首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
I have recently reported the isolation and characterization of sarcoplasmic reticulum from normal and dystrophic mice. These sarcoplasmic reticulum fractions were similar in calcium pump function, calcium release properties, and lipid composition. In this report, I describe the isolation of mouse muscle transverse tubule membranes using a calcium phosphate-loading technique. When the relative purity of normal and dystrophic preparations was considered, transverse tubule from normal and dystrophic mice were similar in calcium-insensitive ATPase activity, cholesterol content, and membrane microviscosity (as estimated by fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene); transverse tubule yield from dystrophic muscle, however, was twice that from normal muscle, while sarcoplasmic reticulum yield from these same dystrophic muscles was only 60% that from normal muscle. This result may reflect a difference in the relative quantities of these membranes in situ.  相似文献   

2.
In the degenerative disease Duchenne muscular dystrophy, inflammatory cells enter muscles in response to repetitive muscle damage. Immune factors are required for muscle regeneration, but chronic inflammation creates a profibrotic milieu that exacerbates disease progression. Osteopontin (OPN) is an immunomodulator highly expressed in dystrophic muscles. Ablation of OPN correlates with reduced fibrosis and improved muscle strength as well as reduced natural killer T (NKT) cell counts. Here, we demonstrate that the improved dystrophic phenotype observed with OPN ablation does not result from reductions in NKT cells. OPN ablation skews macrophage polarization toward a pro-regenerative phenotype by reducing M1 and M2a and increasing M2c subsets. These changes are associated with increased expression of pro-regenerative factors insulin-like growth factor 1, leukemia inhibitory factor, and urokinase-type plasminogen activator. Furthermore, altered macrophage polarization correlated with increases in muscle weight and muscle fiber diameter, resulting in long-term improvements in muscle strength and function in mdx mice. These findings suggest that OPN ablation promotes muscle repair via macrophage secretion of pro-myogenic growth factors.  相似文献   

3.
Duchenne muscular dystrophy (DMD) is the most common inherited neuromuscular disease and is characterized by absence of the cytoskeletal protein dystrophin, muscle wasting, and fibrosis. We previously demonstrated that systemic infusion or oral administration of angiotensin-(1-7) (Ang-(1-7)), a peptide with opposing effects to angiotensin II, normalized skeletal muscle architecture, decreased local fibrosis, and improved muscle function in mdx mice, a dystrophic model for DMD. In this study, we investigated the presence, activity, and localization of ACE2, the enzyme responsible for Ang-(1-7) production, in wild type (wt) and mdx skeletal muscle and in a model of induced chronic damage in wt mice. All dystrophic muscles studied showed higher ACE2 activity than wt muscle. Immunolocalization studies indicated that ACE2 was localized mainly at the sarcolemma and, to a lesser extent, associated with interstitial cells. Similar results were observed in the model of chronic damage in the tibialis anterior (TA) muscle. Furthermore, we evaluated the effect of ACE2 overexpression in mdx TA muscle using an adenovirus containing human ACE2 sequence and showed that expression of ACE2 reduced the fibrosis associated with TA dystrophic muscles. Moreover, we observed fewer inflammatory cells infiltrating the mdx muscle. Finally, mdx gastrocnemius muscles from mice infused with Ang-(1-7), which decreases fibrosis, contain less ACE2 associated with the muscle. This is the first evidence supporting ACE2 as an important therapeutic target to improve the dystrophic skeletal muscle phenotype.  相似文献   

4.
Phospholipid incorporation of 32P by primary myotube cultures and the tissue activity of sarcolemmal Na+/K(+)-transporting ATPase were studied to determine whether the absence of dystrophin from dystrophic (mdx) muscle would affect membrane lipid synthesis and membrane function. The incorporation of 32P by phospholipid as a ratio with total protein was greater in cultured dystrophic cells compared with control cells. The mdx cells also incorporated more 32P than control cells into phosphatidylethanolamine, which is thought to increase prior to myoblast fusion, and less into phosphatidylserine, phosphatidylinositol, and lysophosphatidylcholine. There was no difference in total protein content or [3H]leucine or 32P incorporation into the aqueous fraction of dystrophic and control cells, although dystrophic cells incorporated less [35S]methionine into protein than controls. Isolated sarcolemma from mdx skeletal muscle tissue demonstrated a consistently greater specific activity of ouabain-sensitive Na+/K(+)-transporting ATPase than sarcolemmal preparations from control skeletal muscle. These observations suggest that cytoskeletal changes such as dystrophin deficiency may alter the differentiation of membrane composition and function.  相似文献   

