首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Epinephrine increases net hepatic glucose output (NHGO) mainly via increased gluconeogenesis, whereas glucagon increases NHGO mainly via increased glycogenolysis. The aim of the present study was to determine how the two hormones interact in controlling glucose production. In 18-h-fasted conscious dogs, a pancreatic clamp initially fixed insulin and glucagon at basal levels, following which one of four protocols was instituted. In G + E, glucagon (1.5 ng x kg(-1) x min(-1); portally) and epinephrine (50 ng x kg(-1) x min(-1); peripherally) were increased; in G, glucagon was increased alone; in E, epinephrine was increased alone; and in C, neither was increased. In G, E, and C, glucose was infused to match the hyperglycemia seen in G + E ( approximately 250 mg/dl). The areas under the curve for the increase in NHGO, after the change in C was subtracted, were as follows: G = 661 +/- 185, E = 424 +/- 158, G + E = 1178 +/- 57 mg/kg. Therefore, the overall effects of the two hormones on NHGO were additive. Additionally, glucagon exerted its full glycogenolytic effect, whereas epinephrine exerted its full gluconeogenic effect, such that both processes increased significantly during concurrent hormone administration.  相似文献   

2.
To determine the effect of nonesterified fatty acids (NEFA) on glucagon action, glucagon was infused intraportally (1.65 ng.min(-1).kg(-1)) for 3 h into 18-h-fasted, pancreatic-clamped conscious dogs in the presence [NEFA + glucagon (GGN)] or absence (GGN) of peripheral Intralipid plus heparin infusion. Additionally, hyperglycemic (HG), hyperglycemic-hyperlipidemic (NEFA + HG), and glycerol plus glucagon (GLYC + GGN) controls were studied. Arterial plasma glucagon concentrations rose equally in GGN, NEFA + GGN, and GLYC + GGN but remained basal in hyperglycemic controls. Peripheral infusions of Intralipid and heparin increased arterial plasma NEFA concentrations equally in NEFA + GGN and NEFA + HG and did not change in other protocols. After 15 min, glucagon infusion resulted in a rapid, brief increase in net hepatic glycogenolysis (NHGLY, mg.min(-1).kg(-1)) of approximately 6.0 in GGN and GLYC + GGN but only increased by 3.8 +/- 1.3 in NEFA + GGN. Thus increases in NHGLY, and consequently net hepatic glucose output (NHGO), were blunted by 40%, with no difference between the groups in the last 2.5 h of the study. NHGO and NHGLY did not significantly change in HG and NEFA + HG. Net hepatic gluconeogenic flux did not change in GGN, GLYC + GGN, or HG. However, Intralipid and heparin infusion resulted in similar increases in net hepatic gluconeogenic flux in NEFA + GGN and NEFA + HG. Thus elevated NEFA limit the initial increase in glucagon-stimulated HGO by blunting glycogenolysis, without having any effect on the gluconeogenic or glycogenolytic contributions or NHGO thereafter.  相似文献   

3.
Dietary fat type can influence the regulation of carbohydrate metabolism in multiple tissue types. The influence of feeding high-fat (40% of kilocalories) diets containing either menhaden oil (MO) or coconut oil (CO) on hepatic glycogenolytic and gluconeogenic capacities was studied in isolated rat hepatocytes. Estimates of both glycogenolytic and gluconeogenic capacities were performed on hepatocytes isolated from fed and fasted animals, respectively. In MO-fed animals, both basal and hormone-stimulated rates of glucose production were significantly greater than those in CO-fed animals. However, both groups displayed a similar maximal increase in glucose production above basal for glucagon and epinephrine (2.3- and 1.9-fold, respectively). Basal rates of adenosine 3′,5′-cyclic phosphate (cAMP) production were not different between groups whereas glucagon-stimulated cAMP production was increased twofold in the MO-fed group. In both MO and CO groups, the addition of 10 nM insulin reduced glucose production in fed animals to similar absolute rates. In animals fasted for 24 hours, gluconeogenic capacity was estimated using 10 mM pyruvate, lactate, or glycerol. Glucose production from all substrates was significantly greater in CO-fed animals. In addition to increased gluconeogenic rates, maximal phosphoenolpyruvate carboxykinase (PEPCK) activity was increased in the CO-fed group. Insulin reduced glucose production in both dietary groups, but the absolute rate of glucose production was 28% greater in the CO-fed group relative to the MO-fed group. In summary, dietary fat type can markedly influence the regulation of hepatic glucose metabolism in multiple metabolic pathways. MO feeding promoted glycogenolysis and sensitivity to insulin whereas CO feeding favored gluconeogenesis and reduced insulin sensitivity.  相似文献   

