首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The isoelectric points of the blood group A1, A2 and B gene-associated glycosyltransferases in human ovarian cyst fluids were found by isoelectric focusing to be in the pH range 9.5–10. The A1 and B transferases in serum had isoelectric points similar to those of the enzymes in cyst fluids but A2 transferases in serum had considerably lower isoelectric points, in the pH range 6–7. The difference in the pI values of the A1 and A2 transferases in the serum of a donor of the genotype A1A2 enabled the two enzymes to be preparatively separated by the isoelectric focusing technique. The dissimilarity in the pI values of the A2 transferases in ovarian cyst fluids and serum samples indicates that the isoelectric point arises from a post-translational modification of the enzyme protein.  相似文献   

2.
Isotonic suspensions of erythrocytes were exposed to intense electric fields for a duration in microseconds. Time-dependent increase in the conductivity of the suspension was observed under fields greater than a threshold of about 1.5 kV/cm. The threshold was independent of the ionic strength of the medium, and changed little with temperature or with the rise time of the applied field. Under fields greater than 3 kV/cm, the time course of the conductivity increase consisted of a rapid (approx. 1 μs) and a slow (approx. 100 μs) phases. The increase is attributed primarily to large membrane conductance induced by the applied field. The membrane conductance is in the order of 10 Ω?1/cm2 in the rapid phase and 102 Ω?1/cm2 in the slow phase. Comparison with previous results indicates that this induced membrane conductance corresponds to the formation of aqueous pores in the cell membrane. After the applied field was removed, the conductivity of the suspension returned nearly to its initial value, indicating that the induced membrane conductance is strongly dependent on the membrane potential. The conductivity then increased again in the time range of 10 s. This is attributed to the diffusional efflux of intracellular ions through the voltage-induced pores. From the rate of the efflux, number of the pores/cell is estimated to be in the order of 102. Final stage of the conductivity change was a slow decrease, corresponding to the colloid osmotic swelling of the perforated cells.  相似文献   

3.
A general procedure for the isolation of 3′-linked fragments derived from tRNA molecules is described. Purified N-2-naphthoxyacetylglycyl derivatives of the tRNA1Gly and tRNA2Gly of yeast were exhaustively digested with RNase T1 and the 3′-linked fragments (bearing the derivative) were separated from other degradation products (lacking the derivative) by stepwise chromatography on BD-cellulose. Subsequent chromatographic resolution and base-composition analysis allowed tentative identification of the 3′-terminals of tRNA1Gly and tRNA2Gly as Gp(Cp,Ap)CpCpA and Gp(Cp,Cp,Up,Ap)CpCpA, respectively. The potential utility of this procedure for development of a novel approach to nucleic acid sequence analysis is discussed.  相似文献   

4.
(5-Isoleucine)-angiotensin II applied to black lipid membranes produced current fluctuations varying between Δ>G = 5 · 10?11 Ω? and 3.5 · 10?10 Ω?1. These fluctuations depend on the voltage and the hydrostatic pressure. The membrane resistance is lowered by Δ>R = 6.1 · 107 Ω · cm2. With (5-isoleucine, 8-leucine)-angiotensin II the jumps are of a single amplitude (Δ>G = 2 · 10?10 Ω?1). In both cases water and ions are transported across the membrane.  相似文献   

5.
The technique of laser Doppler electrophoresis was applied for the study of the surface charge properties of (Na+,+)-ATPase containing microsomal vesicles derived from guinea-pig kidney. The influence of pH, the screening and binding of uni- and divalent cations and the binding of ATP show: (1) one net negative charge per protein unit with a pK = 3.9; (2) deviation from the Debye relation between surface potential and ionic strength for univalent cations, with no difference in the effect of Na+ and K+; (3) Mg2+ binds with an association constant of Ka = 1.1 · 102M?1 while ATP binds with an apparent Ka = 1.1 · 104M?2 for 1 mM Nacl, 0.2 mM KCI, 0.1 mM MgCl2, 0.1 mM Tris-HCI (pH 7.3). The binding is weaker at higher Mg2+ concentrations. There is no ATP binding in the absence of Mg2+. In addition, the average vesicle size derived from the linewidth of the quasi-elastic light scattering spectrum is 203.7 ± 15.2 nm. In the presence of ATP a reduction in size is observed.  相似文献   

