首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The PI-SceI protein is an intein-encoded homing endonuclease that initiates the mobility of its gene by making a double strand break at a single site in the yeast genome. The PI-SceI protein splicing and endonucleolytic active sites are separately located in each of two domains in the PI-SceI structure. To determine the spatial relationship between bases in the PI-SceI recognition sequence and selected PI-SceI amino acids, the PI-SceI-DNA complex was probed by photocross-linking and affinity cleavage methods. Unique solvent-accessible cysteine residues were introduced into the two PI-SceI domains at positions 91, 97, 170, 230, 376, and 378, and the mutant proteins were modified with either 4-azidophenacyl bromide or iron (S)-1-(p-bromoacetamidobenzyl)-ethylenediaminetetraacetate (FeBABE). The phenyl azide-coupled proteins cross-linked to the PI-SceI target sequence, and the FeBABE-modified proteins cleaved the DNA proximal to the derivatized amino acid. The results suggest that an extended beta-hairpin loop in the endonuclease domain that contains residues 376 and 378 contacts the major groove near the PI-SceI cleavage site. Conversely, residues 91, 97, and 170 in the protein splicing domain are in close proximity to a distant region of the substrate. To interpret our results, we used a new PI-SceI structure that is ordered in regions of the protein that bind DNA. The data strongly support a model of the PI-SceI-DNA complex derived from this structure.  相似文献   

2.
D Hu  M Crist  X Duan  F S Gimble 《Biochemistry》1999,38(39):12621-12628
The PI-SceI protein is a member of the LAGLIDADG family of homing endonucleases that is generated by a protein splicing reaction. PI-SceI has a bipartite domain structure, and the protein splicing and endonucleolytic reactions are catalyzed by residues in domains I and II, respectively. Structural and mutational evidence indicates that both domains mediate DNA binding. Treatment of the protein with trypsin breaks a peptide bond within a disordered region of the endonuclease domain situated between residues Val-270 and Leu-280 and interferes with the ability of this domain to bind DNA. To identify specific residues in this region that are involved in DNA binding and/or catalysis, alanine-scanning mutagenesis was used to create a set of PI-SceI mutant proteins that were assayed for activity. One of these mutants, N281A, was >300-fold less active than wild-type PI-SceI, and two other proteins, R277A and N284A, were completely inactive. These decreases in cleavage activity parallel similar decreases in substrate binding by the endonuclease domains of these mutant proteins. We mapped the approximate position of the disordered region to one of the ends of the 31 base pair PI-SceI recognition sequence using mutant proteins that were substituted with cysteine at residues Asn-274 and Glu-283 and tethered to the chemical nuclease FeBABE. These mutational and affinity cleavage data strongly support a model of PI-SceI docked to its DNA substrate that suggests that one or more residues identified here are responsible for contacting base pair A/T(-)(9), which is essential for substrate binding.  相似文献   

3.
Homing endonucleases are highly specific catalysts of DNA strand breaks that induce the transposition of mobile intervening sequences containing the endonuclease open reading frame. These enzymes recognize long DNA targets while tolerating individual sequence polymorphisms within those sites. Sequences of the homing endonucleases themselves diversify to a great extent after founding intron invasion events, generating highly divergent enzymes that recognize similar target sequences. Here, we visualize the mechanism of flexible DNA recognition and the pattern of structural divergence displayed by two homing endonuclease isoschizomers. We determined structures of I-CreI bound to two DNA target sites that differ at eight of 22 base-pairs, and the structure of an isoschizomer, I-MsoI, bound to a nearly identical DNA target site. This study illustrates several principles governing promiscuous base-pair recognition by DNA-binding proteins, and demonstrates that the isoschizomers display strikingly different protein/DNA contacts. The structures allow us to determine the information content at individual positions in the binding site as a function of the distribution of direct and water-mediated contacts to nucleotide bases, and provide an evolutionary snapshot of endonucleases at an early stage of divergence in their target specificity.  相似文献   

