首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell death is a fundamentally important problem in cell lines used by the biopharmaceutical industry. Environmental stress, which can result from nutrient depletion, by-product accumulation and chemical agents, activates through signalling cascades regulators that promote death. The best known key regulators of death process are the Bcl-2 family proteins which constitute a critical intracellular checkpoint of apoptosis cell death within a common death pathway. Engineering of several members of the anti-apoptosis Bcl-2 family genes in several cell types has extended the knowledge of their molecular function and interaction with other proteins, and their regulation of cell death. In this review, we describe the various modes of cell death and their death pathways at molecular and organelle level and discuss the relevance of the growing knowledge of anti-apoptotic engineering strategies to inhibit cell death and increase productivity in mammalian cell culture.  相似文献   

2.
Protozoan programmed cell death or apoptosis is an important factor in the survival of the parasite and its pathogenicity. The most amazing aspect of protozoan cell death is in its molecular architecture. To date, protozoa lack most of the components of the highly complex cell death machinery studied in multicellular organisms. Hence the unique apoptotic machinery in protozoa can be exploited for the development of therapeutic drugs and diagnostic markers. This review focuses on human intestinal protozoa undergoing cell death and inducing or inhibiting host cell apoptosis. The first part of this review focuses on intestinal protozoa that undergo PCD under various stress conditions. The second part focuses on protozoa that induce or inhibit PCD in their host cell. Although these intestinal parasites differ in their mechanism of infection and intracellular localization, they may activate conserved cell death pathways within themselves and in the host cell. Understanding conserved cell death pathways in the intestinal protozoa and their host-parasite PCD relationship may lead to drug targets which can be used for a broad range of parasitic diseases.  相似文献   

3.
Enteroviruses (EVs) are the most common human viral pathogens. They cause a variety of pathologies, including myocarditis and meningoencephalopathies, and have been linked to the onset of type I diabetes. These pathologies result from the death of cells in the myocardium, central nervous system, and pancreas, respectively. Understanding the role of EVs in inducing cell death is crucial to understanding the etiologies of these diverse pathologies. EVs both induce and delay host cell death, and their exquisite control of this balance is crucial for their success as human viral pathogens. Thus, EVs are tightly involved with cell death signaling pathways and interact with host cell signaling at multiple points. Here, we review the literature detailing the mechanisms of EV-induced cell death. We discuss the mechanisms by which EVs induce cell death, the signaling pathways involved in these pathways, and the strategies by which EVs antagonize cell death pathways. We also discuss the role of cell death in both the resulting pathology in the host and in the facilitation of viral spread.  相似文献   

4.
Multiple cell death mechanisms operate in both uni- and multicellular organisms. Hence, research during the past forty years has revealed that apoptosis is not the only cell death program involved in the regulation of tissue homeostasis and the removal of unwanted cells in biological organisms. While the molecular pathways of apoptosis and necrosis are now relatively well established, the precise mechanisms of other cell death modalities, and their cross-talk, require additional study. This is particularly important, since many human disorders can be attributed, directly or indirectly, to defective cell death mechanisms. In this review we shall discuss the characteristics and cross-talk between various modes of cell death and their role in cell death-related disorders, notably, neurodegenerative disease and cancer.  相似文献   

5.
Mitochondria as cancer drug targets   总被引:4,自引:0,他引:4  
Cancer cells are defined by their unlimited replicative potential and resistance to cell death stimuli. It is generally considered that a point of no return in apoptotic cell death is the permeabilisation of the mitochondrial membranes. For this reason, agents that permeabilise cancer cell mitochondria have the potential to circumvent their resistance to apoptotic cell death. Fortunately, the proliferative and bioenergetic differences between normal and cancerous cells provide an opportunity to selectively target cancer cell mitochondria.  相似文献   

