首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The gene (1,542 bp) encoding thermostable Ca2+-independent and raw starch hydrolyzing α-amylase of the extremely thermophilic bacterium Geobacillus thermoleovorans encodes for a protein of 50 kDa (Gt-amyII) with 488 amino acids. The enzyme is optimally active at pH 7.0 and 60 °C with a t 1/2 of 19.4 h at 60 and 4 h at 70 °C. Gt-amyII hydrolyses corn and tapioca raw starches efficiently and therefore finds application in starch saccharification at industrial sub-gelatinisation temperatures. The starch hydrolysis is facilitated following adsorption of the enzyme to starch at the C-terminal domain, as confirmed by the truncation analysis. The adsorption rate constant of Gt-amyII to raw corn starch is 37.6-fold greater than that for the C-terminus truncated enzyme (Gt-amyII-T). Langmuir–Hinshelwood kinetic analysis in terms of equilibrium parameter (K R) suggested that the adsorption of Gt-amyII to corn starch is more favourable than that of Gt-amyII-T. Thermodynamics of temperature inactivation indicated a decrease in thermostabilisation of Gt-amyII upon truncation of its C-terminus. The addition of raw corn starch increased t 1/2 of Gt-amyII, but it has no such effect on Gt-amyII-T. It can, therefore, be stated that Gt-amyII binds to raw corn starch via C-terminal region that contributes to its thermostability. Phylogenetic analysis confirmed that starch binding region of Gt-amyII is, in fact, the non-catalytic domain C, and not the typical SBD of CBM families. The role of domain C in raw starch binding throws light on the evolutionary path of the known SBDs.  相似文献   

2.
The present work targets the fabrication of an active, stable, reusable enzyme preparation using functionalized silica nanoparticles as an effective enzyme support for crude halophilic Bacillus sp. EMB9 protease. The immobilization efficiency under optimized conditions was 60 %. Characterization of the immobilized preparation revealed marked increase in pH and thermal stability. It retained 80 % of its original activity at 70 °C while t 1/2 at 50 °C showed a five-fold enhancement over that for the free protease. Kinetic constants K m and V max were indicative of a higher reaction velocity along with decreased affinity for substrate. The preparation could be efficiently reused up to 6 times and successfully hydrolysed whey proteins with high degree of hydrolysis. Immobilization of a crude halophilic protease on a nanobased scaffold makes the process cost effective and simple.  相似文献   

3.
We report here the effect of adding different types of carbohydrate-binding modules (CBM) to a single-module GH7 family cellobiohydrolase Cel7A from a thermophilic fungus Talaromyces emersonii (TeCel7A). Both bacterial and fungal CBMs derived from families 1, 2 and 3, all reported to bind to crystalline cellulose, were used. Chimeric cellobiohydrolases with an additional S–S bridge in the catalytic module of TeCel7A were also made. All the fusion proteins were secreted in active form and in good yields by Saccharomyces cerevisiae. The purified chimeric enzymes bound to cellulose clearly better than the catalytic module alone and demonstrated high thermal stability, having unfolding temperatures (T m) ranging from 72 °C to 77 °C. The highest activity enhancement on microcrystalline cellulose could be gained by a fusion with a bacterial CBM3 derived from Clostridium thermocellum cellulosomal-scaffolding protein CipA. The two CBM3 fusion enzymes tested were more active than the reference enzyme Trichoderma reesei Cel7A both at moderate (45 °C and 55 °C) and at high temperatures (60 °C and 65 °C), the hydrolysis yields being two- to three-fold better at 60 °C, and six- to seven-fold better at 65 °C. The best enzyme variant was also tested on a lignocellulosic feedstock hydrolysis, which demonstrated its potency in biomass hydrolysis even at 70 °C.  相似文献   