4.
Bakhrat A  Jurica MS  Stoddard BL  Raveh D 《Genetics》2004,166(2):721-728
Ho endonuclease is a LAGLIDADG homing endonuclease that initiates mating-type interconversion in yeast. Ho is encoded by a free-standing gene but shows 50% primary sequence similarity to the intein (protein-intron encoded) PI-SceI. Ho is unique among LAGLIDADG endonucleases in having a 120-residue C-terminal putative zinc finger domain. The crystal structure of PI-SceI revealed a bipartite enzyme with a protein-splicing domain (Hint) and intervening endonuclease domain. We made a homology model for Ho on the basis of the PI-SceI structure and performed mutational analysis of putative critical residues, using a mating-type switch as a bioassay for activity and GFP-fusion proteins to detect nuclear localization. We found that residues of the N-terminal sequence of the Hint domain are important for Ho activity, in particular the DNA recognition region. C-terminal residues of the Hint domain are dispensable for Ho activity; however, the C-terminal putative zinc finger domain is essential. Mutational analysis indicated that residues in Ho that are conserved relative to catalytic, active-site residues in PI-SceI and other related homing endonucleases are essential for Ho activity. Our results indicate that in addition to the conserved catalytic residues, Hint domain residues and the zinc finger domain have evolved a critical role in Ho activity.  相似文献   

5.
Mutations altering the cleavage specificity of a homing endonuclease   总被引:10,自引:9,他引:1       下载免费PDF全文
The homing endonuclease I-CreI recognizes and cleaves a particular 22 bp DNA sequence. The crystal structure of I-CreI bound to homing site DNA has previously been determined, leading to a number of predictions about specific protein–DNA contacts. We test these predictions by analyzing a set of endonuclease mutants and a complementary set of homing site mutants. We find evidence that all structurally predicted I-CreI/DNA contacts contribute to DNA recognition and show that these contacts differ greatly in terms of their relative importance. We also describe the isolation of a collection of altered specificity I-CreI derivatives. The in vitro DNA-binding and cleavage properties of two such endonucleases demonstrate that our genetic approach is effective in identifying homing endonucleases that recognize and cleave novel target sequences.  相似文献   

6.
To maximize spread of their host intron or intein, many homing endonucleases recognize nucleotides that code for important and conserved amino acid residues of the target gene. Here, we examine the cleavage requirements for I-TevI, which binds a stretch of thymidylate synthase (TS) DNA that codes for functionally critical residues in the TS active site. Using an in vitro selection scheme, we identified two base-pairs in the I-TevI cleavage site region as important for cleavage efficiency. These were confirmed by comparison of I-TevI cleavage efficiencies on mutant and on wild-type substrates. We also showed that nicking of the bottom strand by I-TevI is not affected by mutation of residues surrounding the bottom-strand cleavage site, unlike other homing endonucleases. One of these two base-pairs is universally conserved in all TS sequences, and is identical with a previously identified cleavage determinant of I-BmoI, a related GIY-YIG endonuclease that binds a homologous stretch of TS-encoding DNA. The other base-pair is conserved only in a subset of TS genes that includes the I-TevI, but not the I-BmoI, target sequence. Both the I-TevI and I-BmoI cleavage site requirements correspond to functionally critical residues involved in an extensive hydrogen bond network within the TS active site. Remarkably, these cleavage requirements correlate with TS phylogeny in bacteria, suggesting that each endonuclease has individually adapted to efficiently cleave distinct TS substrates.  相似文献   

