首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reduced colonic motility has been observed in aged rats with a parallel reduction in acetylcholine (ACh)-induced myosin light chain (MLC(20)) phosphorylation. MLC(20) phosphorylation during smooth muscle contraction is maintained by a coordinated signal transduction cascade requiring both PKC-alpha and RhoA. Caveolae are membrane microdomains that permit rapid and efficient coordination of different signal transduction cascades leading to sustained smooth muscle contraction of the colon. Here, we show that normal physiological contraction can be reinstated in aged colonic smooth muscle cells (CSMCs) upon transfection with wild-type caveolin-1 through the activation of both the RhoA/Rho kinase and PKC pathways. Our data demonstrate that impaired contraction in aging is an outcome of altered membrane translocation of PKC-alpha and RhoA with a concomitant reduction in the association of these molecules with the caveolae-specific protein caveolin-1, resulting in a parallel decrease in the myosin phosphatase-targeting subunit (MYPT) and CPI-17 phosphorylation. Decreased MYPT and CPI-17 phosphorylation activates MLC phosphatase activity, resulting in MLC(20) dephosphorylation, which may be responsible for decreased colonic motility in aged rats. Importantly, transfection of CSMCs from aged rats with wild-type yellow fluorescent protein-caveolin-1 cDNA restored translocation of RhoA and PKC-alpha and phosphorylation of MYPT, CPI-17, and MLC(20), thereby restoring the contractile response to levels comparable with young adult rats. Thus, we propose that caveolin-1 gene transfer may represent a promising therapeutic treatment to correct the age-related decline in colonic smooth muscle motility.  相似文献   

2.
The present study characterized the signalling pathways initiated by the bioactive lipid, LPA (lysophosphatidic acid) in smooth muscle. Expression of LPA(3) receptors, but not LPA(1) and LPA(2), receptors was demonstrated by Western blot analysis. LPA stimulated phosphoinositide hydrolysis, PKC (protein kinase C) and Rho kinase (Rho-associated kinase) activities: stimulation of all three enzymes was inhibited by expression of the G(alphaq), but not the G(alphai), minigene. Initial contraction and MLC(20) (20 kDa regulatory light chain of myosin II) phosphorylation induced by LPA were abolished by inhibitors of PLC (phospholipase C)-beta (U73122) or MLCK (myosin light-chain kinase; ML-9), but were not affected by inhibitors of PKC (bisindolylmaleimide) or Rho kinase (Y27632). In contrast, sustained contraction, and phosphorylation of MLC(20) and CPI-17 (PKC-potentiated inhibitor 17 kDa protein) induced by LPA were abolished selectively by bisindolylmaleimide. LPA-induced activation of IKK2 {IkappaB [inhibitor of NF-kappaB (nuclear factor kappaB)] kinase 2} and PKA (protein kinase A; cAMP-dependent protein kinase), and degradation of IkappaBalpha were blocked by the RhoA inhibitor (C3 exoenzyme) and in cells expressing dominant-negative mutants of IKK2(K44A) or RhoA(N19RhoA). Phosphorylation by Rho kinase of MYPT1 (myosin phosphatase targeting subunit 1) at Thr(696) was masked by phosphorylation of MYPT1 at Ser(695) by PKA derived from IkappaB degradation via RhoA, but unmasked in the presence of PKI (PKA inhibitor) or C3 exoenzyme and in cells expressing IKK2(K44A). We conclude that LPA induces initial contraction which involves activation of PLC-beta and MLCK and phosphorylation of MLC(20), and sustained contraction which involves activation of PKC and phosphorylation of CPI-17 and MLC(20). Although Rho kinase was activated, phosphorylation of MYPT1 at Thr(696) by Rho kinase was masked by phosphorylation of MYPT1 at Ser(695) via cAMP-independent PKA derived from the NF-kappaB pathway.  相似文献   

