首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1) A new enzyme, 2,3-dimethylmalate lyase, was purified from Clostridium barkeri to about 80% homogeneity. Some of the properties of the enzyme are described. 2) It is shown that the 2,3-dimethylmalic acid (m.p. 143 degrees C) described in the literature represents only one racemic pair. This pair is not attacked by 2,3-dimethylmalate lyase. 3) The isolation of both racemic pairs of 2,3-dimethylmalic acid is described. Half of one pair, m.p. 104-106 degrees C, was converted to propionate and pyruvate by 2,3-dimethylmalate lyase. 4) In combination with earlier work performed by E.R. Stadtman and coworkers the results given under points 1--3 establish 2,3-dimethylmalate as an intermediate in the degradation of nicotinic acid by C. barkeri. 5) Experimental evidence indicates the 2,3-dimethylmalate lyase is no acyl-S-enzyme and that it is different in this respect as well as in quaternary structure from the apparently related enzymes citrate lyase and citramalate lyase.  相似文献   

2.
The transformation of 6-keto-PGF1 alpha to two prostacyctin metabolites, 2,3-dinor-6-keto-PGF1 alpha (I) and 2,3-dinor-6,15-diketo-13,14-dihydro-PGF1 alpha (II) by Mycobacterium rhodochrous UC-6176 is described. The finding that the bacterium oxidized 6-keto-PGF1 alpha to the 6,15-diketo metabolite II shows that it contains 15-hydroxy prostaglandin dehydrogenase and delta 13 reductase enzyme systems.  相似文献   

3.
We cloned, expressed and characterized a novel alpha/beta-galactoside alpha2,3-sialyltransferase from Vibrio sp. bacterium JT-FAJ-16. Using a alpha2,3-sialyltransferase gene from a marine bacterium as a probe, a DNA sequence encoding a 402-amino-acid protein was identified from the JT-FAJ-16 genomic library. The protein showed 27.3-64.7% identity to the bacterial sialyltransferases classified into glycosyltransferase family 80. The protein showed sialyltransferase activity when expressed in Escherichia coli. The N-terminal truncated form of the enzyme was amplified in E. coli and its recovered activity was 215.7 unit/l culture medium. It was purified as a single band on SDS-PAGE through the three chromatographic steps. The specific activity of the purified recombinant enzyme reached 57.5 unit/mg protein. The alpha2,3sialylation was confirmed by (1)H- and (13)C-NMR analyses of the reaction products. The enzyme was optimally active at pH 5.5 and at 20 degrees C. Interestingly, the enzyme used both the alpha- and beta-anomers of galactosides as acceptors, suggesting that it can be described as an alpha/beta-galactoside alpha2,3-sialyltransferase. The enzyme had a wide range of acceptor substrate specificities. It transferred N-acetylneuraminic acid (NeuAc) to various monosaccharides and various oligosaccharides, and both N-linked and O-linked asialo-glycoprotein. These results suggest that the enzyme can be used as a powerful tool for the study for glycotechnology.  相似文献   

4.
The partial purification and properties of an enzyme from the soluble fraction of rat liver that catalyses the reaction of glutathione with 2,3-unsaturated acyl thiol esters is described, and its possible role in the formation of S-carboxyalkylcysteines is discussed. The synthesis of S-(3-methylcrotonyl)- and S-(2-methylcrotonyl)-N-acetylcysteamine and of S-crotonyl-NN-dimethylcysteamine hydrochloride and dicyclohexylammonium S-crotonyl-N-acetyl-l-cysteine is described.  相似文献   