7.
Elucidating how homing endonucleases undergo changes in recognition site specificity will facilitate efforts to engineer proteins for gene therapy applications. I-SceI is a monomeric homing endonuclease that recognizes and cleaves within an 18-bp target. It tolerates limited degeneracy in its target sequence, including substitution of a C:G+4 base pair for the wild-type A:T+4 base pair. Libraries encoding randomized amino acids at I-SceI residue positions that contact or are proximal to A:T+4 were used in conjunction with a bacterial one-hybrid system to select I-SceI derivatives that bind to recognition sites containing either the A:T+4 or the C:G+4 base pairs. As expected, isolates encoding wild-type residues at the randomized positions were selected using either target sequence. All I-SceI proteins isolated using the C:G+4 recognition site included small side-chain substitutions at G100 and either contained (K86R/G100T, K86R/G100S and K86R/G100C) or lacked (G100A, G100T) a K86R substitution. Interestingly, the binding affinities of the selected variants for the wild-type A:T+4 target are 4- to 11-fold lower than that of wild-type I-SceI, whereas those for the C:G+4 target are similar. The increased specificity of the mutant proteins is also evident in binding experiments in vivo. These differences in binding affinities account for the observed ∼36-fold difference in target preference between the K86R/G100T and wild-type proteins in DNA cleavage assays. An X-ray crystal structure of the K86R/G100T mutant protein bound to a DNA duplex containing the C:G+4 substitution suggests how sequence specificity of a homing enzyme can increase. This biochemical and structural analysis defines one pathway by which site specificity is augmented for a homing endonuclease.  相似文献   

8.
PI-SceI is an intein-encoded protein that belongs to the LAGLIDADG family of homing endonucleases. According to the crystal structure and mutational studies, this endonuclease consists of two domains, one responsible for protein splicing, the other for DNA cleavage, and both presumably for DNA binding. To define the DNA binding site of PI-SceI, photocross-linking was used to identify amino acid residues in contact with DNA. Sixty-three double-stranded oligodeoxynucleotides comprising the minimal recognition sequence and containing single 5-iodopyrimidine substitutions in almost all positions of the recognition sequence were synthesized and irradiated in the presence of PI-SceI with a helium/cadmium laser (325 nm). The best cross-linking yield (approximately 30%) was obtained with an oligodeoxynucleotide with a 5-iododeoxyuridine at position +9 in the bottom strand. The subsequent analysis showed that cross-linking had occurred with amino acid His-333, 6 amino acids after the second LAGLIDADG motif. With the H333A variant of PI-SceI or in the presence of excess unmodified oligodeoxynucleotide, no cross-linking was observed, indicating the specificity of the cross-linking reaction. Chemical modification of His residues in PI-SceI by diethylpyrocarbonate leads to a substantial reduction in the binding and cleavage activity of PI-SceI. This inactivation can be suppressed by substrate binding. This result further supports the finding that at least one His residue is in close contact to the DNA. Based on these and published results, conclusions are drawn regarding the DNA binding site of PI-SceI.  相似文献   

9.
10.
Schöttler S  Wende W  Pingoud V  Pingoud A 《Biochemistry》2000,39(51):15895-15900
The monomeric homing endonuclease PI-SceI harbors two catalytic centers which cooperate in the cleavage of the two strands of its extended recognition sequence. Structural and biochemical data suggest that catalytic center I contains Asp218, Asp229, and Lys403, while catalytic center II contains Asp326, Thr341, and Lys301. The analogy with I-CreI, for which the cocrystal structure with the DNA substrate has been determined, suggests that Asp218 and Asp229 in catalytic center I and Asp326 and Thr341 in catalytic center II serve as ligands for Mg(2+), the essential divalent metal ion cofactor which can be replaced by Mn(2+) in vitro. We have carried out a mutational analysis of these presumptive Mg(2+) ligands. The variants carrying an alanine or asparagine substitution bind DNA, but (with the exception of the D229N variant) are inactive in DNA cleavage in the presence of Mg(2+), demonstrating that these residues are important for cleavage. Our finding that the PI-SceI variants carrying single cysteine substitutions at these positions are inactive in the presence of the oxophilic Mg(2+) but active in the presence of the thiophilic Mn(2+) suggests that the amino acid residues at these positions are involved in cofactor binding. From the fact that in the presence of Mn(2+) the D218C and D326C variants are even more active than the wild-type enzyme, it is concluded that Asp218 and Asp326 are the principal Mg(2+) ligands of PI-SceI. On the basis of these findings and the available structural information, a model for the composition of the two Mg(2+) binding sites of PI-SceI is proposed.  相似文献   