3.
Previous studies have shown that cGMP-dependent protein kinase (PKG) act on several targets in the contractile pathway to reduce intracellular Ca2+ and/or augment RhoA-regulated myosin light chain phosphatase (MLCP) activity and cause muscle relaxation. Recent studies have identified a novel protein M-RIP that associates with MYPT1, the regulatory subunit of MLCP. Herein, we examine whether PKG enhance MLCP activity downstream of Ca2+ and RhoA via phosphorylation of M-RIP in gastric smooth muscle cells. Treatment of permeabilized muscle cells with 10 μM Ca2+ caused an increase in MLC20 phosphorylation and muscle contraction, but had no effect on Rho kinase activity. Activators of PKG (GSNO or cGMP) decreased MLC20 phosphorylation and contraction in response to 10 μM Ca2+, implying existence of inhibitory mechanism independent of Ca2+ and RhoA. The effect of PKG on Ca2+-induced MLC20 phosphorylation was attenuated by M-RIP siRNA. Both GSNO and 8-pCPT-cGMP induced phosphorylation of M-RIP; phosphorylation was accompanied by an increase in the association of M-RIP with MYPT1 and MLCP activity. Taken together, these results provide evidence that PKG induces phosphorylation of M-RIP and enhances its association with MYPT1 to augment MLCP activity and MLC20 dephosphorylation and inhibits muscle contraction, downstream of Ca2+- or RhoA-dependent pathways.  相似文献   

4.
Regulation of smooth muscle myosin phosphatase (SMPP-1M) is thought to be a primary mechanism for explaining Ca(2+) sensitization/desensitization in smooth muscle. Ca(2+) sensitization induced by activation of G protein-coupled receptors acting through RhoA involves phosphorylation of Thr-696 (of the human isoform) of the myosin targeting subunit (MYPT1) of SMPP-1M inhibiting activity. In contrast, agonists that elevate intracellular cGMP and cAMP promote Ca(2+) desensitization in smooth muscle through apparent activation of SMPP-1M. We show that cGMP-dependent protein kinase (PKG)/cAMP-dependent protein kinase (PKA) efficiently phosphorylates MYPT1 in vitro at Ser-692, Ser-695, and Ser-852 (numbering for human isoform). Although phosphorylation of MYPT1 by PKA/PKG has no direct effect on SMPP-1M activity, a primary site of phosphorylation is Ser-695, which is immediately adjacent to the inactivating Thr-696. In vitro, phosphorylation of Ser-695 by PKA/PKG appeared to prevent phosphorylation of Thr-696 by MYPT1K. In ileum smooth muscle, Ser-695 showed a 3-fold increase in phosphorylation in response to 8-bromo-cGMP. Addition of constitutively active recombinant MYPT1K to permeabilized smooth muscles caused phosphorylation of Thr-696 and Ca(2+) sensitization; however, this phosphorylation was blocked by preincubation with 8-bromo-cGMP. These findings suggest a mechanism of Ca(2+) desensitization in smooth muscle that involves mutual exclusion of phosphorylation, whereby phosphorylation of Ser-695 prevents phosphorylation of Thr-696 and therefore inhibition of SMPP-1M.  相似文献   

5.
We examined expression of protease-activated receptors 2 (PAR2) and characterized their signaling pathways in rabbit gastric muscle cells. The PAR2 activating peptide SLIGRL (PAR2-AP) stimulated Gq, G13, Gi1, PI hydrolysis, and Rho kinase activity, and inhibited cAMP formation. Stimulation of PI hydrolysis was partly inhibited in cells expressing PAR2 siRNA, Gaq or Gai minigene and in cells treated with pertussis toxin, and augmented by expression of dominant negative regulator of G protein signaling (RGS4(N88S)). Stimulation of Rho kinase activity was abolished by PAR-2 or Ga13 siRNA, and by Ga13 minigene. PAR2-AP induced a biphasic contraction; initial contraction was selectively blocked by the inhibitor of PI hydrolysis (U73122) or MLC kinase (ML-9), whereas sustained contraction was selectively blocked by the Rho kinase inhibitor (Y27632). PAR2-AP induced phosphorylation of MLC20, MYPT1 but not CPI-17. PAR2-AP also caused a decrease in the association of NF-kB and PKA catalytic subunit: the effect of PAR2-AP was blocked by PAR2 siRNA or phosphorylation-deficient RhoA (RhoA(S188A)). PAR2-AP-induced degradation of IkBa and activation of NF-kB were abolished by the blockade of RhoA activity by Clostridium botulinum C3 exoenzyme suggesting RhoA-dependent activation of NF-kB. PAR2-AP-stimulated Rho kinase activity was significantly augmented by the inhibitors of PKA (myristoylated PKI), IKK2 (IKKIV) or NF-kB (MG132), and in cells expressing dominant negative mutants of IKK (IKK(K44A), IkBa (IkBa (S32A/S36A)) or RhoA(S188A), suggesting feedback inhibition of Rho kinase activity via PKA derived from NF-kB pathway. PAR2-AP induced phosphorylation of RhoA and the phosphorylation was attenuated in cells expressing phosphorylation-deficient RhoA(S188A). Our results identified signaling pathways activated by PAR2 to mediate smooth muscle contraction and a novel pathway for feedback inhibition of PAR2-stimulated RhoA. The pathway involves activation of the NF-kB to release catalytic subunit of PKA from its binding to IkBa and phosphorylation of RhoA at Ser188.  相似文献   