5.
6.
A nitric oxide synthase transgene ameliorates muscular dystrophy in mdx mice   总被引:23,自引:0,他引:23  
Dystrophin-deficient muscles experience large reductions in expression of nitric oxide synthase (NOS), which suggests that NO deficiency may influence the dystrophic pathology. Because NO can function as an antiinflammatory and cytoprotective molecule, we propose that the loss of NOS from dystrophic muscle exacerbates muscle inflammation and fiber damage by inflammatory cells. Analysis of transgenic mdx mice that were null mutants for dystrophin, but expressed normal levels of NO in muscle, showed that the normalization of NO production caused large reductions in macrophage concentrations in the mdx muscle. Expression of the NOS transgene in mdx muscle also prevented the majority of muscle membrane injury that is detectable in vivo, and resulted in large decreases in serum creatine kinase concentrations. Furthermore, our data show that mdx muscle macrophages are cytolytic at concentrations that occur in dystrophic, NOS-deficient muscle, but are not cytolytic at concentrations that occur in dystrophic mice that express the NOS transgene in muscle. Finally, our data show that antibody depletions of macrophages from mdx mice cause significant reductions in muscle membrane injury. Together, these findings indicate that macrophages promote injury of dystrophin-deficient muscle, and the loss of normal levels of NO production by dystrophic muscle exacerbates inflammation and membrane injury in muscular dystrophy.  相似文献   

7.
The pectoralis muscles of dystrophic chickens (line 413) were hypertrophic on the basis of fresh weight and fat-free dry weight. They also had greater DNA content and greater glucose-6-phosphate dehydrogenase (G6PD) and 6-phosphogluconate dehydrogenase (6PGD) activities. Of the parameters measured, the largest differences between pectoralis muscles from dystrophic and normal (line 412) chickens were for DNA content and G6PD activity. These parameters were 4.3- and 6.7-fold, respectively, the values for control pectoralis at 5 wk of age. The average number of nuclei per unit length of isolated muscle fiber was also greater (approximately 3-fold) for the dystrophic pectoralis. Body weight and pectoralis fresh weight, fat-free dry weight, DNA content, G6PD activity and 6PGD activity were reduced significantly in propylthiouracil (PTU)-treated normal and dystrophic chickens. Moreover, the effects of PTU were more pronounced in the dystrophic strain. Thyroid deprivation significantly improved the righting ability of the dystrophic chickens, in addition to its influence on muscle hypertrophy and body growth. Thyroxine (T4) replacement reversed the PTU effects in both strains. Of all the variables measured, total G6PD activity was the most affected by PTU treatment of dystrophic chickens and was only 16% of the control dystrophic value.In addition to the effects of thyroid deprivation on the expression of avian muscular dystrophy, we observed significant differences in thyroid-related variables in the two strains. The average thyroid weight at 4 wk and serum triiodothyronine level at 5 wk for dystrophic chickens were 65 and 76%, respectively, of the normal values. The results that we report here indicate that altered thyroid function affects the expression of avian muscular dystrophy.  相似文献   

8.
Duchenne muscular dystrophy (DMD) is an X-linked lethal muscle disorder characterized by primary muscle degeneration. Therapeutic strategies for DMD have been extensively explored, and some are in the stage of human clinical trials. Along with the development of new therapies, sensitive outcome measures are needed to monitor the effects of new treatments. Therefore, we investigated outcome measures such as biomarkers and motor function evaluation in a dystrophic model of beagle dogs, canine X-linked muscular dystrophy in Japan (CXMDJ). Osteopontin (OPN), a myogenic inflammatory cytokine, was explored as a potential biomarker in dystrophic dogs over the disease course. The serum OPN levels of CXMDJ dystrophic dogs were elevated, even in the early disease phase, and this could be related to the presence of regenerating muscle fibers; as such, OPN would be a promising biomarker for muscle regeneration. Next, accelerometry, which is an efficient method to quantify performance in validated tasks, was used to evaluate motor function longitudinally in dystrophic dogs. We measured three-axis acceleration and angular velocity with wireless hybrid sensors during gait evaluations. Multiple parameters of acceleration and angular velocity showed notedly lower values in dystrophic dogs compared with wild-type dogs, even at the onset of muscle weakness. These parameters accordingly decreased with exacerbation of clinical manifestations along with the disease course. Multiple parameters also indicated gait abnormalities in dystrophic dogs, such as a waddling gait. These outcome measures could be applicable in clinical trials of patients with DMD or other muscle disorders.  相似文献   