5.
The substrate specificity of an alpha2,3-sialyltransferase (v-ST3Gal I) obtained from myxoma virus infected RK13 cells has been determined. Like mammalian sialyltransferase enzymes, the viral enzyme contains the characteristic L- and S-sialyl motif sequences in its catalytic domain. Analysis of the deduced amino acid sequences of cloned sialyltransferases suggests that v-ST3Gal I is closely related to mammalian ST3Gal IV. v-ST3Gal I catalyzes the transfer of sialic acid from CMP-NeuAc to Type I (Galbeta1-3GlcNAcbeta) II (Galbeta1-4GlcNAcbeta) and III (Galbeta1-3GalNAcbeta) acceptors. In addition, the viral enzyme also transfers sialic acid to the fucosylated acceptors Lewis(x) and Lewis(a). This substrate specificity is unlike any sialyltransferases described to date, though it is most comparable with those of mammalian ST3Gal IV enzymes. The products from reactions with fucosylated acceptors were characterized by capillary zone electrophoresis, (1)H-NMR spectroscopy and mass spectrometry. They were shown to be 2,3-sialylated Lewis(x) and 2,3-sialylated Lewis(a), respectively.  相似文献   

6.
The basic core structure of archaeal membrane lipids is 2,3-di-O-phytanyl-sn-glyceryl phosphate (archaetidic acid), which is formed by the reduction of 2,3-di-O-geranylgeranylglyceryl phosphate. The reductase activity for the key enzyme in membrane lipid biosynthesis, 2,3-digeranylgeranylglycerophospholipid reductase, was detected in a cell free extract of the thermoacidophilic archaeon Thermoplasma acidophilum. The reduction activity was found in the membrane fraction, and FAD and NADH were required for the activity. The reductase was purified from a cell free extract by ultracentrifugation and four chromatographic steps. The purified enzyme showed a single band at ca. 45 kDa on SDS-PAGE, and catalyzed the formation of archaetidic acid from 2,3-di-O-geranylgeranylglyceryl phosphate. Furthermore, the enzyme also catalyzed the reduction of 2,3-di-O-geranylgeranylglyceryl phosphate analogues such as 2,3-di-O-phytyl-sn-glyceryl phosphate, 3-O-(2,3-di-O-phytyl-sn-glycero-phospho)-sn-glycerol and 2,3-di-O-phytyl-sn-glycero-phosphoethanolamine. The N-terminal 20 amino acid sequence of the purified enzyme was determined and was found to be identical to the sequence encoded by the Ta0516m gene of the T. acidophilum genome. The present study clearly demonstrates that 2,3-digeranylgeranylglycerophospholipid reductase is a membrane associated protein and that the hydrogenation of each double bond of 2,3-digeranylgeranylglycerophospholipids is catalyzed by a single enzyme.  相似文献   

7.
A rapid and simple purification of milligram amounts of 2,3-oxidosqualene cyclase, an integral membrane enzyme that catalyzes the cyclization of squalene epoxide to lanosterol, is reported. Several nonionic detergents (Triton X-100, Tween 80, Emulphogene, and lauryl maltoside) were evaluated for solubilization of oxidosqualene cyclase from rat liver microsomes. At a detergent concentration of 5 mg/ml, lauryl maltoside was approximately 10 times more effective than Emulphogene in the solubilization of oxidosqualene cyclase; Triton X-100 and Tween 80 were less effective than Emulphogene as judged by the relative specific activities of the solubilized enzyme. Treatment of microsomes with lauryl maltoside resulted in a selective solubilization of the cyclase with concomitant activation of the enzyme. The solubilized enzyme was purified to homogeneity by fast protein liquid chromatography. The purified enzyme consists of a single subunit that has an apparent molecular weight of 65,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme obeys saturation kinetics and the apparent Km of (2,3)-oxidosqualene is 15 microM; the apparent kcat/Km is 200 M-1.min-1. An improved assay of the enzyme that utilizes high performance liquid chromatography methods is also described.  相似文献   

8.
The microdetermination of 2,3-diphosphoglycerate   总被引:1,自引:0,他引:1  
A procedure for microestimation of 2,3-diphosphoglycerate, utilizing its role as coenzyme in the phosphoglycerate mutase reaction is described. The coenzymic activity was determined by assaying phosphoglycerate mutase polarimetrically without a coupled enzyme. This method is applicable to samples containing as little as 0.002 μmole of 2,3-diphosphoglycerate/ml. The content in various biological extracts was determined.  相似文献   