11.
Homing endonuclease genes (HEGs) are mobile DNA elements that are thought to confer no benefit to their host. They encode site-specific DNA endonucleases that perpetuate the element within a species population by homing and disseminate it between species by horizontal transfer. Several yeast species contain the VMA1 HEG that encodes the intein-associated VMA1-derived endonuclease (VDE). The evolutionary state of VDEs from 12 species was assessed by assaying their endonuclease activities. Only two enzymes are active, PI-ZbaI from Zygosaccharomyces bailii and PI-ScaI from Saccharomyces cariocanus. PI-ZbaI cleaves the Z.bailii recognition sequence significantly faster than the Saccharomyces cerevisiae site, which differs at six nucleotide positions. A mutational analysis indicates that PI-ZbaI cleaves the S.cerevisiae substrate poorly due to the absence of a contact that is analogous to one made in PI-SceI between Gln-55 and nucleotides +9/+10. PI-ZbaI cleaves the Z.bailii substrate primarily due to a single base-pair substitution (A/T+5 → T/A+5). Structural modeling of the PI-ZbaI/DNA complex suggests that Arg-331, which is absent in PI-SceI, contacts T/A+5, and the reduced activity observed in a PI-ZbaI R331A mutant provides evidence for this interaction. These data illustrate that homing endonucleases evolve altered specificity as they adapt to recognize alternative target sites.  相似文献   

12.
GIY-YIG homing endonucleases are modular enzymes consisting of a well-defined N-terminal catalytic domain connected to a variable C-terminal DNA-binding domain. Previous studies have revealed that the role of the DNA-binding domain is to recognize and bind intronless DNA substrate, positioning the N-terminal catalytic domain such that it is poised to generate a staggered double-strand break by an unknown mechanism. Interactions of the N-terminal catalytic domain with intronless substrate are therefore a critical step in the reaction pathway but have been difficult to define. Here, we have taken advantage of the reduced activity of I-BmoI, an isoschizomer of the well-studied bacteriophage T4 homing endonuclease I-TevI, to examine double-strand break formation by I-BmoI. We present evidence demonstrating that I-BmoI generates a double-strand break by two sequential but chemically independent nicking reactions where divalent metal ion is a limiting factor in top-strand nicking. We also show by in-gel footprinting that contacts by the I-BmoI catalytic domain induce significant minor groove DNA distortions that occur independently of bottom-strand nicking. Bottom-strand contacts are critical for accurate top-strand nicking, whereas top-strand contacts have little influence on the accuracy of bottom-strand nicking. We discuss our results in the context of current models of GIY-YIG endonuclease function, with emphasis on the role of divalent metal ion and strand-specific contacts in regulating the activity of a single active site to generate a staggered double-strand break.  相似文献   

13.
Homing endonucleases are highly specific enzymes, capable of recognizing and cleaving unique DNA sequences in complex genomes. Since such DNA cleavage events can result in targeted allele-inactivation and/or allele-replacement in vivo, the ability to engineer homing endonucleases matched to specific DNA sequences of interest would enable powerful and precise genome manipulations. We have taken a step-wise genetic approach in analyzing individual homing endonuclease I-CreI protein/DNA contacts, and describe here novel interactions at four distinct target site positions. Crystal structures of two mutant endonucleases reveal the molecular interactions responsible for their altered DNA target specificities. We also combine novel contacts to create an endonuclease with the predicted target specificity. These studies provide important insights into engineering homing endonucleases with novel target specificities, as well as into the evolution of DNA recognition by this fascinating family of proteins.  相似文献   