6.
Humans maintain a constant cell number throughout their lifespan. This equilibrium of cell number is accomplished when cell proliferation and cell death are kept balanced, achieving a steady-state cell number. Abnormalities in cell growth or cell death can lead to an overabundance of cells known as neoplasm or tumours. While the perception of cancer is often that of an uncontrollable rate of cell growth or increased proliferation, a decrease in cell death can also lead to tumour formation. Most cells when detached from their normal tissue die. However, cancer cells evade cell death, tipping the balance to an overabundance of cell number. Therefore, overcoming this resistance to cell death is a decisive factor in the treatment of cancer. Ion channels play a critical role in cancer in regards to cell proliferation, malignant angiogenesis, migration and metastasis. Additionally, ion channels are also known to be critical components of apoptosis. In this review, we discuss the modes of cell death focusing on the ability of cancer cells to evade apoptosis. Specifically, we focus on the role ion channels play in controlling and regulating life/death decisions and how they can be used to overcome resistance to apoptosis in the treatment of cancer.  相似文献   

7.
Programmed cell death in the plant immune system   总被引:2,自引:0,他引:2  
Cell death has a central role in innate immune responses in both plants and animals. Besides sharing striking convergences and similarities in the overall evolutionary organization of their innate immune systems, both plants and animals can respond to infection and pathogen recognition with programmed cell death. The fact that plant and animal pathogens have evolved strategies to subvert specific cell death modalities emphasizes the essential role of cell death during immune responses. The hypersensitive response (HR) cell death in plants displays morphological features, molecular architectures and mechanisms reminiscent of different inflammatory cell death types in animals (pyroptosis and necroptosis). In this review, we describe the molecular pathways leading to cell death during innate immune responses. Additionally, we present recently discovered caspase and caspase-like networks regulating cell death that have revealed fascinating analogies between cell death control across both kingdoms.  相似文献   

8.
The antiapoptotic Bcl-2 family proteins Bcl-2 and Bcl-xL play important roles in inhibiting mitochondria-dependent extrinsic and intrinsic cell death pathways. It seems that these two proteins have distinct functions for inhibiting extrinsic and intrinsic cell death pathways. The overexpression of Bcl-2 is able to inhibit not only apoptotic cell death but also in part nonapoptotic cell death, which has the role of cell cycle arrest in the G1 phase, which may promote cellular senescence. The overexpression of Bcl-2 may also have the ability to enhance cell death in the interaction of Bcl-xL with other factors. The overexpression of Bcl-xL enhances autophagic cell death when apoptotic cell death is inhibited in Bax(-/-)/Bak(-/-) double knockout cells. This review discusses the previously unexplained aspects of Bcl-2 and Bcl-xL functions associated with cell death, for better understanding of their functions in the regulation.  相似文献   

9.
In this article we overview major aspects of membrane lipids in the complex area of cell death, comprising apoptosis and various forms of programmed cell death. We have focused here on glycerophospholipids, the major components of cellular membranes. In particular, we present a detailed appraisal of mitochondrial lipids that attract increasing interest in the field of cell death, while the knowledge of their re-modelling and traffic remains limited. It is hoped that this review will stimulate further studies by lipid experts to fully elucidate various aspects of membrane lipid homeostasis that are discussed here. These studies will undoubtedly reveal new and important connections with the established players of cell death and their action in promoting or blocking membrane alteration of mitochondria and other organelles. We conclude that the new dynamic era of cell death research will pave the way for a better understanding of the 'chemistry of apoptosis'.  相似文献   

