintenance of undifferentiated human embryonic stem (hES) cells requires culture on mouse embryonic fibroblast (MEF) feeders. Here we demonstrate a successful feeder-free hES culture system in which undifferentiated cells can be maintained for at least 130 population doublings. In this system, hES cells are cultured on Matrigel or laminin in medium conditioned by MEF. The hES cells maintained on feeders or off feeders express integrin alpha6 and beta1, which may form a laminin-specific receptor. The hES cell populations in feeder-free conditions maintained a normal karyotype, stable proliferation rate, and high telomerase activity. Similar to cells cultured on feeders, hES cells maintained under feeder-free conditions expressed OCT-4, hTERT, alkaline phosphatase, and surface markers including SSEA-4, Tra 1-60, and Tra 1-81. In addition, hES cells maintained without direct feeder contact formed teratomas in SCID/beige mice and differentiated in vitro into cells from all three germ layers. Thus, the cells retain fundamental characteristics of hES cells in this culture system and are suitable for scaleup production.  相似文献   

15.
Various types of human cells have been tested as feeder cells for the undifferentiated growth of human embryonic stem cells (hESCs) in vitro. We report here the successful culture of two hESC lines (H1 and H9) on human umbilical cord blood (UCB)-derived fibroblast-like cells. These cells permit the long-term continuous growth of undifferentiated and pluripotent hESCs. The cultured hESCs had normal karyotypes, expressed OCT-4, SSEA-4, TRA-1-60, and TRA-1-81, formed cystic embryonic body in vitro and teratomas in vivo after injected into immunodeficient mice. The wide availability of clinical-grade human UCB makes it a promising source of support cells for the growth of hESC for use in cell therapies.  相似文献   

16.
Human embryonic stem cells (hESCs) can self-renew indefinitely and differentiate into all cell types in the human body. Therefore, they are valuable in regenerative medicine, human developmental biology and drug discovery. A number of hESC lines have been derived from the Chinese population,but limited of them are available for research purposes. Here we report the derivation and characterization of two hESC lines derived from human blastocysts of Chinese origin. These hESCs express alkaline phosphatase and hESC-specific markers, including Oct4, Nanog, SSEA-3, SSEA-4,TRA-1-60 and TRA-1-81. They also have high levels of telomerase activity and normal karyotypes. These cells can form embryoid body in vitro and can be differentiated into all three germ layers in vivo by teratoma formation. The newly established hESCs will be distributed for research purposes.The availability of hESC lines from the Chinese population will facilitate studies on the differences in hESCs from different ethnic groups.  相似文献   

17.
The periodontal ligament (PDL) comprises adult stem cells, which are responsible for periodontal tissue regeneration. In the present study, we investigated the specific profile of the stem cells in the human PDL. Microscopic analysis demonstrated that PDL cells showed a fibroblastic appearance, forming flat and loose aggregates. PDL cells expressed embryonic stem cell-associated antigens (SSEA-1, SSEA-3, SSEA-4, TRA-1-60, TRA-1-81, OCT4, NANOG, SOX2, and REX1, and alkaline phosphatase activity), as well as conventional mesenchymal stem cell markers. When PDL cells were cultured in the presence of all-trans-retinoic acid, the numbers of SSEA-3+ and SSEA-4+ PDL cells were significantly decreased, while that of SSEA-1+ was increased. SSEA-4+ PDL cells showed a greater telomere length and growth rate. SSEA-4+ PDL cells exhibited the potential to generate specialized cells derived from three embryonic germ layers: mesodermal (adipocytes, osteoblasts, and chondrocytes), ectodermal (neurons), and endodermal (hepatocytes) lineages. Our findings demonstrated that SSEA-4, a major antigen to distinguish human embryonic stem cells, could also be used to identify multipotent stem cells in the PDL. Hence, SSEA-4+ human PDL cells appear to be a promising source of stem cells for regenerative medicine.  相似文献   

18.
19.
The ability to maintain human embryonic stem cells (hESCs) during long-term culture and yet induce differentiation to multiple lineages potentially provides a novel approach to address various biomedical problems. Here, we describe derivation of hESC lines, NOTT1 and NOTT2, from human blastocysts graded as 3BC and 3CB, respectively. Both lines were successfully maintained as colonies by mechanical passaging on mouse embryonic feeder cells or as monolayers by trypsin-passaging in feeder-free conditions on Matrigel. Undifferentiated cells retained expression of pluripotency markers (OCT4, NANOG, SSEA-4, TRA-1-60 and TRA-1-81), a stable karyotype during long-term culture and could be transfected efficiently with plasmid DNA and short interfering RNA. Differentiation via formation of embryoid bodies resulted in expression of genes associated with early germ layers and terminal lineage specification. The electrophysiology of spontaneously beating NOTT1-derived cardiomyocytes was recorded and these cells were shown to be pharmacologically responsive. Histological examination of teratomas formed by in vivo differentiation of both lines in severe immunocompromised mice showed complex structures including cartilage or smooth muscle (mesoderm), luminal epithelium (endoderm) and neuroectoderm (ectoderm). These observations show that NOTT1 and NOTT2 display the accepted characteristics of hESC pluripotency.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号