4.
Rat liver hepatocytes were isolated by collagenase in vitro perfusion technique and the effect of epinephrine, glucagon and insulin on glycogenolysis was studied. Both glucagon and epinephrine at the concentration of 10?6M, stimulated gluconeogenesis by 80–100%. Addition of insulin (33 μUnits/ml) completely abolished the epinephrine-stimulated glycogenolysis whereas only 50% inhibition was observed with insulin in glucagon stimulated glycogenolysis. This stimulation was observed within 2–5 min after the addition of the hormones. These results suggest that hepatocytes isolated with low concentrations of collagenase retain glucagon, epinephrine and insulin receptor sites.  相似文献   

5.
1. Isolated lamb liver cells were prepared from 24-h-starved animals by venous perfusion of the excised caudate lobe with buffer containing collagenase. On the basis of Trypan-Blue exclusion, rate of O2 uptake, adenine nucleotide content and retention of constitutive enzymes, these cells were judged to be intact. 2. Isolated caudate-lobe liver cells showed rates of gluconeogenesis from 10 mM-propionate and 10 mM-lactate that compared favourably with rates determined in isolated median-lobe cells and with rates determined with the isolated perfused lamb liver. 3. The gluconeogenic potential of substrates tested depended on the lamb's age. Cells prepared from suckling lambs (up to 20 days of age and essentially non-ruminant) showed highest rates from galactose, serine and alanine; those prepared from post-weaned lambs (older than 30 days of age and ruminant) showed highest rates from propionate, lactate and fructose. 4. Gluconeogenic rates from endogeneous precursors, 10 mM-propionate and 10mM-galactose, were linear for 1 h and were both stimulated by 1 muM-glucagon. Provided the endogenous rate of gluconeogenesis remained unchanged after substrate addition, glucagon caused a net stimulation of gluconeogenesis from each of these substrates. 5. Gluconeogenic capacity and glucagon sensitivity were examined in cells maintained in substrate-free oxygenated buffer at 37 degrees, 22 degrees and * degrees C. Even under the best of the three conditions of storage that were tested (i.e. at 22 degrees C in gelatin-containing buffer) deterioration of the lamb cells proceeded rapidly, and loss of glucagon responsiveness preceeded the loss of ability to convert precursor into glucose. 6. n-Butyric acid, 2-methylpropanoic acid and 3-methylbutanoic acid at concentrations comparable with those found in lamb portal-vein blood each stimulated gluconeogenesis from 10mM-galactose or 10mM-propionate; gluconeogenesis from galactose was stimulated to the greater extent. 7. The regulatory effects of glucagon and sodium butyrate on lamb liver-cell gluconeogenesis and glycogenolysis were compared. Glucagon (1 muM) and 2mM-butyrate accelerated the rate of glucose formation of liver cells of 24h-starved animals from lactate+pyruvate or fructose. Insulin (20nM) decreased both gluconeogenesis and the efficacy of 1 muM-glucagon. For lactate+pyruvate as substrate, the stimulatory effect of butyrate was additive to that of 1muM-glucagon and for both lactate+pyruvate and fructose the stimulatory effect of butyrate was not influenced by 20nM-insulin. In contrast with glucagon, which stimulated the rate of glycogenolysis in cells prepared from fed lambs, butyrate (0.1-20mM) had no effect. 8. It is concluded that glucagon and butyrate stimulate lamb liver-cell gluconeogenesis by different mechanisms.  相似文献   