6.
Seedlings carrying mutations in regulatory genes for protochlorophyll(ide) synthesis accumulate protochlorophyll(ide) in darkness in amounts exceeding the wildtype level. Thus, +/tig-d12 and tig-b24tig-b24accumulate 2-fold, tig-o34tig-o34 5- to 6-fold, and tig-d12tig-d12 15-fold more protochlorophyll(ide) than the wild type.The amount of photoconvertible protochlorophyll(ide) accumulated in darkness is the same in all genotypes, despite the large differences in total protochlorophyll(ide) content, indicating a constant number of photoconversion sites.When briefly illuminated leaves are returned to darkness, regeneration of active protochlorophyll(ide) from the pool of inactive protochlorophyll(ide) takes place in wild-type and mutant leaves. Compared to the wild type, the rate of protochlorophyll(ide) activation during 4- and 10-min dark periods is higher in +/tig-d12, tig-b24tig-b24, and tig-o34tig-o34, but lower in tig-d12tig-d12.There was no indication that the accumulation of protochlorophyll(ide) influences the conversion sites of the protochlorophyll(ide) holochrome, as the kinetics of photoconversion of initially active protochlorophyll(ide) in leaves with the genotypes +/+, +/tig-o34, and tig-o34tig-o34 are similar or identical.  相似文献   

7.
Robert F. Anderson 《BBA》1983,723(1):78-82
The bimolecular decay rates (2k) of the flavosemiquinones (FH·F?) of riboflavin, FMN and FAD have been determined using pulse radiolysis. The rates (defined as d[FH·F?]dt = ?2k[FH·F?]2) for the neutral flavosemiquinones at zero ionic strength and pH 5.9 are (in units of mol?1·dm3·s?1): (1.2 ± 0.1)·109, (5.0 ± 0.2)·108 and (1.4 ± 0.1)·108; and for the anionic flavosemiquinones at pH 11.2 (5.4 ± 0.9)·108, (4.5 ± 0.3)·107 and (8.5 ± 1.3)·106, respectively. The kinetic salt effect has been used to formulate rate equations for each flavin to adjust for ionic strength effects.  相似文献   

8.
Temperature-shift experiments were performed on five Notch-locus genotypes with temperature-sensitive phenotypes. The results show that temperature-sensitive periods (TSPs) for lethality may occur at any developmental stage: (1) Ng11Ng11;Dp51b7 having a short embryonic TSP for lethality, (2) Ax16172N?40 having a second-instar TSP for lethality, and (3) N?103fano with a long, possibly polyphasic, TSP, beginning in the embryonic stage and ending in the pupal stage. On the other hand, TSPs for adult morphological phenotypes appear to be restricted to the third larval instar: (1) Ax16172N?40 having third-instar TSPs for wing vein gapping and ocellar bristle loss, and (2) N?103spl having third-instar TSPs for eye facet disarray, wing notching, bristle number variation, and fusion of tarsal segments. The significance of these results is discussed in terms of the role of the Notch locus in development.  相似文献   

9.
10.
The activity of calcium-stimulated and magnesium-dependent adenosinetriphosphatase which possesses a high affinity for free calcium (high-affinity (Ca2+ + Mg2+)-ATPase, EC 3.6.1.3) has been detected in rat ascites hepatoma AH109A cell plasma membranes. The high-affinity (Ca2+ + Mg2+)-ATPase had an apparent half saturation constant of 77 ± 31 nM for free calcium, a maximum reaction velocity of 9.9 ± 3.5 nmol ATP hydrolyzed/mg protein per min, and a Hill number of 0.8. Maximum activity was obtained at 0.2 μM free calcium. The high-affinity (Ca2+ + Mg2+)-ATPase was absolutely dependent on 3–10 mM magnesium and the pH optimum was within physiological range (pH 7.2–7.5). Among the nucleoside trisphosphates tested, ATP was the best substrate, with an apparent Km of 30 μM. The distribution pattern of this enzyme in the subcellular fractions of the ascites hepatoma cell homogenate (as shown by the linear sucrose density gradient ultracentrifugation method) was similar to that of the known plasma membrane marker enzyme alkaline phosphatase (EC 3.1.3.1), indicating that the ATPase was located in the plasma membrane. Various agents, such as K+, Na+, ouabain, KCN, dicyclohexylcarbodiimide and NaN3, had no significant effect on the activity of high-affinity (Ca2+ + Mg2+)-ATPase. Orthovanadate inhibited this enzyme activity with an apparent half-maximal inhibition constant of 40 μM. The high-affinity (Ca2+ + Mg2+)-ATPase was neither inhibited by trifluoperazine, a calmodulin-antagonist, nor stimulated by bovine brain calmodulin, whether the plasma membranes were prepared with or without ethylene glycol bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid. Since the kinetic properties of the high-affinity (Ca2+ + Mg2+)-ATPase showed a close resemblance to those of erythrocyte plasma membrane (Ca2+ + Mg2+)-ATPase, the high-affinity (Ca2+ + Mg2+)-ATPase of rat ascites hepatoma cell plasma membrane is proposed to be a calcium-pumping ATPase of these cells.  相似文献   