6.
Dysfunctional regulation of airway smooth muscle tone is a feature of obstructive airway diseases such as asthma and chronic obstructive pulmonary disease. Airway smooth muscle contraction is directly associated with changes in the phosphorylation of myosin light chain (MLC), which is increased by Rho and decreased by Rac. Although cyclic adenosine monophosphate (cAMP)‐elevating agents are believed to relieve bronchoconstriction mainly via activation of protein kinase A (PKA), here we addressed the role of the novel cAMP‐mediated exchange protein Epac in the regulation of airway smooth muscle tone. Isometric tension measurements showed that specific activation of Epac led to relaxation of guinea pig tracheal preparations pre‐contracted with methacholine, independently of PKA. In airway smooth muscle cells, Epac activation reduced methacholine‐induced MLC phosphorylation. Moreover, when Epac was stimulated, we observed a decreased methacholine‐induced RhoA activation, measured by both stress fibre formation and pull‐down assay whereas the same Epac activation prevented methacholine‐induced Rac1 inhibition measured by pull‐down assay. Epac‐driven inhibition of both methacholine‐induced muscle contraction by Toxin B‐1470, and MLC phosphorylation by the Rac1‐inhibitor NSC23766, were significantly attenuated, confirming the importance of Rac1 in Epac‐mediated relaxation. Importantly, human airway smooth muscle tissue also expresses Epac, and Epac activation both relaxed pre‐contracted human tracheal preparations and decreased MLC phosphorylation. Collectively, we show that activation of Epac relaxes airway smooth muscle by decreasing MLC phosphorylation by skewing the balance of RhoA/Rac1 activation towards Rac1. Therefore, activation of Epac may have therapeutical potential in the treatment of obstructive airway diseases.  相似文献   

7.
Agonist-induced translocation of RhoA and the spatio-temporal change in myosin regulatory light chain (MLC20) phosphorylation in smooth muscle was clarified at the single cell level. We expressed green fluorescent protein-tagged RhoA in the differentiated tracheal smooth muscle cells and visualized the translocation of RhoA in a living cell with three-dimensional digital imaging analysis. The stimulation of the cells by carbachol initiated the translocation of green fluorescent protein-tagged wild type RhoA to the plasma membrane within a minute. The change in MLC20 phosphorylation level after carbachol stimulation was monitored by using phospho-Ser-19-specific antibody recognizing the phosphorylated MLC20 in single cells. Cells expressing the dominant negative form (T19N) of RhoA significantly suppressed sustained MLC20 phosphorylation during the prolonged phase (>300 s), whereas the maximum phosphorylation level (reached at 10 s after stimulation) of these cells was not significantly different from the control cells. The kinetics of RhoA translocation was consistent with that of sustained myosin phosphorylation, suggesting the involvement of a RhoA pathway. Carbachol stimulation increased myosin phosphorylation within a minute both at the cortical and the central region. On the other hand, during prolonged phase, myosin phosphorylation was sustained at the cortical region of the cells but not at the central fibers. A myosin light chain kinase-specific inhibitor, ML-9, diminished myosin phosphorylation at the central region of the cells after the stimulation but not at the cortical area. On the other hand, Y-27632, a Rho kinase-specific inhibitor, diminished myosin phosphorylation at the cortical region but not the central region. The results clearly show that the myosin light chain kinase pathway and the Rho pathway distinctly change myosin phosphorylation in smooth muscle cells in both a temporal and spatial manner.  相似文献   