6.
Prostaglandin E1 (PGE1) failed to stimulate rat liver cyclic AMP (cAMP), induce hyperglycemia, glycogenolysis or lipolysis or prevent epinephrine-induced hyperglycemia in isolated perfused rat liver, even though other known glycogenolytic agents (glucagon and epinephrine) activated cAMP in this same system. The data do not support a physiologic role for PGE1 on hepatic glycogenolysis or lipolysis. Although the effects of PGE1 on gluconeogenesis, lipogenesis, ureogenesis or amino acid transport in isolated perfused liver were not investigated, if PGE1 is subsequently found to influence these metabolic parameters, such alterations would probably occur independent of a change in cAMP activity.  相似文献   

7.
Glycogenolysis and gluconeogenesis are sensitive to nutritional state, and the net direction of flux is controlled by multiple enzymatic steps. This delicate balance in the liver is disrupted by a variety of pathological states including cancer and diabetes mellitus. Hyperpolarized carbon-13 magnetic resonance is a new metabolic imaging technique that can probe intermediary metabolism nondestructively. There are currently no methods to rapidly distinguish livers in a gluconeogenic from glycogenolytic state. Here we use the gluconeogenic precursor dihydroxyacetone (DHA) to deliver hyperpolarized carbon-13 to the perfused mouse liver. DHA enters gluconeogenesis at the level of the trioses. Perfusion conditions were designed to establish either a gluconeogenic or a glycogenolytic state. Unexpectedly, we found that [2-13C]DHA was metabolized within a few seconds to the common intermediates and end products of both glycolysis and gluconeogenesis under both conditions, including [2,5-13C]glucose, [2-13C]glycerol 3-phosphate, [2-13C]phosphoenolpyruvate (PEP), [2-13C]pyruvate, [2-13C]alanine, and [2-13C]lactate. [2-13C]Phosphoenolpyruvate, a key branch point in gluconeogenesis and glycolysis, was monitored in functioning tissue for the first time. Observation of [2-13C]PEP was not anticipated as the free energy difference between PEP and pyruvate is large. Pyruvate kinase is the only regulatory step of the common glycolytic-gluconeogenic pathway that appears to exert significant control over the kinetics of any metabolites of DHA. A ratio of glycolytic to gluconeogenic products distinguished the gluconeogenic from glycogenolytic state in these functioning livers.  相似文献   

8.
Catecholamines increased guanosine 3':5'-monophosphate (cyclic GMP) accumulation by isolated rat liver cells. The increases in cyclic GMP due to 1.5 muM epinephrine, isoproterenol, or phenylephrine were blocked by phenoxybenzamine but not by propranolol. The possibility that cyclic GMP is involved in the glycogenolytic action of catecholamines seems unlikely since cyclic GMP accumulation is also elevated by carbachol, insulin, A23187, and to a lesser extent by glucagon. Furthermore, carbachol had little effect on glycogenolysis while insulin actually inhibited hepatic glycogenolysis. The rise in cyclic GMP due to carbachol was abolished by atropine and that due to all agents was markedly reduced by the omission of extracellular calcium. However, the glycogenolytic action of glucagon and catecholamines was only slightly inhibited by the omission of calcium. The only agent which was unable to stimulate glycogenolysis in calcium-free buffer was the divalent cation ionophore A23187. There was a drop in ATP content of liver cells during incubation in calcium-free buffer which was accompanied by an inhibition of glucagon-activated adenosine 3':5'-monophosphate (cyclic AMP) accumulation. The presence of calcium inhibited the rise in adenylate cyclase activity of lysed rat liver cells due to glucagon or isoproterenol but not that due to fluoride. These results suggest that the stimulation by catecholamines and glucagon of glycogenolysis is not mediated through cyclic GMP nor does it depend on the presence of extracellular calcium. Cyclic GMP accumulation was increased in liver cells by agents which either inhibit, have little affect, or accelerate glycogenolysis. The significance of elevations of cyclic GMP in rat liver cells remains to be established.  相似文献   