9.
Multinucleated myotubes, grown in vitro from satellite cells of dystrophic mice (C57BL/6J/dydy) exhibit a reduced sensitivity to ACh. This reduction correlates with a reduced density of 125I-alpha-bungarotoxin (125I-BTX) binding sites on the surface of dystrophic myotubes. Denervated adult muscle fibers from dystrophic mice respond to Ach similarly to denervated normal muscle fibers. Furthermore, cultured dystrophic myotubes, treated with a brain extract which induces AChR clusterization, still show an impaired response to ACh and reduced 125I-BTX binding. Thus AChR function appears altered in dystrophic muscle cells in culture while it appears normal in dystrophic adult muscle, regardless of whether the receptors are dispersed on the membrane or clustered at the junctional site. Metabolic studies on the reduced AChR level in dystrophic myotubes revealed a dramatically reduced half-life (2 vs 10 hr) while the rate of synthesis was unchanged. An increased rate of internalization of AChR was observed in dystrophic myotubes with a corresponding relative increase of the "hidden AChR pool," which could be partially reduced by agents which disrupt the cytoskeleton. No structural alterations could be detected on the AChR molecule as its sedimentation coefficient and subunit composition appeared identical between normal and dystrophic myotubes. Thus the increased turnover of AChR in dystrophic myotubes either reflects subtle alterations of the molecule or a more generalized increase of endocytosis in this form of myopathy.  相似文献   

10.
Interactins between skeletal muscle protein and amino acid metabolism were investigated using C57BL and 129ReJ mice with hereditary muscular dystrophy. On incubation, hind limb muscle preparations from dystrophic mice released large quantities of amino acids, particularly alanine and glutamine which were increased 70% and 40% compared to muscles from carrier or control mice. The increased alanine release did not result from altered alanine oxidation to CO2 or reincorporation into protein. Alanine and glutamine formation from added amino acids were equal with dystrophic and control muscles. Incorporation in vitro of leucine, alanine, and glutamate into proteins of dystrophic muscle was 3- to 7-fold greater than control muscle, and the incorporation in vivo of [3H]- or [14C]arginine into muscle proteins was greater in extent and earlier in time with dystrophic as compared to control muscle. Proteins were also labeled in vivo using [guanido-14C]arginine. On incubation of these muscles in vitro, a 100% greater loss of label from protein was observed with dystrophic as compared to control preparations, and the appearance of label in the media was correspondingly increased. Sodium dodecyl sulfate-gel electrophoresis of dystrophic skeletal muscle showed numerous protein bands to be reduced in density, but autoradiographic studies demonstrated that these same bands were more highly labeled in vitro by [35S]methionine in dystrophic than in control muscle. Although insulin stimulation of glucose uptake was markedly blunted in dystrophic muscle, insulin inhibited alanine and glutamine release equally from both control and dystrophic muscle. These data indicate that alanine and glutamine formation and release are increased in hereditary mouse muscular dystrophy. An accelerated degradation and an increased resynthesis of many muscle proteins were also observed in dystrophic compared to control animals. This increased proteolysis may account for the increased alanine and glutamine formation in dystrophic muscle.  相似文献   

11.
Improving stem cell therapy is a major goal for the treatment of muscle diseases, where physiological muscle regeneration is progressively exhausted. Vessel-associated stem cells, such as mesoangioblasts (MABs), appear to be the most promising cell type for the cell therapy for muscular dystrophies and have been shown to significantly contribute to restoration of muscle structure and function in different muscular dystrophy models. Here, we report that melanoma antigen-encoding gene (MAGE) protein necdin enhances muscle differentiation and regeneration by MABs. When necdin is constitutively overexpressed, it accelerates their differentiation and fusion in vitro and it increases their efficacy in reconstituting regenerating myofibres in the α-sarcoglycan dystrophic mouse. Moreover, necdin enhances survival when MABs are exposed to cytotoxic stimuli that mimic the inflammatory dystrophic environment. Taken together, these data demonstrate that overexpression of necdin may be a crucial tool to boost therapeutic applications of MABs in dystrophic muscle.  相似文献   

12.
The adeno-associated virus vector is a good tool for gene transfer into skeletal muscle, but the length of a gene that can be incorporated is limited. To develop a gene therapy for Duchenne muscular dystrophy, we generated a series of rod-truncated micro-dystrophin cDNAs: M3 (one rod repeat, 3.9 kb), AX11 (three rod repeats, 4.4 kb), and CS1 (four rod repeats, 4.9 kb). These micro-dystrophins, driven by a CAG promoter, were used to produce transgenic (Tg) mdx mice and all three micro-dystrophins were shown to localize at the sarcolemma together with the expression of dystrophin-associated proteins. Among them, CS1 greatly improved dystrophic phenotypes of mdx mice and contractile force of the diaphragm in particular was restored to the level of normal C57BL/10 mice. AX11 modestly ameliorated the dystrophic pathology, but, importantly, M3-Tg mdx mice still showed severe dystrophic phenotypes. These data suggest that the rod structure, and its length in particular, is crucial for the function of micro-dystrophin.  相似文献   