4.
Thirty-six proteolytic bacteria were isolated from the Jakhau coast, Kutch, India, amongst which isolate P15 identified as Bacillus tequilensis (JQ904626) was found to produce an extracellular solvent-- and detergent-tolerant protease (116.69?±?0.48 U/ml) and was selected for further investigation. Deoiled Jatropha seedcake (JSC) was found to be a suitable substrate for protease production under submerged condition. Upon optimization of process parameters following one-factor-at-a-time approach, an overall 6.4-fold (860.27?±?18.48 U/ml) increase in protease production was achieved. The maximum protease yield was obtained using a medium containing 2 % (w/v) deoiled JSC as substrate (pH of 8.0) upon 36 h of fermentation at 30 °C. The optimum temperature and pH for activity of B. tequilensis P15 protease was found to be 50 °C and 8.0, respectively. The enzyme exhibited a half-life of 190 min at 50 °C, which was enhanced to 270 min in presence of 5 mM Ca2+. The enzyme exhibited significant stability in almost all the solvents tested in the range of log P ow varying from 8.8 to ?0.76. The enzyme activity was strongly inhibited by PMSF at 5 mM concentration, whereas the presence of EDTA (5 mM) and pCMB (5 mM) enhanced enzyme activity by 20.9 and 13.7 %, respectively. The enzyme was also found to be stable in the presence of surfactants, commercial detergents and bleach-oxidant (H2O2). This protease was demonstrated to be effective in removal of blood stains from fabrics, dehairing of hide, and stripping off the gelatin from used photographic films.  相似文献   

5.
The broad mite, Polyphagotarsonemus latus (Banks), is one of the major pests causing severe economic damage in Rhododendron simsii Planch hybrid production in Belgium. In order to optimize biological control programs and to parameterize warning programs, we studied the effect of environmental temperature on the development of P. latus on R. simsii leaves. In combination with a photoperiod of 16:8 h (L:D) and a relative humidity of 80 ± 5 %, six constant temperatures (15, 17, 20, 25, 30 and 33 ± 1 °C), were studied. Total developmental times of 13.3, 10.5, 6.6, 4.2, 3.5 and 4.0 days were measured, respective to each of the aforementioned temperatures. Development of females took significantly longer than that of males at 15, 17, 20 and 30 °C. Survival rates observed between 17 and 30 °C varied between 43.5 and 96.9 %. Lower survival rates were found at 15 and 33 °C, i.e. 31.8 and 23.6 %, respectively. The lower, optimal and upper developmental threshold (t min , t opt and t max , respectively) and thermal constant (K) of the pest were estimated for each life stage by a linear and two non-linear models. Based on measurements of total development of P. latus thermal thresholds of 10.0, 30.1 and 36.0 °C were calculated for t min , t opt and t max , respectively. The number of degree-days needed to complete immature development when feeding on R. simsii was 66.7.  相似文献   

6.
Lipase from Aspergillus niger was obtained from the solid-state fermentation of a novel agroindustrial residue, pumpkin seed flour. The partially purified enzyme was encapsulated in a sol–gel matrix, resulting in an immobilization yield of 71.4 %. The optimum pH levels of the free and encapsulated enzymes were 4.0 and 3.0, respectively. The encapsulated enzyme showed greater thermal stability at temperatures of 45 and 60 °C than the free enzyme. The positive influence of the encapsulation process was observed on the thermal stability of the enzyme, since a longer half-life t 1/2 and lower deactivation constant were obtained with the encapsulated lipase when compared with the free lipase. Kinetic parameters were found to follow the Michaelis–Menten equation. The K m values indicated that the encapsulation process reduced enzyme–substrate affinity and the V max was about 31.3 % lower than that obtained with the free lipase. The operational stability was investigated, showing 50 % relative activity up to six cycles of reuse at pH 3.0 at 37 °C. Nevertheless, the production of lipase from agroindustrial residue associated with an efficient immobilization method, which promotes good catalytic properties of the enzyme, makes the process economically viable for future industrial applications.  相似文献   