9.
To determine the effects of an increase in lipolysis on the glycogenolytic effect of epinephrine (EPI), the catecholamine was infused portally into 18-h-fasted conscious dogs maintained on a pancreatic clamp in the presence [portal (Po)-EPI+FFA, n = 6] and absence (Po-EPI+SAL, n = 6) of peripheral Intralipid infusion. Control groups with high glucose (70% increase) and free fatty acid (FFA; 200% increase; HG+FFA, n = 6) and high glucose alone (HG+SAL, n = 6) were also included. Hepatic sinusoidal EPI levels were elevated (Delta 568 +/- 77 and Delta 527 +/- 37 pg/ml, respectively) in Po-EPI+SAL and EPI+FFA but remained basal in HG+FFA and HG+SAL. Arterial plasma FFA increased from 613 +/- 73 to 1,633 +/- 101 and 746 +/- 112 to 1,898 +/- 237 micromol/l in Po-EPI+FFA and HG+FFA but did not change in EPI+SAL or HG+SAL. Net hepatic glycogenolysis increased from 1.5 +/- 0.3 to 3.1 +/- 0.4 mg x kg(-1) x min(-1) (P < 0.05) by 30 min in response to portal EPI but did not rise (1.8 +/- 0.2 to 2.1 +/- 0.3 mg x kg(-1) x min(-1)) in response to Po-EPI+FFA. Net hepatic glycogenolysis decreased from 1.7 +/- 0.2 to 0.9 +/- 0.2 and 1.6 +/- 0.2 to 0.7 +/- 0.2 mg x kg(-1) x min(-1) by 30 min in HG+FFA and HG+SAL. Hepatic gluconeogenic flux to glucose 6-phosphate increased from 0.6 +/- 0.1 to 1.2 +/- 0.1 mg x kg(-1) x min(-1) (P < 0.05; by 3 h) and 0.7 +/- 0.1 to 1.6 +/- 0.1 mg x kg(-1) x min(-1) (P < 0.05; at 90 min) in HG+FFA and Po-EPI+FFA. The gluconeogenic parameters remained unchanged in the Po-EPI+SAL and HG+SAL groups. In conclusion, increased FFA markedly changed the mechanism by which EPI stimulated hepatic glucose production, suggesting that its overall lipolytic effect may be important in determining its effect on the liver.  相似文献   

10.
Insulin (10nM) completely suppressed the stimulation of gluconeogenesis from 2 mM lactate by low concentrations of glucagon (less than or equal to 0.1 nM) or cyclic AMP (less than or equal to 10 muM), but it had no effect on the basal rate of gluconeogenesis in hepatocyctes from fed rats. The effectiveness of insulin diminished as the concentration of these agonists increased, but insulin was able to suppress by 40% the stimulation by a maximally effective concentration of epinephrine (1 muM). The response to glucagon, epinephrine, or insulin was not dependent upon protein synthesis as cycloheximide did not alter their effects. Insulin also suppressed the stimulation by isoproterenol of cyclic GMP. These data are the first demonstration of insulin antagonism to the stimulation of gluconeogenesis by catecholamines. Insulin reduced cyclic AMP levels which had been elevated by low concentrations of glucagon or by 1 muM epinephrine. This supports the hypothesis that the action of insulin to inhibit gluconeogenesis is mediated by the lowering of cyclic AMP levels. However, evidence is presented which indicates that insulin is able to suppress the stimulation of gluconeogenesis by glucagon or epinephrine under conditions where either the agonists or insulin had no measurable effect on cyclic AMP levels. Insulin reduced the glucagon stimulation of gluconeogenesis whether or not extracellular Ca2+ were present, even though insulin only lowered cyclic AMP levels in their presence. Insulin also reduced the stimulation by epinephrine plus propranolol where no significant changes in cyclic AMP were observed without or with insulin. In addition, insulin suppressed gluconeogenesis in cells that had been preincubated with epinephrine for 20 min, even though the cyclic AMP levels had returned to near basal values and were unaffected by insulin. Thus insulin may not need to lower cyclic AMP levels in order to suppress gluconeogenesis.  相似文献   