14.
Homing endonucleases are highly specific DNA endonucleases, encoded within mobile introns or inteins, that induce targeted recombination, double-strand repair and gene conversion of their cognate target sites. Due to their biological function and high level of target specificity, these enzymes are under intense investigation as tools for gene targeting. These studies require that naturally occurring enzymes be redesigned to recognize novel target sites. Here, we report studies in which the homodimeric LAGLIDADG homing endonuclease I-CreI is altered at individual side-chains corresponding to contact points to distinct base-pairs in its target site. The resulting enzyme constructs drive specific elimination of selected DNA targets in vivo and display shifted specificities of DNA binding and cleavage in vitro. Crystal structures of two of these constructs demonstrate that substitution of individual side-chain/DNA contact patterns can occur with almost no structural deformation or rearrangement of the surrounding complex, facilitating an isolated, modular redesign strategy for homing endonuclease activity and specificity.  相似文献   

15.
The LAGLIDADG family of homing endonucleases (LHEs) bind to and cleave their DNA recognition sequences with high specificity. Much of our understanding for how these proteins evolve their specificities has come from studying LHE homologues. To gain insight into the molecular basis of LHE specificity, we characterized I-WcaI, the homologue of the Saccharomyces cerevisiae I-SceI LHE found in Wickerhamomyces canadensis. Although I-WcaI and I-SceI cleave the same recognition sequence, expression of I-WcaI, but not I-SceI, is toxic in bacteria. Toxicity suppressing mutations frequently occur at I-WcaI residues critical for activity and I-WcaI cleaves many more non-cognate sequences in the Escherichia coli genome than I-SceI, suggesting I-WcaI endonuclease activity is the basis of toxicity. In vitro, I-WcaI is a more active and a less specific endonuclease than I-SceI, again accounting for the observed toxicity in vivo. We determined the X-ray crystal structure of I-WcaI bound to its cognate target site and found that I-WcaI and I-SceI use residues at different positions to make similar base-specific contacts. Furthermore, in some regions of the DNA interface where I-WcaI specificity is lower, the protein makes fewer DNA contacts than I-SceI. Taken together, these findings demonstrate the plastic nature of LHE site recognition and suggest that I-WcaI and I-SceI are situated at different points in their evolutionary pathways towards acquiring target site specificity.  相似文献   

16.
Posey KL  Gimble FS 《Biochemistry》2002,41(7):2184-2190
Target sites for homing endonucleases occur infrequently in complex genomes. As a consequence, these enzymes can be used in mammalian systems to introduce double-strand breaks at recognition sites inserted within defined loci to study DNA repair by homologous and nonhomologous recombination. Using homing endonucleases for gene targeting in vivo would be more feasible if temporal or spatial regulation of their enzymatic activity were possible. Here, we show that the DNA cleavage activity of the yeast PI-SceI homing endonuclease can be turned on and off using a redox switch. Two cysteine pairs (Cys-64/Cys-344 and Cys-67/Cys-365) were separately inserted into flexible DNA binding loop(s) to create disulfide bonds that lock the endonuclease into a nonproductive conformation. The cleavage activities of the reduced Cys-64/Cys-344 and Cys-67/Cys-365 variants are similar or slightly lower than that of the control protein, but the activities of the proteins in the oxidized state are decreased more than 30-fold. Modulating the activity of the proteins is easily accomplished by adding or removing the reducing agent. We show that defects in DNA binding account for the decreased DNA cleavage activities of the proteins containing disulfide bonds. Interestingly, the Cys-67/Cys-365 variant toggles between two different DNA binding conformations under reducing and oxidizing conditions, which may permit the identification of structural differences between the two states. These studies demonstrate that homing endonuclease activity can be controlled using a molecular switch.  相似文献   