11.
In an accompanying publication by Duckwitz-Peterlein, Eilenberger and Overath ((1977) Biochim. Biophys. Acta 469, 311–325) it is shown that the exchange of lipid molecules between negatively charged vesicles consisting of total phospholipid extracts from Escherichia coli occurs by the transfer of single lipid monomers or small micelles through the water. Here a kinetic interpretation is presented in terms of a rate constant, k?, for the escape of lipid molecules from the vesicle bilayer into the water. The evaluated rate constants are k?P = (0.86 ± 0.05) · 10?5s?1 and k?E = (1.09 ± 0.13) · 10?6s?1 for phospholipid molecules with trans-Δ9-hexadecenoate and trans-Δ9-octadecenoate, respectively, as the predominant acyl chain component. The rate constants are discussed in terms of the acyl chain and polar head group composition of the lipids.  相似文献   

12.
Showdomycin inhibited pig brain (Na+ + K+)-ATPase with pseudo first-order kinetics. The rate of inhibition by showdomycin was examined in the presence of 16 combinations of four ligands, i.e., Na+, K+, Mg2+ and ATP, and was found to depend on the ligands added. Combinations of ligands were divided into five groups in terms of the magnitude of the rate constant; in the order of decreasing rate constants these were: (1)Na+ + Mg2+ + ATP, (2) Mg2+, Mg2+ + K+, K+ and none, (3) Na+ + Mg2+, Na+, K+ + Na+ and Na+ + K+ + Mg2+, (4) Mg2+ + K+ + ATP, K+ + ATP and Mg2+ + ATP, (5)K+ + Na+ + ATP, Na+ + ATP, Na+ + ATP, Na+ + K+ + Mg2+ + ATP and ATP. The highest rate was obtained in the presence of Na+, Mg2+ and ATP. The apparent concentrations of Na+, Mg2+ and ATP for half-maximum stimulation of inhibition (K0.5s) were 3 mM, 0.13 mM and 4μM, respectively. The rate was unchanged upon further increase in Na+ concentration from 140 to 1000 mM. The rates of inhibition could be explained on the basis of the enzyme forms present, including E1, E2, ES, E1-P and E2-P, i.e., E2 has higher reactivity with showdomycin than E1, while E2-P has almost the same reactivity as E1-P. We conclude that the reaction of (Na+ + K+)-ATPase proceeds via at least four kinds of enzyme form (E1, E2, E1 · nucleotide and EP), which all have different conformations.  相似文献   

13.
1. Extensive treatment of rabbit kidney microsomes with phosphatidylinositol-specific phospholipase C under various conditions never resulted in more than 75% hydrolysis of the substrate. 2. The non-degraded fraction of the phosphatidylinositol (10–12 nmol per mg microsomal protein) could be recovered only by an acidic extraction procedure. 3. The (Na+ + K+)-ATPase activity found in those membranes was not affected by this treatment. 4. Complete degradation of phosphatidylinositol could be easily achieved when the phospholipase was applied to rat liver microsomes which do not contain any detectable (Na+ + K+)-ATPase activity. 5. It is concluded that in rabbit kidney microsomes a close association exist between the (Na+ + K+)-ATPase and that fraction of the phosphatidylinositol that is directly involved in the maintenance of its activity.  相似文献   

14.
The kinetics of pyruvate transport across the isolated red blood cell membrane were studied by a simple and precise spectrophotometric method: following the oxidation of NADH via lactate dehydrogenase trapped within resealed ghosts. The initial rate of pyruvate entry was linear. Influx was limited by saturation at high pyruvate concentration. Pyruvate influx was greatly stimulated by increasing ionic strength in the outer but not the inner aqueous compartment. The Km ranged from 15.0 mM at μ = 0.05 to 3.7 mM at μ = 0.01, while the V went from 0.611 · 10-15 to 0.137 · 10-15mol · min-1 · ghost-1. Ionic strength was shown to affect the translocation step and not pyruvate binding. The energy of activation of pyruvate flux into resealed ghosts was 25 kcal/mol, similar to that found in intact red blood cells. Inhibitors of pyruvate influx included such anions as thiocyanate, chloride, bicarbonate, α-cyanocinnamate, salicylate and ketomalonate (but not acetate); noncompetitive inhibitors were phloretin, 1-fluoro-2,4-dinitrobenzene, 4-acetamido-4′-isothiocyanate-stilbene-2,2′-disulfonic acid and o-phenanthroline/CuSO4 mixtures. The last reagent, known to induce disulfide links in certain membrane proteins, blocked the ionic strength stimulation of pyruvate influx in this study.  相似文献   