10.
TRAIL, a putative anticancer cytokine, induces extrinsic cell death by activating the caspase cascade directly (Type I cells) via the death-inducing signaling complex (DISC) or indirectly (Type II cells) by caspase-8 cleavage of Bid and activation of the mitochondrial cell death pathway. Cancer cells are characterized by their dependence on aerobic glycolysis, which, although inefficient in terms of ATP production, facilitates tumor metabolism. Our studies show that TRAIL-induced cell death is significantly affected by the metabolic status of the cell. Inhibiting glycolysis with 2-deoxyglucose potentiates TRAIL-induced cell death, whereas glucose deprivation can paradoxically inhibit apoptosis. These conflicting responses to glycolysis inhibition are modulated by the balance between the Akt and AMPK pathways and their subsequent downstream regulation of mTORC1. This results in marked changes in protein translation, in which the equilibrium between anti- and pro-apoptotic Bcl-2 family member proteins is decided by their individual degradation rates. This regulates the mitochondrial cell death pathway and alters its sensitivity not only to TRAIL, but to ABT-737, a Bcl-2 inhibitor. Taken together, our studies show that the sensitivity of cancer cells to apoptosis can be modulated by targeting their unique metabolism in order to enhance sensitivity to apoptotic agents.  相似文献   

11.
TRAIL, a putative anticancer cytokine, induces extrinsic cell death by activating the caspase cascade directly (Type I cells) via the death-inducing signaling complex (DISC) or indirectly (Type II cells) by caspase-8 cleavage of Bid and activation of the mitochondrial cell death pathway. Cancer cells are characterized by their dependence on aerobic glycolysis, which, although inefficient in terms of ATP production, facilitates tumor metabolism. Our studies show that TRAIL-induced cell death is significantly affected by the metabolic status of the cell. Inhibiting glycolysis with 2-deoxyglucose potentiates TRAIL-induced cell death, whereas glucose deprivation can paradoxically inhibit apoptosis. These conflicting responses to glycolysis inhibition are modulated by the balance between the Akt and AMPK pathways and their subsequent downstream regulation of mTORC1. This results in marked changes in protein translation, in which the equilibrium between anti- and pro-apoptotic Bcl-2 family member proteins is decided by their individual degradation rates. This regulates the mitochondrial cell death pathway and alters its sensitivity not only to TRAIL, but to ABT-737, a Bcl-2 inhibitor. Taken together, our studies show that the sensitivity of cancer cells to apoptosis can be modulated by targeting their unique metabolism in order to enhance sensitivity to apoptotic agents.  相似文献   

12.
Host cell death is an intrinsic immune defense mechanism in response to microbial infection. However, bacterial pathogens use many strategies to manipulate the host cell death and survival pathways to enhance their replication and survival. This manipulation is quite intricate, with pathogens often suppressing cell death to allow replication and then promoting it for dissemination. Frequently, these effects are exerted through modulation of the mitochondrial pro-death, NF-κB-dependent pro-survival, and inflammasome-dependent host cell death pathways during infection. Understanding the molecular details by which bacterial pathogens manipulate cell death pathways will provide insight into new therapeutic approaches to control infection.  相似文献   

13.
Clarke PG  Puyal J 《Autophagy》2012,8(6):867-869
The term autophagic cell death (ACD) initially referred to cell death with greatly enhanced autophagy, but is increasingly used to imply a death-mediating role of autophagy, as shown by a protective effect of autophagy inhibition. In addition, many authors require that autophagic cell death must not involve apoptosis or necrosis. Adopting these new and restrictive criteria, and emphasizing their own failure to protect human osteosarcoma cells by autophagy inhibition, the authors of a recent Editor's Corner article in this journal argued for the extreme rarity or nonexistence of autophagic cell death. We here maintain that, even with the more stringent recent criteria, autophagic cell death exists in several situations, some of which were ignored by the Editor's Corner authors. We reject their additional criterion that the autophagy in ACD must be the agent of ultimate cell dismantlement. And we argue that rapidly dividing mammalian cells such as cancer cells are not the most likely situation for finding pure ACD.  相似文献   

