首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
ICP27 is an essential herpes simplex virus type 1 (HSV-1) alpha protein that is required for the transition from the beta to the gamma phase of infection. To identify functional regions of ICP27, we constructed 16 plasmids that contain nucleotide substitution mutations in the ICP27 gene. The mutations created XhoI restriction sites, altered one or two codons, and were spaced at semiregular intervals throughout the coding region. Three mutations completely inactivated an essential function of ICP27, as demonstrated by the inability of the transfected plasmids to complement the growth of an HSV-1 ICP27 deletion mutant. These mutations, M11, M15, and M16, mapped in the carboxyl-terminal one-third of ICP27 at residues 340 and 341, 465 and 466, and 488, respectively. In cotransfection assays, all three defective-plasmid mutants retained the transrepression function of ICP27 but were defective at transactivation. To define the lytic functions that are mediated by the transactivation activity of ICP27, we engineered HSV-1 recombinants containing the M11, M15, or M16 mutation. All three viral mutants failed to grow in Vero cells and possessed similar phenotypes. The viral mutants replicated their DNA similarly to the wild-type virus but showed several defects in viral gene expression. These were a failure to down-regulate alpha and beta genes at late times after infection and an inability to induce certain gamma-2 genes. Our results demonstrate that the transactivation function of ICP27 (as it is defined in cotransfection assays) mediates an essential gene regulation function during the HSV-1 infection. This activity is not required for ICP27-dependent enhancement of viral DNA replication. Our work supports and extends previous studies which suggest that ICP27 carries out two distinct regulatory activities during the HSV-1 infection.  相似文献   

2.
3.
The herpes simplex virus type 1 (HSV-1) protease and its substrate, ICP35, are involved in the assembly of viral capsids and required for efficient viral growth. The full-length protease (Pra) consists of 635 amino acid (aa) residues and is autoproteolytically processed at the release (R) site and the maturation (M) site, releasing the catalytic domain No (VP24), Nb (VP21), and a 25-aa peptide. To understand the biological importance of cleavage at these sites, we constructed several mutations in the cloned protease gene. Transfection assays were performed to determine the functional properties of these mutant proteins by their abilities to complement the growth of the protease deletion mutant m100. Our results indicate that (i) expression of full-length protease is not required for viral replication, since a 514-aa protease molecule lacking the M site could support viral growth; and that (ii) elimination of the R site by changing the residue Ala-247 to Ser abolished viral replication. To better understand the functions that are mediated by proteolytic processing at the R site of the protease, we engineered an HSV-1 recombinant virus containing a mutation at this site. Analysis of the mutant A247S virus demonstrated that (i) the mutant protease retained the ability to cleave at the M site and to trans process ICP35 but failed to support viral growth on Vero cells, demonstrating that release of the catalytic domain No from Pra is required for viral replication; and that (ii) only empty capsid structures were observed by electron microscopy in thin sections of A247S-infected Vero cells, indicating that viral DNA was not encapsidated. Our results demonstrate that processing of ICP35 is not sufficient to support viral replication and provide genetic evidence that the HSV-1 protease has nuclear functions other than enzymatic activity.  相似文献   

4.
We previously reported that a recombinant ICP27-null virus stimulated, but did not prevent, apoptosis in human HEp-2 cells during infection (M. Aubert and J. A. Blaho, J. Virol. 73:2803-2813, 1999). In the present study, we used a panel of 15 recombinant ICP27 mutant viruses to determine which features of herpes simplex virus type 1 (HSV-1) replication are required for the apoptosis-inhibitory activity. Each virus was defined experimentally as either apoptotic, partially apoptotic, or nonapoptotic based on infected HEp-2 cell morphologies, percentages of infected cells with condensed chromatin, and patterns of specific cellular death factor processing. Viruses d27-1, d1-5, d1-2, M11, M15, M16, n504R, n406R, n263R, and n59R are apoptotic or partially apoptotic in HEp-2 cells and severely defective for growth in Vero cells. Viruses d2-3, d3-4, d4-5, d5-6, and d6-7 are nonapoptotic, demonstrating that ICP27 contains a large amino-terminal region, including its RGG box RNA binding domain, which is not essential for apoptosis prevention. Accumulations of viral TK, VP16, and gD but not gC, ICP22, or ICP4 proteins correlated with prevention of apoptosis during the replication of these viruses. Of the nonapoptotic viruses, d4-5 did not produce gC, indicating that accumulation of true late gene products is not necessary for the prevention process. Analyses of viral DNA synthesis in HEp-2 cells indicated that apoptosis prevention by HSV-1 requires that the infection proceeds to the stage in which viral DNA replication takes place. Infections performed in the presence of the drug phosphonoacetic acid confirmed that the process of viral DNA synthesis and the accumulation of true late (gamma(2)) proteins are not required for apoptosis prevention. Based on our results, we conclude that the accumulation of HSV-1 early (beta) and leaky-late (gamma(1)) proteins correlates with the prevention of apoptosis in infected HEp-2 cells.  相似文献   