11.
The relative contribution to basal, glucagon- and nerve stimulation-enhanced glucose output of glycogenolysis (glucose output in the presence of the gluconeogenic inhibitor mercaptopicolinate) and gluconeogenesis (difference in glucose output in the absence and presence of the inhibitor) was investigated in perfused livers from fed rats with high and from fasted animals with low levels of glycogen. 1) Basal glucose output in both states was due only to gluconeogenesis. 2) Glucagon-enhanced glucose output was due about equally to glycogenolysis and gluconeogenesis in the fed state, but predominantly to gluconeogenesis (80%) in the fasted state. 3) Nerve stimulation-increased glucose output was due mainly to glycogenolysis (65%) in the fed state and about equally to both processes in the fasted state. The results suggest that under basal conditions of normal demands the liver supplies glucose only via gluconeogenesis and thus spares its glycogen stores, and that in situations of enhanced demands signalled by an increase in glucagon or sympathetic tone the liver liberates glucose mainly via glycogenolysis.  相似文献   

12.
Fuel metabolism in fasted newborn rabbits   总被引:1,自引:0,他引:1  
Newborn rabbits delivered by Caesarean section at term were fasted for 72 h at 36 degrees C. Despite the abrupt interruption of maternal supply of energy substrates, glycaemia remains stable for 4 h after birth. This can be related to glucose production via rapid liver glycogenolysis; however, indirect evidence suggests that gluconeogenesis could also contribute to glucose production during this period. There is a selective decrease in the concentrations of gluconeogenic substrates and a suitable hormonal environment for gluconeogenesis as decreased insulin and increased glucagon concentration just after birth. The relative hypoglycaemia which develops after 6 h of life (2.6 mM at 72 h), despite high blood concentrations of non-esterified fatty acids and ketone bodies is not due to a deficient gluconeogenesis per se, as injection of gluconeogenic substrates to 72 h fasted newborns produces a three-fold increase in plasma glucose concentration. It is suggested that this relative hypoglycaemia is secondary to limited gluconeogenic substrate availability in the form of low circulting concentrations of gluconeogenic amino acids.  相似文献   

13.
Gluconeogenesis in chick embryo isolated hepatocytes   总被引:1,自引:0,他引:1  
1. The effectiveness of gluconeogenic precursors in hepatocytes isolated from 18 day old chick embryos is:Lactate much much greater than pyruvate greater than alanine = glutamine greater than glycerol and other amino acids. This result is qualitatively and quantitatively similar to hepatocytes isolated after hatching. 2. In the presence of endogenous glycogenolysis, conversion of [U-14C]lactate to glucose was used to estimate gluconeogenic flux and its control by hormones. 3. Glucagon failed to stimulate lactate gluconeogenesis although simultaneously increasing glycogenolysis. Insulin had no effects on gluconeogenesis.  相似文献   

14.
Epinephrine caused hyperglycemia in part by increasing gluconeogenesis. However, the mechanism of its gluconeogenic effects has not been studied in ruminants. This study was undertaken to examine the effect of epinephrine on the net hepatic uptake of selected glucose precursors in sheep. The major abdominal blood vessels of the sheep were catheterized in normal and alloxan diabetic sheep. Glucose production, metabolic clearance of glucose, and the hepatic removal of certain glucose precursors were determined before, during, and after epinephrine infusion. Epinephrine increased the hepatic glucose output, the concentrations of lactate and glycerol in plasma, and the net hepatic uptake and fractional hepatic extraction of lactate and glycerol. These effects were independent of changes in the concentrations of insulin and glucagon in plasma. These results show that epinephrine directly stimulates hepatic gluconeogenesis in sheep.  相似文献   