8.
The signaling cascades initiated by motilin receptors in gastric and intestinal smooth muscle cells were characterized. Motilin bound with high affinity (IC(50) 0.7 +/- 0.2 nM) to receptors on smooth muscle cells; the receptors were rapidly internalized via G protein-coupled receptor kinase 2 (GRK2). Motilin selectively activated G(q) and G(13), stimulated G alpha(q)-dependent phosphoinositide (PI) hydrolysis and 1,4,5-trisphosphate (IP(3))-dependent Ca(2+) release, and increased cytosolic free Ca(2+). PI hydrolysis was blocked by expression of G alpha(q) minigene and augmented by overexpression of dominant negative RGS4(N88S) or GRK2(K220R). Motilin induced a biphasic, concentration-dependent contraction (EC(50) = 1.0 +/- 0.2 nM), consisting of an initial peak followed by a sustained contraction. The initial Ca(2+)-dependent contraction and myosin light-chain (MLC)(20) phosphorylation were inhibited by the PLC inhibitor U-73122 and the MLC kinase inhibitor ML-9 but were not affected by the Rho kinase inhibitor Y27632 or the PKC inhibitor bisindolylmaleimide. Sustained contraction and MLC(20) phosphorylation were RhoA dependent and mediated by two downstream messengers: PKC and Rho kinase. The latter was partly inhibited by expression of G alpha(q) or G alpha(13) minigene and abolished by coexpression of both minigenes. Sustained contraction and MLC(20) phosphorylation were partly inhibited by Y27632 and bisindolylmaleimide and abolished by a combination of both inhibitors. The inhibition reflected phosphorylation of two MLC phosphatase inhibitors: CPI-17 via PKC and MYPT1 via Rho kinase. We conclude that motilin initiates a G alpha(q)-mediated cascade involving Ca(2+)/calmodulin activation of MLC kinase and transient MLC(20) phosphorylation and contraction as well as a sustained G alpha(q)- and G alpha(13)-mediated, RhoA-dependent cascade involving phosphorylation of CPI-17 by PKC and MYPT1 by Rho kinase, leading to inhibition of MLC phosphatase and sustained MLC(20) phosphorylation and contraction.  相似文献   

9.
Contractile stimuli can sensitize myosin to Ca2+ by activating RhoA kinase (ROK) and PKC that inhibit myosin light chain phosphatase (MLCP) activity. Relaxant stimuli, acting through PKA and PKG (cyclic nucleotide-dependent protein kinases), and pretreatment with contractile agents such as phenylephrine (PE), can desensitize myosin to Ca2+. It is unknown precisely how these stimuli cause Ca2+ desensitization. To test the hypothesis that PKA, PKG, and PE pretreatment signaling systems converge to cause relaxation by inhibition of ROK in intact, isolated tissues, we examined the effects of forskolin (FSK; PKA activation), 8-bromo-cGMP (8br-cGMP; PKG activation), and PE pretreatment on KCl-induced force maintenance in rabbit arteries, a response nearly completely dependent on ROK activation. PE pretreatment and agents activating PKA and PKG caused Ca2+ desensitization by inhibiting KCl-induced tonic force and MLC phosphorylation without inhibiting intracellular [Ca2+]. At pCa 5 in -escin-permeabilized muscle, FSK and 8b-cGMP accelerated the relaxation rate when tissues were returned to pCa 9, suggesting that both agents can elevate MLCP activity. However, a component of the Ca2+ desensitization attributed to PKG activation in intact tissues appeared to involve a MLC phosphorylation-independent component. Inhibition of KCl-induced tonic force by the ROK inhibitor, Y-27632, and by PE pretreatment, were synergistically potentiated by 8b-cGMP, but not FSK. FSK and PE pretreatment, but not 8b-cGMP, inhibited the KCl-induced increase in site-specific myosin phosphatase target protein-1 phosphorylation at Thr853. These data support the hypothesis that PKA and PE pretreatment converge on a common Ca2+-desensitization pathway, but that PKG can act by a mechanism different from that activated by PKA and PE pretreatment. vascular smooth muscle; Ca2+ sensitization; RhoA kinase; signal transduction  相似文献   