7.
A serine alkaline protease (EC.3.4.21) was isolated, purified and characterized from culture filtrate of the thermophilic fungus Thermomyces lanuginosus Tsiklinsky. Fructose (1.5 %) and gelatin (0.5 %) proved to be the best carbon and nitrogen sources, giving a maximum enzyme yield of 9.2 U/mL. Dates waste was utilized as a sole organic source to improve enzyme productivity, and the yield was calculated to be 11.56 U/mL. This yield was expressed also as 231.2 U/g of assimilated waste. The alkaline protease produced was precipitated by iso-propanol and further purified by gel filtration through Sephadex G-100 and ion exchange column chromatography on diethyl amino ethyl (DEAE)-cellulose with a yield of 30.12 % and 13.87-fold purification. The enzyme acted optimally at pH 9 and 60 °C and had good stability at alkaline pH and high temperatures. The enzyme possessed a high degree of thermostability and retained full activity even at the end of 1 h of incubation at 60 °C. Michaelis–Menten constant (K m), maximal reaction velocity (V max) and turnover number (K cat) of the purified enzyme on gelatin as a substrate were calculated to be 4.0 mg/mL, 18.5 U/mL and 1.8 s?1, respectively. The best enzyme activators were K+, Ca2+ and Mn2, respectively, while phenylmethylsulfonyl fluoride (PMSF) was the strongest inhibitory agent, thus suggesting that the enzyme is a serine type protease. The enzyme is a glycoprotein with molecular mass of 33 kDa as determined by SDS-PAGE. It retained full activity after 15 min incubation at 60 °C in the presence of the detergent Ariel, thus indicating its suitability for application in the detergent industry.  相似文献   

8.
The supernatant above hatched sea urchin (Strongylocentrotus purpuratus) blastulae contains crude hatching protease, which is heterogeneous in molecular weight, solubility, charge, and density. It requires urea treatment (6 m, 22 °C, 6 h) to dissociate from the enzyme the heterogeneous population of fragments it has generated in digesting its substrate, the fertilization envelope. It can then be purified 340-fold by diethylaminoethyl-cellulose, ammonium sulfate, and Sephadex G-100. The resulting preparation, homogeneous by the criteria of gel exclusion chromatography, sodium dodecyl sulfate gel electrophoresis, and thermal inactivation, has the following properties: specific activity = 1.44 U mg?1 (1.44 μmol min?1 mg?1); kcat = 0.72 s-1; molecular weight = 29,000; energy of activation = 12.9 kcal mol?1 on dimethylated casein;Km = 0.93 mgml?1 dimethylated casein. The pure enzyme is optimally active at pH 7 to 9, 0.5 m NaCl, 10 mm Ca2+, and 42 °C. Purification renders the enzyme less stable to freezing and thawing and increases the rate of its thermal inactivation at 37 °C by 100-fold.  相似文献   

9.
A strain of Brevibacillus formosus, capable of producing a high level of chitinase, was isolated and characterized for the first time from the Great Indian Desert soils. The production of extracellularly secreted chitinase was analyzed for its biocontrol potential and optimized by varying media pH, temperature, incubation period, substrate concentrations, carbon and nitrogen sources, etc. A twofold increase in chitinase production (798 IU/mL) was achieved in optimized media containing (g l?1) chitin 2.0, malt extract 1.5, glycerol 1.0, ammonium nitrate 0.3 %, T-20 (0.1 %) and media pH 7.0 at 37 °C. The produced enzyme was purified using a three-step purification procedure involving ultra-filtration, ammonium sulphate precipitation and adsorption chromatography. The estimated molecular weight of the purified enzyme was 37.6 kDa. The enzyme was found thermostable at higher temperatures and showed a t ½ of more than 5 h at 100 °C. Our results show that the chitinase produced by B. formosus BISR-1 is thermostable at higher temperatures.  相似文献   

10.
The rate of cyclic AMP formation by rabbit heart membrane particles decreased at assay temperatures greater than 30 °C. Adenylate cyclase [ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1] activity (assayed at 24 °C) decreased exponentially with time of preincubation at 30 or 37 °C, providing evidence for the instability of this enzyme. The half-life, t1/2, of the enzyme at 37 °C was 9.9 min in the absence and 4.4 min in the presence of MgCl2. The activity was most labile in the presence of 50 m m Mg2+ and 1 m m ATP, having t1/2 = 1.3min. Prior incubation of membranes with the GTP analog, guanyl-5′-yl imidodiphosphate [Gpp(NH)p], 0.1 m m, for 30 min at 37 °C produced maximal activation of adenylate cyclase; the rate of activation was temperature dependent and was increased in the presence of isoproterenol. The Gpp(NH)p-activated enzyme had increased thermal stability, t1/2 = 170 min, and was also markedly more stable in the presence of Mg-ATP, t1/2 = 72min, than nonactivated enzyme. Preactivation with F? (30 min at 24 °C) also stabilized the activity; t1/2 > 70 min in the absence or presence of Mg-ATP. The Mg2+ concentration required for maximal activity was reduced from approximately 60 m m for nonactivated enzyme to 10 m m for the Gpp(NH)p- and F?activated enzyme.  相似文献   