13.
Soluble cholinesterase of muscle from dystrophic and normal mice   总被引:1,自引:0,他引:1  
S C Sung 《Life sciences》1978,23(1):69-73
The percentage of cholinesterase extractable by isotonic sucrose from dystrophic mouse muscle was greater than that found in normal muscle. Of the total cholinesterase found in normal and dystrophic muscle about 60% was specific AChE and 40% was non-specific cholinesterase. The extract from dystrophic muscle showed, on sucrose sedimentation, one major peak of AChE activity with a sedimentation constant of approximately 4.3 S. This was much higher than that from normal muscle.  相似文献   

14.
We showed previously that propylthiouracil (PTU), a thyroid inhibitor, could alleviate several major signs of hereditary muscular dystrophy in chickens. The goals of the present investigation were to: (1) determine whether a nearly athyroid condition (achieved within two days after hatching by surgical thyroidectomy plus PTU) during an 11-day period beneficially affects the dystrophic condition when followed by triiodothyronine (T3) replacement to 33 days of age; (2) determine the beneficial effects on the expression of avian dystrophy when the thyroidectomized-PTU-treated chickens received a wide range of moderate to low T3 replacement doses beginning by two days after thyroidectomy; and (3) examine the thyroid hormone receptor system in dystrophic muscle for a possible abnormality. Thyroid deprivation increased muscle function (righting ability) and reduced plasma creatine kinase activity in dystrophic chickens. The major thyroid-related abnormality in dystrophic pectoralis muscles was an increased maximum binding capacity of solubilized nuclear T3 receptors.  相似文献   

15.
We have isolated sarcoplasmic reticulum from normal and dystrophic chicken muscle, using an improved isolation procedure. Dystrophic sarcoplasmic reticulum has a reduced level of calcium-sensitive ATPase activity, phosphoenzyme formation, and steady-state calcium transport. Anion-stimulated calcium transport by dystrophic sarcoplasmic reticulum is also reduced when measured under the proper conditions, and dystrophic sarcoplasmic reticulum shows no alteration in calcium efflux rate. Active calcium phosphate loading of the normal and dystrophic sarcoplasmic reticulum preparations indicates that a reduced percentage jof the dystrophic vesicles are capable of active calcium transport. The loaded dystrophic sarcoplasmic reticulum vesicles exhibit the same relative reductions in enzymatic activity as the starting sarcoplasmic reticulum preparations. However, the enzyme activities of normal and dystrophic sarcoplasmic reticulum are similar in the presence of detergent and exogenous phospholipid. On the basis of these results, we suggest that the lipid microenvironment of the dystrophic enzyme is altered.  相似文献   

16.
Duchenne muscular dystrophy (DMD) is an X-linked, fatal muscle wasting disease for which there is currently no cure and limited palliative treatments. Poloxomer 188 (P188) is a tri-block copolymer that has been proposed as a potential treatment for cardiomyopathy in DMD patients. Despite the reported beneficial effects of P188 on dystrophic cardiac muscle function, the effects of P188 on dystrophic skeletal muscle function are relatively unknown. Mdx mice were injected intraperitoneally with 460 mg/kg or 30 mg/kg P188 dissolved in saline, or saline alone (control). The effect of single-dose and 2-week daily treatment was assessed using a muscle function test on the Tibialis Anterior (TA) muscle in situ in anaesthetised mice. The test comprises a warm up, measurement of the force-frequency relationship and a series of eccentric contractions with a 10% stretch that have previously been shown to cause a drop in maximum force in mdx mice. After 2 weeks of P188 treatment at either 30 or 460 mg/kg/day the drop in maximum force produced following eccentric contractions was significantly greater than that seen in saline treated control mice (P = 0.0001). Two week P188 treatment at either dose did not significantly change the force-frequency relationship or maximum isometric specific force produced by the TA muscle. In conclusion P188 treatment increases susceptibility to contraction-induced injury following eccentric contractions in dystrophic skeletal muscle and hence its suitability as a potential therapeutic for DMD should be reconsidered.  相似文献   