5.
Vero cells were biochemically transformed with the gene encoding ICP4 of herpes simplex virus type 2 (HSV-2). These cells were used as permissive hosts to isolate and propagate HSV-2 mutants defective in this gene. Two mutants, designated hr259 and hr79, were isolated. Neither mutant grew in nontransformed Vero cells, but both grew to near wild-type levels in HSV-2 ICP4-expressing cells. hr259 contains a deletion of about 0.6 kilobases which eliminates the mRNA start site of the ICP4 gene. hr79 contains a mutation which maps by marker rescue to the portion of the ICP4 gene encoding the carboxy-terminal half of the protein. Although hr259 failed to generate any detectable ICP4 mRNA in nontransformed Vero cells, hr79 encoded an ICP4 mRNA which is wild type with respect to size. In nontransformed Vero cells infected with hr259, only ICP0, ICP6, ICP22, and ICP27 were readily detectable. In the case of hr79, a truncated form of ICP4 appeared to be made in addition to ICP0, ICP6, ICP22, and ICP27. Both hr259 and hr79 grew efficiently on cell lines transformed with the ICP4 gene of HSV-1 as evidenced by plating efficiencies and single-burst experiments. Similarly, cells transformed with the ICP4 gene of HSV-2 served as efficient hosts for the growth of d120, HSV-1 ICP4 deletion mutant.  相似文献   

6.
S A Rice  V Lam    D M Knipe 《Journal of virology》1993,67(4):1778-1787
The herpes simplex virus type 1 (HSV-1) alpha protein ICP27 regulates the transition between the delayed-early and late phases of the viral infection. Previous genetic analyses have suggested that the important functional domains of ICP27 map to its carboxyl-terminal half. One striking feature of the primary sequence of ICP27, however, is an extremely acidic region near its amino terminus. To determine whether this region is required for ICP27 function, we deleted the sequences in the ICP27 gene which encode it (codons 12 through 63). In transient expression assays, the deletion mutant was unable to efficiently repress the expression of a cotransfected reporter gene or to efficiently complement the growth of d27-1, an HSV-1 ICP27 null mutant. These results suggested that the acidic region of ICP27 is involved in a regulatory function required for lytic growth. To test this possibility further, we introduced the mutant allele into the HSV-1 genome by marker transfer. Two independently derived isolates of the mutant virus, designated d1-2a and d1-2b, were recovered and analyzed. Both isolates were defective for growth in Vero cells, exhibiting a 100-fold reduction in virus yield compared with the wild-type infection. Vero cells infected with the d1-2 isolates showed a three- to eightfold reduction in viral DNA replication, a moderate reduction in the expression of viral gamma genes, and a delay in the repression of beta genes. The phenotype of the d1-2 isolates differs substantially from the phenotypes of previously isolated ICP27 mutants, which show much more severe defects in viral gene expression. Our results demonstrate that the amino-terminal half of ICP27 participates in its regulatory activities in both infected and transfected cells.  相似文献   