10.
Regulation of adenylyl cyclase type V/VI and cAMP-specific, cGMP-inhibited phosphodiesterase (PDE) 3 and cAMP-specific PDE4 by cAMP-dependent protein kinase (PKA) and cGMP-dependent protein kinase (PKG) was examined in gastric smooth muscle cells. Expression of PDE3A but not PDE3B was demonstrated by RT-PCR and Western blot. Basal PDE3 and PDE4 activities were present in a ratio of 2:1. Forskolin, isoproterenol, and the PKA activator 5,6-dichloro-1-beta-D-ribofuranosyl benzimidazole 3',5'-cyclic monophosphate, SP-isomer, stimulated PDE3A phosphorylation and both PDE3A and PDE4 activities. Phosphorylation of PDE3A and activation of PDE3A and PDE4 were blocked by the PKA inhibitors [protein kinase inhibitor (PKI) and H-89] but not by the PKG inhibitor (KT-5823). Sodium nitroprusside inhibited PDE3 activity and augmented forskolin- and isoproterenol-stimulated cAMP levels; PDE3 inhibition was reversed by blockade of cGMP synthesis. Forskolin stimulated adenylyl cyclase phosphorylation and activity; PKI blocked phosphorylation and enhanced activity. Stimulation of cAMP and inhibition of inositol 1,4,5-trisphosphate-induced Ca(2+) release and muscle contraction by isoproterenol were augmented additively by PDE3 and PDE4 inhibitors. The results indicate that PKA regulates cAMP levels in smooth muscle via stimulatory phosphorylation of PDE3A and PDE4 and inhibitory phosphorylation of adenylyl cyclase type V/VI. Concurrent generation of cGMP inhibits PDE3 activity and augments cAMP levels.  相似文献   

11.
Agonist activation of the small GTPase, RhoA, and its effector Rho kinase leads to down-regulation of smooth muscle (SM) myosin light chain phosphatase activity, an increase in myosin light chain (RLC(20)) phosphorylation and force. Cyclic nucleotides can reverse this process. We report a new mechanism of cAMP-mediated relaxation through Epac, a GTP exchange factor for the small GTPase Rap1 resulting in an increase in Rap1 activity and suppression of RhoA activity. An Epac-selective cAMP analog, 8-pCPT-2'-O-Me-cAMP ("007"), significantly reduced agonist-induced contractile force, RLC(20), and myosin light chain phosphatase phosphorylation in both intact and permeabilized vascular, gut, and airway SMs independently of PKA and PKG. The vasodilator PGI(2) analog, cicaprost, increased Rap1 activity and decreased RhoA activity in intact SMs. Forskolin, phosphodiesterase inhibitor isobutylmethylxanthine, and isoproterenol also significantly increased Rap1-GTP in rat aortic SM cells. The PKA inhibitor H89 was without effect on the 007-induced increase in Rap1-GTP. Lysophosphatidic acid-induced RhoA activity was reduced by treatment with 007 in WT but not Rap1B null fibroblasts, consistent with Epac signaling through Rap1B to down-regulate RhoA activity. Isoproterenol-induced increase in Rap1 activity was inhibited by silencing Epac1 in rat aortic SM cells. Evidence is presented that cooperative cAMP activation of PKA and Epac contribute to relaxation of SM. Our findings demonstrate a cAMP-mediated signaling mechanism whereby activation of Epac results in a PKA-independent, Rap1-dependent Ca(2+) desensitization of force in SM through down-regulation of RhoA activity. Cyclic AMP inhibition of RhoA is mediated through activation of both Epac and PKA.  相似文献   