9.
The steady state kinetics and effects of salts on chicken breast phosphoglycerate mutase have been examined. The enzyme can catalyze three phosphoryl transfer reactions: mutase, bisphosphoglycerate phosphatase, and bisphosphoglycerate synthase. The mutase rate was measured in the favorable direction (Keq = glycerate-3-P/glycerate-2-P approximately equal to 12) using [2T]glycerate-2-P as substrate. The bisphosphoglycerate phosphatase activity was studied in the presence of the activator, glycolate-2-P. The latter is an analog of the glycerate-P's and appears to act as an abortive mutase substrate. The kinetic pattern obtained with both activities is that of a ping-pong mechanism with inhibition by the second substrate occurring at a lower concentration than the Km value for that substrate. The kinetic parameters for the mutase determined in 50 mM N-[tris(hydroxymethyl)methyl-2-amino]ethanesulfonate (TES)/sodium buffer containing 0.1 M KCl, pH 7.5, 25 degrees C are: Km glycerate-2,3-P2, 0.069 micron; Km glycerate-2-P, 14 micron; Km glycerate-3-P approximately 200 micron; Ki glycerate-2-P, 4 micron. The kinetic parameters for the phosphatase reaction in 50 mM triethanolamine/Cl- buffer, pH 7.5, 25 degrees C are: Km glycerate-2,3-P2, 0.065 micron:Km glycolate-2P, 479 micron; Ki glycolate-2-P, 135 micron. The enzyme is sensitive to changes in the ionic environment. Increasing salt concentrations activate the phosphatase in the presence of glycolate-2-P by decreasing the apparent Km of glycerate-2,3-P2. The effects are due to the anionic component and Cl- greater than acetate greater than TES. The same salts are competitive inhibitors with respect to glycolate-2-P. With high levels of KCl that produce a 30-fold decrease in the apparent maximal velocity due to competition with glycolate-2-P, the Km of glycerate-2,3-P2 remains low. These observations lead us to postulate that each monophosphoglycerate substrate has a separate site on the enzyme and that glycerate-2,3-P2 can bind to either site. The binding of anions to one site of the nonphosphorylated enzyme allows an increase in the on and off rates of glycerate-2,3-P2 at the alternate site. Salts inhibit the mutase reaction. The Km of glycerate-2,3-P2 is increased as is that of glycerate-2-P. The effect on the Km of glycerate-2,3-P2 is attributed to an increase in the off rate/on rate ratio for glycerate-2,3-P2. The bisphosphoglycerate synthase reaction is shown to require added glycerate-3-P. The equilibrium between enzyme and glycerate-1,3-P2 is favorable (Kdiss less than or equal 7 X 10(-8) M) and suggests that in the absence of a separate synthase this reaction may have functional significance.  相似文献   

10.
A novel Fe+Zn containing oxygenase from Acinetobacter johnsonii catalyses 2,3-cleavage of acetylacetone to acetate and methylglyoxal has been purified. The stoichiometry of reactants and products conforms to a classical dioxygenase. The pure protein is a homotetramer of 64kD with variable amounts of Fe(2+) and Zn(2+). Activity of the enzyme is more closely related to the Fe(2+) content than to the amount of protein. A purification of acetylacetone 2,3-oxygenase, some of its physical properties, and the preference for some analogous substrates are described.  相似文献   