7.
8.
The herpes simplex virus type 1 (HSV-1) protease (Pra) and related proteins are involved in the assembly of viral capsids and virion maturation. Pra is a serine protease, and the active-site residue has been mapped to amino acid (aa) 129 (Ser). This 635-aa protease, encoded by the UL26 gene, is autoproteolytically processed at two sites, the release (R) site between amino acid residues 247 and 248 and the maturation (M) site between residues 610 and 611. When the protease cleaves itself at both sites, it releases Nb, the catalytic domain (N0), and the C-terminal 25 aa. ICP35, a substrate of the HSV-1 protease, is the product of the UL26.5 gene. As it is translated from a Met codon within the UL26 gene, ICP35 cd are identical to the C-terminal 329-aa sequence of the protease and are trans cleaved at an identical C-terminal site to generate ICP35 e,f and a 25-aa peptide. Only fully processed Pra (N0 and Nb) and ICP35 (ICP35 e,f) are present in B capsids, which are believed to be precursors of mature virions. Using an R-site mutant A247S virus, we have recently shown that this mutant protease retains enzymatic activity but fails to support viral growth, suggesting that the release of N0 is required for viral replication. Here we report that another mutant protease, with an amino acid substitution (Ser to Cys) at the active site, can complement the A247S mutant but not a protease deletion mutant. Cell lines expressing the active-site mutant protease were isolated and shown to complement the A247S mutant at the levels of capsid assembly, DNA packaging, and viral growth. Therefore, the complementation between the R-site mutant and the active-site mutant reconstituted wild-type Pra function. One feature of this intragenic complementation is that following sedimentation of infected-cell lysates on sucrose gradients, both N-terminally unprocessed and processed proteases were isolated from the fractions where normal B capsids sediment, suggesting that proteolytic processing occurs inside capsids. Our results demonstrate that the HSV-1 protease has distinct functional domains and some of these functions can complement in trans.  相似文献   

9.
The herpes simplex virus type 1 (HSV-1) regulatory protein ICP27 is a 63-kDa phosphoprotein required for viral replication. ICP27 has been shown to contain both stable phosphate groups and phosphate groups that cycle on and off during infection (K. W. Wilcox, A. Kohn, E. Sklyanskaya, and B. Roizman, J. Virol. 33:167-182, 1980). Despite extensive genetic analysis of the ICP27 gene, there is no information available about the sites of the ICP27 molecule that are phosphorylated during viral infection. In this study, we mapped several of the phosphorylation sites of ICP27 following in vivo radiolabeling. Phosphoamino acid analysis showed that serine is the only amino acid that is phosphorylated during infection. Two-dimensional phosphopeptide mapping showed a complex tryptic phosphopeptide pattern with at least four major peptides and several minor peptides. In addition, ICP27 purified from transfected cells yielded a similar phosphopeptide pattern, suggesting that cellular kinases phosphorylate ICP27 during viral infection. In vitro labeling showed that protein kinase A (PKA), PKC, and casein kinase II (CKII) were able to differentially phosphorylate ICP27, resulting in distinct phosphopeptide patterns. The major phosphorylation sites of ICP27 appeared to cluster in the N-terminal portion of the protein, such that a frameshift mutant that encodes amino acids 1 to 163 yielded a phosphopeptide pattern very similar to that seen with the wild-type protein. Further, using small deletion and point mutations in kinase consensus sites, we have elucidated individual serine residues that are phosphorylated in vivo. Specifically, the serine at residue 114 was highly phosphorylated by PKA and the serine residues at positions 16 and 18 serve as targets for CKII phosphorylation in vivo. These kinase consensus site mutants were still capable of complementing the growth of an ICP27-null mutant virus. Interestingly, phosphorylation of the serine at residue 114, which lies within the major nuclear localization signal, appeared to modulate the efficiency of nuclear import of ICP27.  相似文献   

10.
Leptomycin B (LMB) is a highly specific inhibitor of CRM1, a cellular karyopherin-β that transports nuclear export signal-containing proteins from the nucleus to the cytoplasm. Previous work has shown that LMB blocks herpes simplex virus 1 (HSV-1) replication in Vero cells and that certain mutations in viral immediate early protein ICP27 can confer LMB resistance. However, little is known of the molecular mechanisms involved. Here we report that HSV-2, a close relative of HSV-1, is naturally resistant to LMB. To see whether the ICP27 gene determines this phenotypic difference, we generated an HSV-1 mutant that expresses the HSV-2 ICP27 instead of the HSV-1 protein. This recombinant was fully sensitive to LMB, indicating that one or more other viral genes must be important in determining HSV-2''s LMB-resistant phenotype. In additional work, we report several findings that shed light on how HSV-1 ICP27 mutations can confer LMB resistance. First, we show that LMB treatment of HSV-1-infected cells leads to suppression of late viral protein synthesis and a block to progeny virion release. Second, we identify a novel type of ICP27 mutation that can confer LMB resistance, that being the addition of a 100-residue amino-terminal affinity purification tag. Third, by studying infections where both LMB-sensitive and LMB-resistant forms of ICP27 are present, we show that HSV-1''s sensitivity to LMB is dominant to its resistance. Together, our results suggest a model in which the N-terminal portion of ICP27 mediates a nonessential activity that interferes with HSV-1 replication when CRM1 is inactive. We suggest that LMB resistance mutations weaken or abrogate this activity.  相似文献   