15.
(1) A (K+ + H+)-ATPase containing membrane fraction, isolated from pig gastric mucosa, has been further purified by means of zonal electrophoresis, leading to a 20% increase in specific activity and an increase in ratio of (K+ + H+)-ATPase to basal Mg2+-ATPase activity from 9 to 20. (2) The target size of (Na+ + K+)-ATPase, determined by radiation inactivation analysis, is 332 kDa, in excellent agreement with the earlier value of 327 kDa obtained from the subunit composition and subunit molecular weights. This shows that the Kepner-Macey factor of 6.4·1011 is valid for membrane-bound ATPases. (3) The target size of (K+ + H+)-ATPase is 444 kDa, which, in connection with a subunit molecular weight of 110000, suggests a tetrameric assembly of the native enzyme. The ouabain-insensitive K+-stimulated p-nitrophenylphosphatase activity has a target size of 295 kDa. (4) In the presence of added Mg2+ the target sizes of the (K+ + H+)-ATPase and its phosphatase activity are decreased by about 15%, while that for the (Na+ + K+)-ATPase is not significantly changed. This observation is discussed in terms of a Mg2+-induced tightening of the subunits composing the (K+ + H+)-ATPase molecule.  相似文献   

16.
The partial purification of (Na+ + K+)-ATPase from pig lens has been achieved by treatment with deoxycholate followed by density gradient centrifugation. The specific activity of the final preparation, ranging from 300 to 500 nmol/h per mg protein, is increased approx. 100-fold compared to the homogenate. A parallel increase in p-nitrophenylphosphatase activity is also observed. Sodium dodecyl sulfate (SDS) gel electrophoresis reveals six major protein bands, one of which is the 93 kDa α subunit of (Na+ + K+)-ATPase which can be phosphorylated by reaction with [γ-32P]ATP. A second band contains a glycoprotein which displays an apparent molecular weight of 51 000 and thus appears to be the β subunit of the enzyme. The enzyme is sensitive to ouabain with the I50 for (Na+ + K+)-ATPase and p-nitrophenylphosphatase inhibition being 1.2 and 1.3 μM, respectively. Several agents which inhibit Na+ + K+)-ATPase from other tissues such as oligomycin, Ca2+, vanadate, N-ethylmaleimide, p-chloromercuribenzenesulfonic acid (PCMBS) and 5,5′-dithiobis-(2-nitrobenzoic acid) (DTNB) also inhibit the lens enzyme. Monovalent cations other than K+ are partially effective in activating the (Na+ + K+)-ATPase and p-nitrophenylphosphatase activities. The K+ congeners were relatively more effective in supporting (Na+ + K+)-ATPase compared to p-nitrophenylphosphatase activity. Other kinetic properties of the lens enzyme are also comparable to those of the enzyme from other tissues. Utilizing the partially purified membrane bound enzyme, discontinuities in Arrhenius plots of (Na+ + K+)-ATPase activity, p-nitrophenylphosphatase activity and fluoresence polarization of the fluidity probe, 1,6-diphenyl-1,3,5-hexatriene (DPH), are observed near the physiological temperature of lens. The possible significance of these observations for the mechanism of cataract formation are discussed.  相似文献   

17.
The immunologic cross-reactivity of the α and α+ forms of the large subunit and the β subunit of the (Na+ + K+)-ATPase from brain and kidney preparations was examined using rabbit antiserum prepared against the purified holo lamb kidney enzyme. As previously reported by Sweadner ((1979) J. Biol. Chem. 254, 6060–6067) phosphorylation of the large subunit of the (Na+ + K+)-ATPase in the presence of Na+, Mg2+, and [γ-32P]ATP revealed that dog and, very likely, rat brain contain two forms of the large subunit (designated α and α+) while dog, rat, and lamb kidney contain only one form (α). The cross-reactivity of the α and α+ forms in these preparations was investigated by resolving the subunits by SDS-polyacrylamide gel electrophoresis. The separated polypeptides were transferred to unmodified nitrocellulose paper, and reacted with rabbit anti-lamb kidney serum, followed by detection of the antigen-antibody complex with 125I-labeled protein A and autoradiography. By this method, the α and α+ forms of rat and dog brain, as well as the α form found in kidney, were shown to cross-react. In addition, membranes from human cerebral cortex were shown to contain two immunoreactive bands corresponding to the α and α+ forms of dog brain. In contrast, the brain of the insect Manduca sexta contains only one immunoreactive polypeptide with a molecular weight intermediate to the α and α+ forms of dog brain. The β subunit from lamb, dog and rat kidney and from dog and rat brain cross-reacts with anti-lamb kidney (Na+ + K+)-ATPase serum. The mobility of the β subunit from dog and rat brain on SDS-polyacrylamide electrophoresis gels is greater than the mobility of the β subunit from lamb, rat or dog kidney.  相似文献   