11.
The gene encoding an esterase (PsyEst) of Psychrobacter sp. Ant300, a psychrophilic bacterium isolated from Antarctic soil, was cloned, sequenced, and expressed in Escherichia coli. PsyEst, which is a member of hormone-sensitive lipase (HSL) group of the lipase/esterase family, is a cold-active, themolabile enzyme with high catalytic activity at low temperatures (5–25 °C), low activation energy (e.g., 4.6 kcal/mol for hydrolysis of p-nitrophenyl butyrate), and a t1/2 value of 16 min for thermal inactivation during incubation at 40 °C and pH 7.9. A three-dimensional structural model of PsyEst predicted that Gly244 was located in the loop near the active site of PsyEst and that substitution of this amino-acid residue by proline should potentially rigidify the active-site environment of the enzyme. Thus, we introduced the Gly244→Pro substitution into the enzyme. Stability studies showed that the t1/2 value for thermal inactivation of the mutant during incubation at 40 °C and pH 7.9 was 11.6 h, which was significantly greater than that of the wild-type enzyme. The kcat/Km value of the mutant was lower for all substrates examined than the value of the wild type. Moreover, this amino-acid substitution caused a shift of the acyl-chain length specificity of the enzyme toward higher preference for short-chain fatty acid esters. All of these observations could be explained in terms of a decrease in active-site flexibility brought about by the mutation and were consistent with the hypothesis that cold activity and thermolability arise from local flexibility around the active site of the enzyme.  相似文献   

12.
Directed evolution of β-xylosidase XylBH43 using a single round of gene shuffling identified three mutations, R45K, M69P, and L186Y, that affect thermal stability parameter K t 0.5 by ?1.8 ± 0.1, 1.7 ± 0.3, and 3.2 ± 0.4 °C, respectively. In addition, a cluster of four mutations near hairpin loop-D83 improved K t 0.5 by ~3 °C; none of the individual amino acid changes measurably affect K t 0.5 . Saturation mutagenesis of L186 identified the variant L186K as having the most improved K t 0.5 value, by 8.1 ± 0.3 °C. The L186Y mutation was found to be additive, resulting in K t 0.5 increasing by up to 8.8 ± 0.3 °C when several beneficial mutations were combined. While k cat of xylobiose and 4-nitrophenyl-β-d-xylopyranoside were found to be depressed from 8 to 83 % in the thermally improved mutants, K m, K ss (substrate inhibition), and K i (product inhibition) values generally increased, resulting in lessened substrate and xylose inhibition.  相似文献   

13.
A codon-optimized 2-deoxyribose-5-phosphate aldolase (DERA) gene was newly synthesized and expressed in Escherichia coli to investigate its biochemical properties and applications in synthesis of statin intermediates. The expressed DERA was purified and characterized using 2-deoxyribose-5-phosphate as the substrate. The specific activity of recombinant DERA was 1.8 U/mg. The optimum pH and temperature for DERA activity were pH 7.0 and 35 °C, respectively. The recombinant DERA was stable at pH 4.0–7.0 and at temperatures below 50 °C. The enzyme activity was inhibited by 1 mM of Ni2+, Ba2+ and Fe2+. The apparent K m and V max values of purified enzyme for 2-deoxyribose-5-phosphate were 0.038 mM and 2.9 μmol min?1 mg?1, for 2-deoxyribose were 0.033 mM and 2.59 μmol min?1 mg?1, respectively, which revealed that the enzyme had similar catalytic efficiency towards phosphorylated and non-phosphorylated substrates. To synthesize statin intermediates, the bioconversion process for production of (3R, 5S)-6-chloro-2,4,6-trideoxyhexose from chloroacetaldehyde and acetaldehyde by the recombinant DERA was developed and a conversion of 94.4 % was achieved. This recombinant DERA could be a potential candidate for application in production of (3R, 5S)-6-chloro-2,4,6-trideoxyhexose.  相似文献   