14.
《Autophagy》2013,9(6):867-869
The term autophagic cell death (ACD) initially referred to cell death with greatly enhanced autophagy, but is increasingly used to imply a death-mediating role of autophagy, as shown by a protective effect of autophagy inhibition. In addition, many authors require that autophagic cell death must not involve apoptosis or necrosis. Adopting these new and restrictive criteria, and emphasizing their own failure to protect human osteosarcoma cells by autophagy inhibition, the authors of a recent Editor’s Corner article in this journal argued for the extreme rarity or nonexistence of autophagic cell death. We here maintain that, even with the more stringent recent criteria, autophagic cell death exists in several situations, some of which were ignored by the Editor’s Corner authors. We reject their additional criterion that the autophagy in ACD must be the agent of ultimate cell dismantlement. And we argue that rapidly dividing mammalian cells such as cancer cells are not the most likely situation for finding pure ACD.  相似文献   

15.
郭小丁 《植物学报》1998,15(5):40-43
植物细胞受基因调控死亡,这种编程性定位的细胞死亡具有积极的生理功能,形成有利于自身发展的结构。基因调控细胞内的酶活动,细胞器产生变化,导致细胞死亡。外部因素可调节植物基因及基因调控产物的表达。  相似文献   

16.
Elimination of infected cells via programmed cell death plays a fundamental role in the defense of multicellular organisms against bacteria, viruses, and parasites. Several pathogens have therefore evolved sophisticated strategies to modulate the host cell death programme for their survival. This review aims to summarize recent findings on how bacterial pathogens interfere with the host cell death apparatus.  相似文献   

17.
The voltage-dependent anion channel (VDAC) and mitochondrially located hexokinase have been implicated both in pathways leading to cell death on the one hand, and immortalization in tumor formation on the other. While both proteins have also been implicated in death processes in plants, their interaction has not been explored. We have examined cell death following heterologous expression of a rice VDAC in the tobacco cell line BY2 and in leaves of tobacco plants and show that it is ameliorated by co-expression of hexokinase. Hexokinase also abrogates death induced by H2O2. We conclude that the ratio of expression of the two proteins and their interaction play a major role in modulating death pathways in plants.  相似文献   

18.
植物细胞的编程性死亡   总被引:4,自引:1,他引:3  
植物细胞受基因调控死亡,这种编程性定位的细胞死亡具有积极的生理功能,形成有利于自身发展的结构。基因调控细胞内的酶活动,细胞器产生变化,导致细胞死亡。外部因素可调节植物基因及基因调控产物的表达。  相似文献   

19.
Apoptosis, cell death characterized by stereotypical morphological features, requires caspase proteases. Nonapoptotic, caspase-independent cell death pathways have been postulated; however, little is known about their molecular constituents or in vivo functions. Here, we show that death of the Caenorhabditis elegans linker cell during development is independent of the ced-3 caspase and all known cell death genes. The linker cell employs a cell-autonomous death program, and a previously undescribed engulfment program is required for its clearance. Dying linker cells display nonapoptotic features, including nuclear crenellation, absence of chromatin condensation, organelle swelling, and accumulation of cytoplasmic membrane-bound structures. Similar features are seen during developmental death of neurons in the vertebrate spinal cord and ciliary ganglia. Linker cell death is controlled by the microRNA let-7 and Zn-finger protein LIN-29, components of the C. elegans developmental timing pathway. We propose that the program executing linker cell death is conserved and used during vertebrate development.  相似文献   

20.
In mammals, mitochondria are important mediators of programmed cell death, and this process is often regulated by Bcl-2 family proteins. However, a role for mitochondria-mediated cell death in non-mammalian species is more controversial. New evidence from a variety of sources suggests that mammalian mitochondrial fission/division proteins also have the capacity to promote programmed cell death, which may involve interactions with Bcl-2 family proteins. Homologues of these fission factors and several additional mammalian cell death regulators are conserved in flies, worms and yeast, and have been suggested to regulate programmed cell death in these species as well. However, the molecular mechanisms by which these phylogenetically conserved proteins contribute to cell death are not known for any species. Some have taken the conserved pro-death activity of mitochondrial fission factors to mean that mitochondrial fission per se, or failed attempts to undergo fission, are directly involved in cell death. Other evidence suggests that the fission function and the cell death function of these factors are separable. Here we consider the evidence for these arguments and their implications regarding the origins of programmed cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号