17.
The monomeric homing endonuclease PI-SceI cleaves the two strands of its DNA substrate in a concerted manner, which raises the question of whether this enzyme harbours one or two catalytic centres. If PI-SceI has only one catalytic centre, one would expect that cross-linking enzyme and substrate should prevent reorientation of the enzyme required to perform the second cut after having made the first cut: PI-SceI, however, when cross-linked to its substrate, is able to cleave both DNA strands. If PI-SceI has two catalytic centres, one would expect that it should be possible to inactivate one catalytic centre by mutation and obtain a variant with preference for a substrate nicked in one strand; such variants have been found. The structural homology between the catalytic domain of PI-SceI having a pseudo 2-fold symmetry, and I-CreI, a homodimeric homing endonuclease, suggests that in PI-SceI active site I, which attacks the top strand, comprises Asp218, Asp229 and Lys403, while Asp326, Thr341 and Lys301 make up active site II, which cleaves the bottom strand. Cleavage experiments with modified oligodeoxynucleotides and metal ion mapping experiments demonstrate that PI-SceI interacts differently with the two strands at the cleavage position, supporting a model of two catalytic centres.  相似文献   

18.
Homing endonucleases are site-specific and rare cutting endonucleases often encoded by intron or intein containing genes. They lead to the rapid spread of the genetic element that hosts them by a process termed 'homing'; and ultimately the allele containing the element will be fixed in the population. PI-SceI, an endonuclease encoded as a protein insert or intein within the yeast V-ATPase catalytic subunit encoding gene (vma1), is among the best characterized homing endonucleases. The structures of the Sce VMA1 intein and of the intein bound to its target site are known. Extensive biochemical studies performed on the PI-SceI enzyme provide information useful to recognize critical amino acids involved in self-splicing and endonuclease functions of the protein. Here we describe an insertion of the Green Fluorescence Protein (GFP) into a loop which is located between the endonuclease and splicing domains of the Sce VMA1 intein. The GFP is functional and the additional GFP domain does not prevent intein excision and endonuclease activity. However, the endonuclease activity of the newly engineered protein was different from the wild-type protein in that it required the presence of Mn(2+) and not Mg(2+) metal cations for activity.  相似文献   

19.
The AnCOB group I intron from Aspergillus nidulans encodes a homing DNA endonuclease called I-AniI which also functions as a maturase, assisting in AnCOB intron RNA splicing. In this investigation we biochemically characterized the endonuclease activity of I-AniI in vitro and utilized competition assays to probe the relationship between the RNA- and DNA-binding sites. Despite functioning as an RNA maturase, I-AniI still retains several characteristic properties of homing endonucleases including relaxed substrate specificity, DNA cleavage product retention and instability in the reaction buffer, which suggest that the protein has not undergone dramatic structural adaptations to function as an RNA-binding protein. Nitrocellulose filter binding and kinetic burst assays showed that both nucleic acids bind I-AniI with the same 1 : 1 stoichiometry. Furthermore, in vitro competition activity assays revealed that the RNA substrate, when prebound to I-AniI, stoichiometrically inhibits DNA cleavage activity, yet in reciprocal experiments, saturating amounts of prebound DNA substrate fails to inhibit RNA splicing activity. The data suggest therefore that both nucleic acids do not bind the same single binding site, rather that I-AniI appears to contain two binding sites.  相似文献   

20.
The thermodynamic profiles of target site recognition have been surveyed for homing endonucleases from various structural families. Similar to DNA-binding proteins that recognize shorter target sites, homing endonucleases display a narrow range of binding free energies and affinities, mediated by structural interactions that balance the magnitude of enthalpic and entropic forces. While the balance of ΔH and TΔS are not strongly correlated with the overall extent of DNA bending, unfavorable ΔHbinding is associated with unstacking of individual base steps in the target site. The effects of deleterious basepair substitutions in the optimal target sites of two LAGLIDADG homing endonucleases, and the subsequent effect of redesigning one of those endonucleases to accommodate that DNA sequence change, were also measured. The substitution of base-specific hydrogen bonds in a wild-type endonuclease/DNA complex with hydrophobic van der Waals contacts in a redesigned complex reduced the ability to discriminate between sites, due to nonspecific ΔSbinding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号