11.
2,3-Bisphosphoglycerate synthase-phosphatase and the hybrid phosphoglycerate mutase/2,3-bisphosphoglycerate synthase-phosphatase have been partially purified from pig brain. Their 2,3-bisphosphoglycerate synthase, 2,3-bisphosphoglycerate phosphatase and phosphoglycerate mutase activities are concurrently lost upon heating and treatment with reagents specific for histidyl, arginyl and lysyl residues. The two enzymes differ in their thermal stability and sensitivity to tetrathionate. Substrates and cofactors protect against inactivation, the protective effects varying with the modifying reagent. The synthase activity of both enzymes shows a nonhyperbolic pattern which fits to a second degree polynomial. The Km, Ki and optimum pH values are similar to those of the 2,3-bisphosphoglycerate synthase-phosphatase from erythrocytes and the hybrid enzyme from skeletal muscle. The synthase activity is inhibited by inorganic phosphate and it is stimulated by glycolyate 2-P.  相似文献   

12.
Histidine, arginine and lysine residues are essential for the multifunctional 2,3-bisphosphoglycerate synthase-phosphatase purified from pig skeletal muscle. The synthase, phosphatase and phosphoglycerate mutase activities of the enzyme are concurrently lost upon treatment with diethylpyrocarbonate, phenylglyoxal and trinitrobenzenesulfonate. The phosphatase activity shows hyperbolic kinetics. In contrast, the synthase activity shows a nonhyperbolic pattern which fits to a second-degree polynomial. The Km values for glycerate 1,3-P2, glycerate 3-P and glycerate 2,3-P2 are similar to those of the enzyme from mammalian erythrocytes.  相似文献   

13.
Squalene epoxidase catalyzes the conversion of squalene to (3S)2,3-oxidosqualene, which is a rate-limiting step of the cholesterol biogenesis. To evaluate the importance of conserved aromatic residues, 15 alanine-substituted mutants were constructed and tested for the enzyme activity. Except F203A, all the mutants significantly lost the enzyme activity, confirming the importance of the residues, either for correct folding of the protein, or for the catalytic machinery of the enzyme. Further, interestingly, F223A mutant no longer accepted (3S)2,3-oxidosqualene as a substrate, while Y473A mutant converted (3S)2,3-oxidosqualene to (3S,22S)2,3:22,23-dioxidosqualene twice more efficiently than wild-type enzyme. It is remarkable that the single amino acid replacement yielded mutants with altered substrate and product specificities. These aromatic residues are likely to be located at the substrate-binding domain of the active-site, and control the stereochemical course of the enzyme reaction.  相似文献   

14.
Zhang GL  Wang CW  Li C 《Biotechnology letters》2012,34(8):1519-1523
The budC gene encoding the meso-2,3-BDH from Klebsiella pneumoniae XJ-Li was expressed in E. coli BL21 (DE3) pLys. Hypothetical amino acid sequence alignments revealed that the enzyme belongs to the short chain dehydrogenase/reductase family. After purification and refolding, the recombinant enzyme had activities of 218 U/mg for reduction of acetoin and 66 U/mg for oxidation of meso-2,3-butanediol. Highest activities were at pH 8.0 and 9.0 respectively. These are higher than other meso-2,3-butanediol dehydrogenases from K. pneumoniae. The low K (m) value (0.65 mM) for acetoin indicated that the enzyme can easily reduce acetoin to meso-2,3-butanediol. There were no significant activities towards 2R,3R-2,3-butanediol, 1,4-butanediol and 2S,3S-2,3-butanediol, suggesting that the enzyme has a high stereospecificity for the meso-dihydric alcohol.  相似文献   