17.
The sex-linked dwarf gene (dw) was introduced into companion muscular dystrophic (am) and nondystrophic (Am+) New Hampshire chicken lines to investigate influences of the dwarf gene on breast muscle weights, muscle fiber area, and the histological expression of muscular dystrophy. Dystrophic and nondystrophic chickens within dwarf or nondwarf genotypes were similar in body and carcass weights. Pectoralis and supracoracoideus muscle weights (as a percentage of adjusted carcass weight) were similar in nondystrophic dwarf and nondwarf males and females. In addition, pectoralis weight was similar in dystrophic dwarf males and dystrophic nondwarf males and females. However, pectoralis weight was significantly smaller in dystrophic dwarf females than in dystrophic nondwarf females, whereas supracoracoideus weight was significantly larger in dystrophic dwarf males than in dystrophic nondwarf males. Supracoracoideus weight was similar in dystrophic dwarf males and females and dystrophic nondwarf females. Pectoralis muscle fiber area was influenced by sex and by dwarf and dystrophy genotype. Muscle fiber area was larger in females than in males, smaller in dwarfs than in nondwarfs, and smaller in dystrophic than in nondystrophic muscles. Muscle fiber degeneration and adipose infiltration was more extensive in dystrophic than in nondystrophic females and males, and it was more advanced in dwarfs than in nondwarfs. Excessive acetylcholinesterase staining patterns were characteristic of dystrophic muscle in both dwarf and nondwarf genotypes. Nondystrophic and dystrophic dwarf male and female chickens are comparable substitutes for nondwarfs as biomedical models with respect to pectoralis histology, acetylcholinesterase staining pattern, and pectoralis muscle hypertrophy.  相似文献   

18.
Thiol protease and cathepsin D activities were studied in extracts from hindlimb muscle of 60-day-old normal and dystrophic mice, strain 129 ReJ, and from cultured normal and dystrophic cells. Total thiol protease activity in dystrophic muscle extracts was 3.5 times higher than in normal muscle extracts, while cathepsin D, activity was 2.2 times greater in dystrophic muscle compared with normal muscle. Activation (pH 4.5, 30 degrees C) of latent thiol protease activity in extracts of muscle occurred concomitant with the inactivation or dissociation of endogenous protease inhibitors. Thiol protease assays revealed a higher ratio of active to inactive protease activity in extracts from dystrophic muscle than from normal muscle. Cultured myoblasts (L69/1) were found to contain 30-fold more thiol protease(s) and 6-fold more cathepsin D activity than whole muscle. Cells established from dystrophic muscle and grown in culture for periods up to 6 months were more responsive to thiol protease activation conditions than similar cultures derived from normal muscle. From data on the rate and extent of thiol protease activation in extracts from dystrophic cells and hindlimb muscle compared with normal tissue, it appears that cells and tissues from dystrophic mice contain a lower level of protease inhibitors than cells and tissues from normal mice.  相似文献   

19.
Purified transverse tubule membranes from normal and dystrophic chicken skeletal muscle were isolated by a calcium-loading procedure. Normal and dystrophic T-tubules were similar in cholesterol content and (Na+,K+)-ATPase and 5'-nucleotidase activities but a significant decrease of Mg2(+)-ATPase activity was observed in dystrophic membranes. A comparative analysis of the enzyme properties revealed that the kinetic parameters were altered in dystrophic T-tubules and the ATP-hydrolyzing activity was differently affected by the ionic strength. However, the influence of temperature and the regulatory effect of concanavalin A were the same as in normal T-tubules. Membrane fluidity was similar in both preparations as estimated by fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene and trimethylammonium diphenylhexatriene. These results point to an impairment in the function of Mg2(+)-ATPase due to structural alterations of the enzyme.  相似文献   

20.
Protein and RNA contents in muscle of normal and hereditary dystrophic mice C57BL/6J-dy/dy were reexamined on the basis of DNA. It was observed that protein and RNA contents in dystrophic muscle decreased at the early stage of the disease, in disagreement with the reported results on a wet weight basis, in which RNA content in dystrophic muscle had been found to increase. Rates of protein and RNA systhesis in the early stage of the disease were also determined with a concomitant check of the specific activities of free amino acids and free nucleotides. The rates of both protein and RNA synthesis (i.e., specific activities of protein and RNA) were higher in the dystrophic muscle, but when they were expressed on a DNA basis, the total protein synthesis per cell was the same as that of normal muscle and the total RNA synthesis per cell showed a smaller increase in dystrophic muscle. These apparent increases of protein and RNA synthesis were discussed in connection with the decreased protein and RNA contents in the cells of dystrophic muscle. The synthesized RNAs seemed to contain mRNA on the basis of sedimentation character and Millipore filter binding ability. However, no particular RNA was mainly synthesized in dystrophic muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号