11.
Infected-cell protein 27 (ICP27) is a herpes simplex virus type 1 alpha, or immediate-early, protein involved in the regulation of viral gene expression. To better understand the function(s) of ICP27 in infected cells, we have isolated and characterized viral recombinants containing defined alterations in the ICP27 gene. The mutant virus d27-1 contains a 1.6-kilobase deletion which removes the ICP27 gene promoter and most of the coding sequences, while n59R, n263R, n406R, and n504R are mutants containing nonsense mutations which encode ICP27 molecules truncated at their carboxyl termini. All five mutants were defective for lytic replication in Vero cells. Analysis of the mutant phenotypes suggests that ICP27 has the following regulatory effects during the viral infection: (i) stimulation of expression of gamma-1 genes, (ii) induction of expression of gamma-2 genes, (iii) down regulation of expression of alpha and beta genes late in infection, and (iv) stimulation of viral DNA replication. Cells infected with the mutant n504R expressed wild-type levels of gamma-1 proteins but appeared to be unable to efficiently express gamma-2 mRNAs or proteins. This result suggests that ICP27 mediates two distinct transactivation functions, one which stimulates gamma-1 gene expression and a second one required for gamma-2 gene induction. Analysis of the mutant n406R suggested that a truncated ICP27 polypeptide can interfere with the expression of many viral beta genes. Our results demonstrate that ICP27 has a variety of positive and negative effects on the expression of viral genes during infection.  相似文献   

12.
Protein arginine methylation is involved in viral infection and replication through the modulation of diverse cellular processes including RNA metabolism, cytokine signaling, and subcellular localization. It has been suggested previously that the protein arginine methylation of the RGG-box of ICP27 is required for herpes simplex virus type-1 (HSV-1) viral replication and gene expression in vivo. However, a cellular mediator for this process has not yet been identified. In our current study, we show that the protein arginine methyltransferase 1 (PRMT1) is a cellular mediator of the arginine methylation of ICP27 RGG-box. We generated arginine substitution mutants in this domain and examined which arginine residues are required for methylation by PRMT1. R138, R148 and R150 were found to be the major sites of this methylation but additional arginine residues serving as minor methylation sites are still required to sustain the fully methylated form of ICP27 RGG. We also demonstrate that the nuclear foci-like structure formation, SRPK interactions, and RNA-binding activity of ICP27 are modulated by the arginine methylation of the ICP27 RGG-box. Furthermore, HSV-1 replication is inhibited by hypomethylation of this domain resulting from the use of general PRMT inhibitors or arginine mutations. Our data thus suggest that the PRMT1 plays a key role as a cellular regulator of HSV-1 replication through ICP27 RGG-box methylation.  相似文献   