15.
Bisphosphoglyceromutase and 2,3-bisphosphoglycerate phosphatase activities responsible for 2,3-bisphosphoglycerate metabolsim in human red cells are displayed by the same enzyme protein which has phosphoglyceromutase activity [Sasaki, R., et al. (1975) Eur J. Biochem. 50, 581-593]. This enzyme was subjected to chemical modification by trinitrobenzenesulfonate. The three enzyme activities were inactivated by trinitrobenzenesulfonate at the same rate. The sulfhydryl content of the enzyme was unchanged during trinitrophenylation, indicating that derivatization was through the amino group. Trinitrophenylation of about one amino group per mole of the enzyme resulted in complete loss of the three activities. Both 2,3-bisphosphoglycerate and 1,3-bisphosphoglycerate inhibited trinitrophenylation and effectively protected the enzyme from inactivation. Although monophosphoglycerates did not show any protective effect at concentrations which should be adequate based upon their kinetic constants, they were protective at higher concentrations. Inactivation by trinitrophenylation was an apparent first-order reaction. The dissociation constant of the enzyme - 2,3-bisphosphoglycerate complex was determined by analyzing the first-order reaction on the assumption that the protective effect of 2,3-bisphosphoglycerate was due to competition with trinitrobenzenesulfonate. The dissociation constant was in good agreement with kinetic constants of 2,3-bisphosphoglycerate in the enzyme reactions, which indicated that 2,3-bisphosphoglycerate did indeed exert its protective effect through competition with trinitrobenzenesulfonate for an amino group of the enzyme. The protective effect of monophosphoglycerates could be rationalized with kinetic evidence that 2-phosphoglycerate at high concentrations interacts with the 2,3-bisphosphoglycerate binding site. These results indicate that the enzyme exhibits the three enzyme activities at a common active site at which one amino group essential for binding of bisphosphoglycerates is located. Based on the multifunctional properties of this enzyme, a possible mechanism was discussed for regulation of 2,3-bisphosphoglycerate metabolism in human red cells.  相似文献   

16.
Carbazole is a nitrogen-containing heteroaromatic compound that occurs as a widespread and mutagenic environmental pollutant. The 2'aminobiphenyl-2,3-diol 1,2-dioxygenase involved in carbazole degradation was purified to near electrophoretic homogeneity from Pseudomonas sp. LD2 by a combination of ion-exchange chromatography, ammonium sulfate precipitation, and hydrophobic interaction chromatography. This purification was challenging due to the great instability of the enzyme under many standard conditions. The enzyme was also purified to electrophoretic homogeneity from recombinant Escherichia coli expressing the 2'aminobiphenyl-2,3-diol 1,2-dioxygenase-encoding gene cloned from Pseudomonas sp. LD2. The molecular mass of the native enzyme was determined by gel filtration to be 70 kDa. The subunit molecular masses were determined to be 25 and 8 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, indicating that the dioxygenase is an [alpha2beta2] heterotetramer. The optimal temperature and pH for the enzymatic production of 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid (HOPDA) from 2,3-dihydroxybiphenyl were determined to be 40 degrees C and 8.0, respectively. The maximum observed specific activity on 2,3-dihydroxybiphenyl was 48.1 mmol HOPDA min(-1) mg(-1). This indicated a maximum observed turnover rate of 360,000 molecules HOPDA enz(-1) s(-1). The K'm inhibition constant Ks and Vmax on 2,3 dihydroxybiphenyl were determined to be 5 microM, 37 microM, and 44 mmol min(-1) mg(-1), respectively. These results show that 2'aminobiphenyl-2,3-diol 1,2-dioxygenase is a meta-cleavage enzyme related to the 4,5-protocatechuate dioxygenase family, with comparable purification challenges posed by intrinsic enzyme instability.  相似文献   