18.
The kinetics of isotopic Na+ flows was studied in urinary bladders of toads from the Dominican Republic. Initial studies of the potential dependence of passive serosal to mucosal 22Na+ efflux demonstrated the absence of isotope interaction and/or other coupling with passive Na+ flow. The electrical current I and mucosal to serosal 22Na+ influx were then measured with transmembrane potential clamped at Δψ = 0, 25, 50, 75 or 100 mV. Subsequent elimination of active Na+ transport mucosal amiloride permitted calculation of the rates of active Na+ transport JNaa and active and passive influx JNaNa and JNaa and JNap. The results indicate that for Dominican toad bladders mounted in chambers only Na+ contributes significantly to transepithelial active ion transport; hence JNaa = Ja. Ja was abolished at Δψ = E = 96.3 ± 1.9 (S.E.) mV. As Δψ approached E, active efflux Ja became demonstrable. At Δ = 100 mV, Ja exceeded Ja, so that Ja was negative. Experimental values of Ja agreed well with theoretical values predicted by a thermodynamic formulation: Jexpa = 0.985 Jtheora (r = 0.993). The dependence of Ja on Δψ is curvilinear.  相似文献   

19.
The effect of the protein structure of (Na+ + K+)-ATPase on its incorporation into liposome membranes was investigated as follows: the catalytic α-subunit of (Na+ + K+)-ATPase was split into low-molecular weight fragments by trypsin treatment and the digested enzyme was reconstituted at the same protein concentration as intact control enzyme. The reconstitution process was quantified by the average number of intramembrane particles appearing on concave and convex fracture faces after freeze-fracture of the (Na+ + K+)-ATPase liposomes. The number of intramembrane particles as well as their distribution on concave and convex fracture faces is not modified by the proteolysis. In contrast, the ATPase activity and the transport capacity of the (Na+ + K+)-ATPase decrease progessively with increasing incubation times in the presence of trypsin and are abolished when the original 100 000 molecular weight α-subunit is no longer visible by sodium dodecylsulfate gel electrophoresis. Apparently, functional (Na+ + K+)-ATPase with intact protein structure and digested, non functional enzyme consisting of fragments of the α-subunit reconstitute in the same manner and to the same extent as judged by freeze-fracture analysis. We conclude that, while trypsin treatment modifies the (Na+ + K+)-ATPase molecule in a functional sense, it appears not to modify its interaction with the bilayer in producing intramembrane particles. On the basis of our results, we propose a lipid-lipid interaction mechanism for reconstitution of (Na+ + K+)-ATPase.  相似文献   

20.
In vitro, the accumulation and release of [methyl-3H]thymidine ([3H]thymidine) by the isolated choroid plexus, the anatomical locus of the blood-cerebrospinal fluid barrier, was studied. With concentrations of [3H]thymidine in the medium of 1.0 μm (or greater), the choroid plexus accumulated [3H]thymidine against a concentration gradient by a process that depended on intracellular energy production but did not depend on intracellular binding or metabolism of the [3H]thymidine. This transport process was inhibited (although differentially) by various nucleosides and low temperatures but not by 2-deoxyribose or pyrimidine bases. With concentrations of less than 1.0 μm [3H]thymidine in the medium, the choroid plexus accumulated [3H]thymidine against a concentration gradient. However, the majority of the [3H]thymidine within the choroid plexus was metabolized to [3H]thymidine nucleotides at low extracellular [3H]thymidine concentrations (3 nm). This accumulation process depended, in large part, on saturable intracellular phosphorylation. Thymidine was the principal form released from choroid plexuses that had been incubated for various times in media containing concentrations of thymidine from 3 to 1.0 mm. The release of thymidine from choroid plexus was depressed by cold temperatures and a very high (2.56 mmol/kg) intracellular thymidine concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号