13.
W E Mears  V Lam    S A Rice 《Journal of virology》1995,69(2):935-947
Previous work has shown that the herpes simplex virus type 1 (HSV-1) regulatory protein ICP27 localizes to the cell nucleus and that certain mutant ICP27 polypeptides localize preferentially in nucleoli. To map the signals in ICP27 which mediate its nuclear localization, we identified the portions of ICP27 which can direct a cytoplasmic protein, pyruvate kinase (PK), to nuclei. Our results demonstrate that ICP27 contains multiple nuclear localization signals (NLSs) that function with differing efficiencies. First, ICP27 possesses a strong NLS, mapping to residues 110 to 137, which bears similarity to the bipartite NLSs found in Xenopus laevis nucleoplasmin and other proteins. Second, ICP27 possesses one or more weak NLSs which map to a carboxyl-terminal portion of the protein between residues 140 and 512. Our PK-targeting experiments also demonstrate that ICP27 contains a relatively short sequence, mapping to residues 110 to 152, that can function as a nucleolar localization signal (NuLS). This signal includes ICP27's strong NLS as well as 15 contiguous residues which consist entirely of arginine and glycine. This latter sequence is very similar to an RGG box, a putative RNA-binding motif found in a number of cellular proteins which are involved in nuclear RNA processing. To confirm the results of the PK-targeting experiments, we mutated the ICP27 gene by deleting sequences encoding either the strong NLS or the RGG box. Deletion of the strong NLS (residues 109 to 138) resulted in an ICP27 molecule that was only partially defective for nuclear localization, while deletion of the RGG box (residues 139 to 153) resulted in a molecule that was nuclear localized but excluded from nucleoli. Recombinant HSV-1s bearing either of these deletions were unable to replicate efficiently in Vero cells, suggesting that ICP27's strong NLS and RGG box carry out important in vivo functions.  相似文献   

14.
We previously reported that herpes simplex virus type 1 (HSV-1) can activate the stress-activated protein kinases (SAPKs) p38 and JNK. In the present study, we undertook a comprehensive and comparative analysis of the requirements for viral protein synthesis in the activation of JNK and p38. Infection with the UL36 mutant tsB7 or with UV-irradiated virus indicated that both JNK and p38 activation required viral gene expression. Cycloheximide reversal or phosphonoacetic acid treatment of wild-type virus-infected cells as well as infection with the ICP4 mutant vi13 indicated that only the immediate-early class of viral proteins were required for SAPK activation. Infection with ICP4, ICP27, or ICP0 mutant viruses indicated that only ICP27 was necessary. Additionally, we determined that in the context of virus infection ICP27 was sufficient for SAPK activation and activation of the p38 targets Mnk1 and MK2 by infecting with mutants deleted for various combinations of immediate-early proteins. Specifically, the d100 (0-/4-) and d103 (4-/22-/47-) mutants activated p38 and JNK, while the d106 (4-/22-/27-/47-) and d107 (4-/27-) mutants did not. Finally, infections with a series of ICP27 mutants demonstrated that the functional domain of ICP27 required for activation was located in the region encompassing amino acids 20 to 65 near the N terminus of the protein and that the C-terminal transactivation activity of ICP27 was not necessary.  相似文献   

15.
Moloney leukemia virus 10 protein (MOV10) is an interferon (IFN)-inducible RNA helicase implicated in antiviral activity against RNA viruses, yet its role in herpesvirus infection has not been investigated. After corneal inoculation of mice with herpes simplex virus 1 (HSV-1), we observed strong upregulation of both MOV10 mRNA and protein in acutely infected mouse trigeminal ganglia. MOV10 suppressed HSV-1 replication in both neuronal and non-neuronal cells, and this suppression required the N-terminus, but not C-terminal helicase domain of MOV10. MOV10 repressed expression of the viral gene ICP0 in transfected cells, but suppressed HSV-1 replication independently of ICP0. MOV10 increased expression of type I IFN in HSV-1 infected cells with little effect on IFN downstream signaling. Treating the cells with IFN-α or an inhibitor of the IFN receptor eliminated MOV10 suppression of HSV-1 replication. MOV10 enhanced IFN production stimulated by cytoplasmic RNA rather than DNA. IKKε co-immunoprecipitated with MOV10 and was required for MOV10 restriction of HSV-1 replication. Mass spectrometry identified ICP27 as a viral protein interacting with MOV10. Co-immunoprecipitation results suggested that this interaction depended on the RGG box of ICP27 and both termini of MOV10. Overexpressed ICP27, but not its RGG-Box deletion mutant, rendered MOV10 unable to regulate HSV-1 replication and type I IFN production. In summary, MOV10 is induced to restrict HSV-1 lytic infection by promoting the type I IFN response through an IKKε-mediated RNA sensing pathway, and its activity is potentially antagonized by ICP27 in an RGG box dependent manner.  相似文献   