17.
Lipid A disaccharide synthase of Escherichia coli catalyzes the reaction 2,3-diacyl-GlcN-1-P + UDP-2,3-diacyl-GlcN----2',3'-diacyl-GlcN (beta,1'----6)2,3-diacyl-GlcN-1-P + UDP (Ray, B. L., Painter, G., and Raetz, C. R. H. (1984) J. Biol. Chem. 259, 4852-4859). Using a strain that overproduces the enzyme about 200-fold we have devised a simple purification to near homogeneity, utilizing two types of dye-ligand resins and heparin-agarose. The overall purification starting with membrane-free extracts was 54-fold (16,000-fold relative to wild-type extracts) with a 31% yield. The subunit molecular mass determined by sodium dodecyl sulfate gel electrophoresis is approximately 42,000 daltons, and the native enzyme appears to be a dimer. The amino-terminal sequence is (X)-(Thr)-Glu-Gln-(X)-Pro-Leu-Thr-Ie-Ala..., consistent with the results predicted from the DNA sequence, Met-Thr-Glu-Gln-Arg-Pro-Leu-Thr-Ile-Ala.... The purified enzyme displays a strong kinetic preference for sugar substrates bearing two fatty acyl moieties, but it is, nevertheless, very useful for the semisynthetic preparation of many lipid A analogs. Gel filtration studies demonstrate that the natural substrates (2,3-diacyl-GlcN-1-P and UDP-2,3-diacyl-GlcN) form micelles (n approximately equal to 300), rather than bilayers, under conditions used to assay the enzyme. Unlike most enzymes of glycerophospholipid synthesis, the lipid A disaccharide synthase does not require the presence of a detergent for catalytic activity. At 1 mM UDP-2,3-diacyl-GlcN the Vmax and Km values for 2,3-diacyl-GlcN-1-P are 14,028 +/- 513 nmol/min/mg and 0.27 +/- 0.02 mM. When 2,3-diacyl-GlcN-1-P is maintained at 1 mM, they are 12,368 +/- 472 nmol/min/mg and 0.11 +/- 0.01 mM for UDP-2,3-diacyl-GlcN.  相似文献   

18.
1. Four enzyme fractions which may be involved in the synthesis and breakdown of glycerate-2,3-P2 have been isolated from extracted skeletal muscle by gel-filtration and ion-exchange chromatography. 2. One of the fractions, corresponding to the glycerate-2,3-P2 dependent phosphoglycerate mutase, has been purified to homogeneity. In addition to the main enzymatic activity, it shows intrinsic glycerate-2,3-P2 synthase activity and glycerate-2,3-P2 phosphatase activity stimulable by glycolate-2-P. Its synthase activity represents about 10% of the total synthase activity of the tissue, and its phosphatase activity corresponds to about 60% of the total phosphatase activity. 3. Two of the fractions have glycerate-2,3-P2 synthase, glycerate-2,3-P2 phosphatase and phosphoglycerate mutase activities in a ratio similar to that of the glycerate-2,3-P2 synthase described in mammalian skeletal muscle. Their synthase activity corresponds to about 90% of the total synthase activity, and their phosphatase activity represents about 1% of the total phosphatase activity of the tissue. 4. The fourth fraction shows only glycerate-2,3-P2 phosphatase activity and represents about 40% of the total activity of the tissue. 5. It is suggested that in chicken skeletal muscle the metabolism of the glycerate-2,3-P2 is regulated in a way similar to that described in mammalian skeletal muscle.  相似文献   

19.
20.
F Rusnak  W S Faraci  C T Walsh 《Biochemistry》1989,28(17):6827-6835
The gene coding for the enzyme 2,3-dihydroxybenzoate-AMP ligase (2,3DHB-AMP ligase), responsible for activating 2,3-dihydroxybenzoic acid in the biosynthesis of the siderophore enterobactin, has been subcloned into the multicopy plasmid pKK223-3 and overproduced in a strain of Escherichia coli. The protein is an alpha 2 dimer with subunit molecular mass of 59 kDa. The enzyme catalyzes the exchange of [32P]pyrophosphate with ATP, dependent upon aromatic substrate with a turnover number of 340 min-1. The enzyme also releases pyrophosphate upon incubation with 2,3-dihydroxybenzoic acid and ATP; an initial burst corresponding to 0.7 nmol of pyrophosphate released per nanomole of enzyme is followed by a slower, continuous release with a turnover number of 0.41 min-1. The 1000-fold difference in rates observed between ATP-pyrophosphate exchange and continuous pyrophosphate release, as well as the close to stoichiometric amount of pyrophosphate released, suggests that intermediates are accumulating on the enzyme surface. Such intermediates have been observed and correspond to enzyme-bond (2,3-dihydroxybenzoyl)adenylate product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号