14.
The effect of five constant temperatures of 21, 24, 27, 30 and 33 °C on adult life span, reproduction, oviposition behavior and larval developmental time of a bitter gourd inhabited coleopteran insect Epilachna dodecastigma (Wied.) (Coccinellidae) was determined in laboratory conditions under 70 ± 5 % relative humidity and a photoperiod of 12 L : 12 D. Larval developmental time of E. dodecastigma decreased as temperature increased from 21 to 33 °C. Life table data revealed that overall mortality was lowest at 27 °C and highest at 21 °C. Females lived longer than males at all temperatures; but longevity decreased with increase in temperature. Pre-oviposition period decreased significantly with increase in temperature up to 27 °C and thereafter increased at a slower rate; whereas oviposition period decreased significantly with increase in temperature. Fecundity and egg viability increased significantly with an increase in temperature up to 27 °C and thereafter decreased at a slower rate. The intrinsic rate of increase (r m ) was 0.1703, 0.1984, 0.2235, 0.2227 and 0.2181 day?1 at 21, 24, 27, 30 and 33 °C, respectively. The net reproductive rate and finite rate of increase was highest at 27 °C (R o  = 112.05; λ = 1.4233) and lowest at 21 °C (R o  = 51.23; λ = 1.2581).  相似文献   

15.
Alkaline protease from alkaliphilic Bacillus sp. NPST-AK15 was immobilized onto functionalized and non-functionalized rattle-type magnetic core@mesoporous shell silica (RT-MCMSS) nanoparticles by physical adsorption and covalent attachment. However, the covalent attachment approach was superior for NPST-AK15 protease immobilization onto the activated RT-MCMSS-NH2 nanoparticles and was used for further studies. In comparison to free protease, the immobilized enzyme exhibited a shift in the optimal temperature and pH from 60 to 65 °C and pH 10.5–11.0, respectively. While free protease was completely inactivated after treatment for 1 h at 60 °C, the immobilized enzyme maintained 66.5 % of its initial activity at similar conditions. The immobilized protease showed higher k cat and K m , than the soluble enzyme by about 1.3-, and 1.2-fold, respectively. In addition, the results revealed significant improvement of NPST-AK15 protease stability in variety of organic solvents, surfactants, and commercial laundry detergents, upon immobilization onto activated RT-MCMSS-NH2 nanoparticles. Importantly, the immobilized protease maintained significant catalytic efficiency for ten consecutive reaction cycles, and was separated easily from the reaction mixture using an external magnetic field. To the best of our knowledge this is the first report about protease immobilization onto rattle-type magnetic core@mesoporous shell silica nanoparticles that also defied activity-stability tradeoff. The results clearly suggest that the developed immobilized enzyme system is a promising nanobiocatalyst for various bioprocess applications requiring a protease.  相似文献   

16.
A keratin-degrading bacterium of Bacillus licheniformis BBE11-1 was isolated and its ker gene encoding keratinase with native signal peptide was cloned and expressed in Bacillus subtilis WB600 under the strong P HpaII promoter of the pMA0911 vector. In the 3-L fermenter, the recombinant keratinase was secreted with 323 units/mL when non-induced after 24 h at 37 °C. And then, keratinase was concentrated and purified by hydrophobic interaction chromatography using HiTrap Phenyl-Sepharose Fast Flow. The recombinant keratinase had an optimal temperature and the pH at 40 °C and 10.5, respectively, and was stable at 10–50 °C and pH 7–11.5. We found this enzyme can retained 80 % activity after treated 5 h with 1 M H2O2, it was activated by Mg2+, Co2+ and could degraded broad substrates such as degraded feather, bovine serum albumin, casein, gelatin, the keratinase was considered to be a serine protease. Coordinate with Savinase, the keratinase could efficient prevent shrinkage and eliminate fibres of wool, which showed its potential in textile industries and detergent industries.  相似文献   