12.
Type I cGMP-dependent protein kinase (PKG I) plays a major role in vascular homeostasis by mediating smooth muscle relaxation in response to nitric oxide, but little is known about the regulation of PKG I expression in smooth muscle cells. We found opposing effects of RhoA and Rac1 on cellular PKG I expression: (i) cell density-dependent changes in PKG I expression varied directly with Rac1 activity and inversely with RhoA activity; (ii) RhoA activation by calpeptin suppressed PKG I, whereas RhoA down-regulation by small interfering RNA increased PKG I expression; and (iii) PKG I promoter activity was suppressed in cells expressing active RhoA or Rho-kinase but was enhanced in cells expressing active Rac1 or a dominant negative RhoA. Sp1 consensus sequences in the PKG I promoter were required for Rho regulation and bound nuclear proteins in a cell density-dependent manner, including the Krüppel-like factor 4 (KLF4). KLF4 was identified as a major trans-acting factor at two proximal Sp1 sites; active RhoA suppressed KLF4 DNA binding and trans-activation potential on the PKG I promoter. Experiments with actin-binding agents suggested that RhoA could regulate KLF4 via its ability to induce actin polymerization. Regulation of PKG I expression by RhoA may explain decreased PKG I levels in vascular smooth muscle cells found in some models of hypertension and vascular injury.  相似文献   

13.
The singular effects and interplay of cAMP- and cGMP-dependent protein kinase (PKA and PKG) on Ca(2+) mobilization were examined in dispersed smooth muscle cells. In permeabilized muscle cells, exogenous cAMP and cGMP inhibited inositol 1,4,5-trisphosphate (IP(3))-induced Ca(2+) release and muscle contraction via PKA and PKG, respectively. A combination of cAMP and cGMP caused synergistic inhibition that was exclusively mediated by PKG and attenuated by PKA. In intact muscle cells, low concentrations (10 nM) of isoproterenol and sodium nitroprusside (SNP) inhibited agonist-induced, IP(3)-dependent Ca(2+) release and muscle contraction via PKA and PKG, respectively. A combination of isoproterenol and SNP increased PKA and PKG activities: the increase in PKA activity reflected inhibition of phosphodiesterase 3 activity by cGMP, whereas the increase in PKG activity reflected activation of cGMP-primed PKG by cAMP. Inhibition of Ca(2+) release and muscle contraction by the combination of isoproterenol and SNP was preferentially mediated by PKG. In light of studies showing that PKG phosphorylates the IP(3) receptor in intact and permeabilized muscle cells, whereas PKA phosphorylates the receptor in permeabilized cells only, the results imply that inhibition of IP(3)-induced Ca(2+) release is mediated exclusively by PKG. The effect of PKA on agonist-induced Ca(2+) release probably reflects inhibition of IP(3) formation.  相似文献   

14.
The tonic smooth muscles of lower esophageal sphincter (LES) and internal anal sphincter (IAS) are subject to modulation by the neurohumoral agents. We report that angiotensin (Ang) II-induced contraction of rat IAS and LES smooth muscle cells (SMC) was inhibited by Clostridium botulinum C3 exozyme, HA 1077 and Y 27632, suggesting a role for Rho kinase and a Rho-associated kinase (ROK). Ang II-induced contraction of the SMC was also attenuated by genistein, antibodies to the pp60(c-src), p(190) RhoGTPase-activating protein (p190 RhoGAP), carboxyl terminus of Galpha13, carboxyl terminus peptide, and ADP ribosylation factor (ARF) antibody. Ang II-induced increase in p(190) RhoGAP tyrosine phosphorylation was attenuated by genistein. Furthermore, Ang II-induced increase in smooth muscle tone and phosphorylation of myosin light chain (MLC; 20 kDa; MLC20-P) were attenuated by Y 27632 and genistein. The results suggest an important role for Galpha13 and pp60(c-src) in the intracellular events responsible for the activation of RhoA/ROK in Ang II-induced contraction of LES and IAS SMC.  相似文献   