15.
Control properties of the gluconeogenic pathway in hepatocytes isolated from starved rats were studied in the presence of glucose. The following observations were made. (1) Glucose stimulated the rate of glucose production from 20 mM-glycerol, from a mixture of 20 mM-lactate and 2 mM-pyruvate, or from pyruvate alone; no stimulation was observed with 20 mM-alanine or 20 mM-dihydroxyacetone. Maximal stimulation was obtained between 2 and 5 mM-glucose, depending on the conditions. At concentrations above 6 mM, gluconeogenesis declined again, so that at 10 mM-glucose the glucose production rate became equal to that in its absence. (2) With glycerol, stimulation of gluconeogenesis by glucose was accompanied by oxidation of cytosolic NADH and reduction of mitochondrial NAD+ and was insensitive to the transaminase inhibitor amino-oxyacetate; this indicated that glucose accelerated the rate of transport of cytosolic reducing equivalents to the mitochondria via the glycerol 1-phosphate shuttle. (3) With lactate plus pyruvate (10:1) as substrates, stimulation of gluconeogenesis by glucose was almost additive to that obtained with glucagon. From an analysis of the effect of glucose on the curves relating gluconeogenic flux and the steady-state intracellular concentrations of gluconeogenic intermediates under various conditions, in the absence and presence of glucagon, it was concluded that addition of glucose stimulated both phosphoenolpyruvate carboxykinase and pyruvate carboxylase activity.  相似文献   

16.
Glucagon-like peptides activate hepatic gluconeogenesis   总被引:4,自引:0,他引:4  
Piscine (anglerfish, catfish, coho salmon) glucagon-like peptides (GLPs), applied at 3.5 nM, stimulate (1.1-1.9-fold) flux through gluconeogenesis above control levels in isolated trout and salmon hepatocytes. Human GLP-1 and GLP-2 also activate gluconeogenesis, but to a lesser degree than their piscine counterparts. Minor increases of substrate oxidation are noticed at times of peak gluconeogenic activation through GLPs. These hormones, which are derived from the same precursor peptide as glucagon are more potent activators of gluconeogenesis than glucagon when applied at equimolar concentrations, and do not appear to employ cAMP or cGMP as the intracellular messenger in hepatic tissue.  相似文献   

17.
Summary Isolated hepatocyte preparations from fed immature American eels,Anguilla rostrata Le Sueur, were used to study gluconeogenic, lipogenic, glycogenic and oxidative rates of radioactively labelled lactate, glycerol, alanine and aspartate. Eel hepatocytes maintain membrane integrity and energy charge during a 2 h incubation period and are considered a viable preparation for studying fish liver metabolism.Incubating eel hepatocytes with 10 mM substrates, the following results were obtained: glycerol, alanine and lactate, in that order, were effective gluconeogenic substrates; these three substrates reduced glucose release from glycogen stores, while aspartate had no such effect; lactate, alanine and aspartate led to high rates of glycerol production, with subsequent incorporation into lipid; incorporation into glycogen was low from all substrates; and, alanine oxidation was seven times higher than that observed with other substrates.When eel hepatocytes were incubated with low or physiological substrate concentrations gluconeogenic rates from lactate were twice those from alanine; rates from aspartate were very low. Glucagon stimulated lactate gluconeogenesis, but not amino acid gluconeogenesis, and had no significant effect on glycogenolysis. Cortisol increased gluconeogenic rates from 1 mM lactate.Thus, in the presence of adequate substrate, eel liver gluconeogenesis is preferentially stimulated relative to glycogenolysis to produce plasma glucose. These data support three important roles for gluconeogenesis: the recycling of muscle lactate, the synthesis of glucose from dietary amino acids to supplement glucose levels, and the production of glycerol for lipogenesis.This work was supported from operating grants to TWM from the National Research Council of Canada (A6944)  相似文献   