17.
A new serine protease with fibrinolytic activity from a marine invertebrate, Urechis unicinctus, was purified to electrophoretic homogeneity using column chromatography. SDS-PAGE of the purified enzyme showed a single polypeptide chain with MW ~20.8 kDa. Its N-terminal sequence was IIGGSQAAITSY. The purified enzyme, UFEIII, was stable at pH 6–10 below 60 °C with an optimum pH of 8.5 at approx. 55 °C. The enzyme activity was significantly inhibited by PMSF and SBTI suggesting that it was a serine protease. In fibrin plate assays, UFEIII was contained 1.46 × 10U (urokinase units) mg?1 total fibrinolytic activity, which consisted of 692 U mg?1 direct fibrinolytic activity and 769 U mg?1 plasminogen-activator activity. Km and Vmax values for azocasein were 1 mg ml?1 and 43 μg min?1 ml?1, respectively.  相似文献   

18.
The lower and upper thermal activity thresholds of the predatory mite Phytoseiulus macropilis Banks (Acari: Phytoseiidae) were compared with those of its prey Tetranychus urticae Koch (Acari: Tetranychidae) and one of the alternative commercially available control agents for T. urticae, Phytoseiulus persimilis Athias-Henriot. Adult female P. macropilis retained ambulatory function (CTmin) and movement of appendages (chill coma) at significantly lower temperatures (8.2 and 0.4 °C, respectively) than that of P. persimilis (11.1 and 3.3 °C) and T. urticae (10.6 and 10.3 °C). As the temperature was raised, P. macropilis ceased walking (CTmax) and entered heat coma (42.7 and 43.6 °C), beyond the upper locomotory limits of P. persimilis (40.0 and 41.1 °C), but before T. urticae (47.3 and 48.7 °C). Walking speeds were investigated and P. persimilis was found to have significantly faster ambulation than P. macropilis and T. urticae across a range of temperatures. The lower thermal activity threshold data indicate that P. macropilis will make an effective biological control agent in temperate climates.  相似文献   

19.
Temperature influences the geographic range, physiology, and behavior of many ectothermic species, including the invasive lionfish Pterois sp. Thermal parameters were experimentally determined for wild-caught lionfish at different acclimation temperatures (13, 20, 25 and 32 °C). Preferences and avoidance were evaluated using a videographic shuttlebox system, while critical thermal methodology evaluated tolerance. The lionfish thermal niche was compared experimentally to two co-occurring reef fishes (graysby Cephalopholis cruentata and schoolmaster Lutjanus apodus) also acclimated to 25 °C. The physiologically optimal temperature for lionfish is likely 28.7 ± 1 °C. Lionfish behavioral thermoregulation was generally linked to acclimation history; tolerance and avoidance increased significantly at higher acclimation temperatures, but final preference did not. The tolerance polygon of lionfish shows a strong correlation between thermal limits and acclimation temperature, with the highest CTmax at 39.5 °C and the lowest CTmin at 9.5 °C. The tolerance range of invasive lionfish (24.61 °C) is narrower than those of native graysby (25.25 °C) and schoolmaster (26.87 °C), mostly because of lower thermal maxima in the former. Results show that lionfish display “acquired” thermal tolerance at higher and lower acclimation temperatures, but are no more eurythermal than other tropical fishes. Collectively, these results suggest that while lionfish range expansion in the western Atlantic is likely over the next century from rising winter sea temperatures due to climate change, the magnitude of poleward radiation of this invasive species is limited and will likely be equivalent to native tropical and subtropical fishes with similar thermal minima.  相似文献   

20.
The first step of starch hydrolysis, i.e. liquefaction has been studied in this work. Two commercial α-amylases from Bacilllus licheniformis, known as Termamyl and Liquozyme have been used for this purpose. Using starch as the substrate, kinetics of both enzymes has been determined at optimal pH and temperature (pH 7, T = 80 °C) and at 65 °C and pH 5.5. Michaelis–Menten model with uncompetitive product inhibition was used to describe enzyme kinetics. Mathematical models were developed and validated in the repetitive batch and fed-batch reactor. Enzyme inactivation was described by the two-step inactivation model. All experiments were performed with and without calcium ions. The activities of both tested amylases are approximately one hundred times higher at 80 °C than at 65 °C. Lower inactivation rates of enzymes were noticed in the experiments performed at 65 °C without the addition of calcium than in the experiments at 80 °C. Calcium ions in the reaction medium significantly enhance amylase stability at 80 °C and pH 7. At other process conditions (65 °C and pH 5.5) a weaker calcium stabilizing effect was detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号