15.
Recently, it has been hypothesized that myosin light chain (MLC) phosphatase is activated by cGMP-dependent protein kinase (PKG) via a leucine zipper-leucine zipper (LZ-LZ) interaction through the C-terminal LZ in the myosin-binding subunit (MBS) of MLC phosphatase and the N-terminal LZ of PKG (Surks, H. K., Mochizuki, N., Kasai, Y., Georgescu, S. P., Tang, K. M., Ito, M., Lincoln, T. M., and Mendelsohn, M. E. (1999) Science 286, 1583-1587). Alternative splicing of a 3'-exon produces a LZ+ or LZ- MBS, and the sensitivity to cGMP-mediated smooth muscle relaxation correlates with the relative expression of LZ+/LZ- MBS isoforms (Khatri, J. J., Joyce, K. M., Brozovich, F. V., and Fisher, S. A. (2001) J. Biol. Chem. 276, 37250 -37257). In the present study, we determined the effect of LZ+/LZ- MBS isoforms on cGMP-induced MLC20 dephosphorylation. Four avian smooth muscle MBS-recombinant adenoviruses were prepared and transfected into cultured embryonic chicken gizzard smooth muscle cells. The expressed exogenous MBS isoforms were shown to replace the endogenous isoform in the MLC phosphatase holoenzyme. The interaction of type I PKG (PKGI) with the MBS did not depend on the presence of cGMP or the MBS LZ. However, direct activation of PKGI by 8-bromo-cGMP produced a dose-dependent decrease in MLC20 phosphorylation (p<0.05) only in smooth muscle cells expressing a LZ+ MBS. These results suggest that the activation of MLC phosphatase by PKGI requires a LZ+ MBS, but the binding of PKGI to the MBS is not mediated by a LZ-LZ interaction. Thus, the relative expression of LZ+/LZ- MBS isoforms could explain differences in tissue sensitivity to NO-mediated vasodilatation.  相似文献   

16.
17.
Vascular smooth muscle cell contractile state is the primary determinant of blood vessel tone. Vascular smooth muscle cell contractility is directly related to the phosphorylation of myosin light chains (MLCs), which in turn is tightly regulated by the opposing activities of myosin light chain kinase (MLCK) and myosin phosphatase. Myosin phosphatase is the principal enzyme that dephosphorylates MLCs leading to relaxation. Myosin phosphatase is regulated by both vasoconstrictors that inhibit its activity to cause MLC phosphorylation and contraction, and vasodilators that activate its activity to cause MLC dephosphorylation and relaxation. The RhoA/ROCK pathway is activated by vasoconstrictors to inhibit myosin phosphatase activity. The mechanism by which RhoA and ROCK are localized to and interact with myosin light chain phosphatase (MLCP) is not well understood. We recently found a new member of the myosin phosphatase complex, myosin phosphatase-rho interacting protein, that directly binds to both RhoA and the myosin-binding subunit of myosin phosphatase in vitro, and targets myosin phosphatase to the actinomyosin contractile filament in smooth muscle cells. Because myosin phosphatase-rho interacting protein binds both RhoA and MLCP, we investigated whether myosin phosphatase-rho interacting protein was required for RhoA/ROCK-mediated myosin phosphatase regulation. Myosin phosphatase-rho interacting protein silencing prevented LPA-mediated myosin-binding subunit phosphorylation, and inhibition of myosin phosphatase activity. Myosin phosphatase-rho interacting protein did not regulate the activation of RhoA or ROCK in vascular smooth muscle cells. Silencing of M-RIP lead to loss of stress fiber-associated RhoA, suggesting that myosin phosphatase-rho interacting protein is a scaffold linking RhoA to regulate myosin phosphatase at the stress fiber.  相似文献   