18.
The capacity for gluconeogenesis in the isolated amphibian retina was found to be approx. 70-fold greater with lactate than with glutamate as the gluconeogenic precursor, 1426 versus 21 pmol of glucose incorporated into glycogen/h per mg of protein. It was also found that 11-15% of the glucosyl units in glycogen are derived from C3 metabolites of the glycolytic pathway, suggesting that lactate is recycled within the retina. In concert with these metabolic observations, a full complement of the gluconeogenic enzymes was detected in retinal homogenates. These included: glucose-6-phosphatase, fructose-1,6-bisphosphatase, acetyl-CoA-dependent pyruvate carboxylase and phosphoenolpyruvate carboxykinase. Agents that regulate the rate of gluconeogenesis in hepatic tissue were tested on the retina. At concentrations of glutamate and lactate that are presumed to be relevant physiologically, it was found that vasoactive intestinal peptide, ionophore A23187 and elevated [K+] each enhanced the rate of gluconeogenesis in Ringer containing 50 microM-glutamate, whereas in Ringer containing 8.5 mM-lactate these agents inhibited the rate of gluconeogenesis. Further, it was found that the classic gluconeogenic hormone glucagon inhibited gluconeogenesis in both glutamate- and lactate-containing Ringer. Retinal energy metabolism was found to be altered in lactate-containing Ringer, in that lactate production was suppressed completely. In addition, glycogen metabolism appeared to be dependent on increased cytosolic Ca2+ and was insensitive to increased retinal cyclic AMP.  相似文献   

19.
1. The effect of increased ureogenesis--provoked by NH4Cl and ornithine--on gluconeogenesis and aminopyrine oxidation was studied in isolated hepatocytes prepared from 24 hr starved mice; lactate or fructose was used as gluconeogenic precursor. 2. Increased ureogenesis caused about 40% inhibition both on aminopyrine oxidation and gluconeogenesis when lactate was added as gluconeogenic substrate. 3. On the other hand, only 10% inhibition of aminopyrine oxidation and about 15% inhibition of gluconeogenesis were observed when fructose was used as gluconeogenic precursor. 4. Aminopyrine has been reported to inhibit gluconeogenesis from fructose by 30% and from lactate by 85%. The inhibitory effect of the combined addition of aminopyrine, NH4Cl and ornithine on gluconeogenesis was also dependent on the applied gluconeogenic precursor. 5. The provoked ureogenesis by ammonia and ornithine was not inhibited by aminopyrine. N6, O2-dibutyryl cAMP known to cause an increase of gluconeogenesis a decrease of aminopyrine oxidation enhanced the inhibitory action of increased ureogenesis on aminopyrine oxidation and on gluconeogenesis further. 6. The role of NADPH in the regulation of drug oxidation and ureogenesis is underlined.  相似文献   

20.
The effect of glucagon on gluconeogenesis was measured in periportal and pericentral regions of the liver lobule by monitoring changes in rates of O2 uptake on the surface of the perfused liver with miniature O2 electrodes after infusion of lactate. When lactate (2 mM) was infused into livers from starved rats perfused in the anterograde direction, O2 uptake was increased 2.5-fold more in periportal than in pericentral regions, reflecting increased energy demands for glucose synthesis. Under these conditions, glucagon infusion in the presence of lactate increased O2 uptake exclusively in periportal regions of the liver lobule. Thus, when perfusion is in the physiological anterograde direction, the metabolic actions of glucagon predominate in periportal regions of the liver lobule under gluconeogenic conditions in the starved state. When livers were perfused in the retrograde direction, however, glucagon stimulated O2 uptake exclusively in pericentral regions. Thus glucagon only stimulates gluconeogenesis in 'upstream' regions of the liver lobule irrespective of the direction of flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号