16.
S A Rice  L S Su    D M Knipe 《Journal of virology》1989,63(8):3399-3407
The HSV-1 alpha (immediate-early) protein ICP27 expressed in transfected cells can activate the expression of certain HSV-1 promoters as well as inhibit the transactivated expression of others. We constructed a set of plasmids encoding mutant ICP27 molecules truncated at their carboxyl termini and used transfection assays to determine the functional properties of the mutant proteins. A polypeptide containing the amino-terminal 263 amino acid residues of ICP27 retained partial ability to activate gene expression but was unable to inhibit transactivation. Mutant proteins possessing 406 or 504 amino acids of ICP27 were unable to activate gene expression but retained full ability to inhibit transactivation. These results define two separable regulatory activities of ICP27, one positive and one negative, which can modulate gene expression in transfected cells. Immunoblot and immunofluorescence experiments were used to study the immunological reactivities and intracellular localizations of the mutant proteins. All proteins possessing the amino-terminal 263 amino acids of ICP27 reacted with an ICP27-specific monoclonal antibody and were localized to the cell nucleus. The mutant proteins, however, exhibited a number of phenotypes with regard to intranuclear localization. A mutant possessing 504 residues of ICP27 was similar to the wild-type protein in apparently localizing to all regions of the nucleus. A mutant containing 406 residues of ICP27, on the other hand, was mostly excluded from the nucleolar regions, while a 263-residue mutant was localized predominantly in the nucleoli. Thus, some aspect of ICP27 structure or function can dramatically affect its intranuclear distribution.  相似文献   

17.
The major DNA-binding protein, or infected-cell protein 8 (ICP8), of herpes simplex virus is required for viral DNA synthesis and normal regulation of viral gene expression. Previous genetic analysis has indicated that the carboxyl-terminal 28 residues are the only portion of ICP8 capable of acting independently as a nuclear localization signal. In this study, we constructed a mutant virus (n11SV) in which the carboxyl-terminal 28 residues of ICP8 were replaced by the simian virus 40 large-T-antigen nuclear localization signal. The n11SV ICP8 localized into the nucleus and bound to single-stranded DNA in vitro as tightly as wild-type ICP8 did but was defective for viral DNA synthesis and viral growth in Vero cells. Two mutant ICP8 proteins (TL4 and TL5) containing amino-terminal alterations could complement the n11SV mutant but not ICP8 gene deletion mutants. Cell lines expressing TL4 and TL5 ICP8 were isolated, and in these cells, complementation of n11SV was observed at the levels of both viral DNA replication and viral growth. Therefore, complementation between n11SV ICP8 and TL4 or TL5 ICP8 reconstituted wild-type ICP8 functions. Our results demonstrate that (i) the carboxyl-terminal 28 residues of ICP8 are required for a function(s) involved in viral DNA replication, (ii) this function can be supplied in trans by another mutant ICP8, and (iii) ICP8 has multiple domains possessing different functions, and at least some of these functions can complement in trans.  相似文献   

18.
19.
20.
Su YH  Zhang X  Wang X  Fraser NW  Block TM 《Journal of virology》2006,80(23):11589-11597
Following infection, the physical state of linear herpes simplex virus (HSV) genomes may change into an "endless" or circular form. In this study, using Southern blot analysis of the HSV genome, we provide evidence that immediate-early protein ICP4 is involved in the process of converting the linear HSV-1 ICP4-deleted mutant strain d120 genome into its endless form. Under conditions where de novo viral DNA synthesis was inhibited, the genome of the ICP4 deletion mutant d120 failed to assume an endless conformation following infection of Vero cells (compared with the ability of wild-type strain KOS). This defect was reversed in the Vero-derived cell line E5, which produces the ICP4 protein, suggesting that ICP4 is necessary and sufficient to complement the d120 defect. When ICP4 protein was provided by the replication-defective DNA polymerase mutant HP66, the genomes of mutant d120 could assume an endless conformation in Vero cells. Western blot analysis using antibody specific to the ICP4 protein showed that although the d120 virions contained ICP4 protein, the majority of that ICP4 protein was in a 40-kDa truncated form, with only a small fraction present as a full-length 175-kDa protein. When expression of ICP4 protein from E5 cells was inhibited by cycloheximide, the d120 virion-associated ICP4 protein was unable to mediate endless formation after infection of E5 cells. Collectively, these data suggest that ICP4 protein has an important role in mediating the endless formation of the HSV-1 genome upon infection and that this function can be provided in trans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号