18.
Nitric oxide and endogenous nitrovasodilators regulate smooth muscle tone by elevation of cGMP and activation of cyclic GMP-dependent protein kinase (PKG). The amplitude and duration of the cGMP signal in smooth muscle is regulated in large part by cGMP-specific cyclic nucleotide phosphodiesterase (PDE5). Previous in vitro data have suggested that both cAMP-dependent protein kinase and PKG can regulate the activity of PDE5. To test if this type of regulation is important in the intact cell, we have generated phospho-PDE5-specific antisera and have utilized isolated smooth muscle cells from mice having a disruption in the PKG I gene as well as cells from normal human smooth muscle. The data show that in human smooth muscle cells, activation of PKG by 8-Br-cGMP led to phosphorylation and activation of PDE5. In the same cells, 8-Br-cAMP had no significant effect on PDE5 phosphorylation. Treatment of wild-type mouse aortic smooth muscle cells with 8-Br-cGMP also induced the phosphorylation of PDE5, whereas no phosphorylation was seen in smooth muscle cells isolated from mice in which the gene for PKG I had been disrupted. As with the human cells, no phosphorylation was seen in the mouse cells in response to 8-Br-cAMP. These results strongly suggest that a major regulatory pathway for control of PDE5 phosphorylation and activity in intact smooth muscle is via PKG-dependent phosphorylation of PDE5. Finally, experiments with calyculin A and okadaic acid suggest that PP1 phosphatase, the catalytic subunit of myosin phosphatase, can regulate PDE5 dephosphorylation. Together, the data suggest that phosphorylation and activation of PDE5 by PKG I and its subsequent dephosphorylation by myosin phosphatase may be key steps in the regulation of relaxation/contraction cycles of smooth muscle.  相似文献   

19.
This study was undertaken to demonstrate the role of the RhoA/Rho kinase pathway in endothelin-1 (ET-1)-induced contraction of the rabbit basilar artery. Isometric tension and Western blot were used to examine ET-1-induced contraction and RhoA activation. The upstream effect on ET-1-induced RhoA activity was determined by using ET(A) and ET(B) receptor antagonists, protein kinase C (PKC), tyrosine kinase, and phosphatidylinositol-3 kinase inhibitors. The downstream effect of ET-1-induced contraction and RhoA activity was studied in the presence of the Rho kinase inhibitor Y-27632. The effect of Rho kinase inhibitor on ET-1-induced myosin light chain (MLC) phosphorylation was investigated by using urea-glycerol-PAGE immunoblotting. We found 1) ET-1 increased RhoA activity (membrane binding RhoA) in a concentration-dependent manner; 2) ET(A), but not ET(B), receptor antagonist abolished the effect of ET-1 on RhoA activation; 3) phosphodylinositol-3 kinase inhibitor, but not PKC and tyrosine kinase inhibitors, reduced ET-1-induced RhoA activation; 4) Rho kinase inhibitor Y-27632 (10 microM) inhibited ET-1-induced contraction; and 5) ET-1 increased the level of MLC phosphorylation. Rho kinase inhibitor Y-27632 reduced the effect of ET-1 on MLC phosphorylation. This study demonstrated that RhoA/Rho kinase activation is involved in ET-1-induced contraction in the rabbit basilar artery. Phosphodylinositol-3 kinase and MLC might be the upstream and downstream factors of RhoA activation.  相似文献   

20.
The roles of Rho kinase (ROCK) and cGMP-dependent protein kinase (PKG) in cGMP-mediated relaxation of fetal pulmonary veins exposed to chronic hypoxia (CH) were investigated. Fourth generation pulmonary veins were dissected from near-term fetuses ( approximately 140 days of gestation) delivered from ewes exposed to chronic high altitude hypoxia for approximately 110 days (CH) and from control ewes. After constriction with endothelin-1, 8-bromoguanosine 3',5'-cyclic monophosphate (8-Br-cGMP) caused a similar relaxation of both control and CH vessels. Rp-8-Br-PET-cGMPS (a PKG inhibitor) inhibited whereas Y-27632 (a ROCK inhibitor) augmented relaxation of control veins to 8-Br-cGMP. These effects were significantly diminished in CH veins. PKG protein expression and activity were greater whereas ROCK protein expression and activity were less in CH vessels compared with controls. Phosphorylation of threonine 696 (ROCK substrate) and serine 695 (PKG substrate) of the regulatory myosin phosphatase targeting subunit MYPT1 of myosin light chain (MLC) phosphatase was stimulated to a lesser extent in CH than in control veins by endothelin-1 (ROCK stimulant) and 8-Br-cGMP (PKG stimulant), respectively. The phosphorylation and dephosphorylation of MLC caused by endothelin-1 and 8-Br-cGMP, respectively, were less in CH veins than in controls. These results suggest that CH in utero upregulates PKG activity but attenuates PKG action in fetal pulmonary veins. These effects are offset by the diminished ROCK action on MYPT1 and MLC and thus lead to an unaltered response to cGMP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号