首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The developmental profile of prostaglandin (PG)-synthesizing enzymes in liver was investigated in rats from the fetus to 2 years old. In the neonatal period, the activities of PGD2-(2.7 nmol/min/mg protein) and PGE2-(2.2 nmol/min/mg protein) synthesizing enzymes were predominant, whereas PGE2-synthesizing enzyme alone further increased in activity during adult to old ages (5.2-6.1 nmol/min/mg protein). In order to determine the sites of PGs production in rat liver, we prepared hepatocytes and non-hepatocytes by a collagenase digestion method. Regardless of the ages we examined, the major PG produced in the hepatocytes was proved to be PGE2, on the other hand, PGD2 was almost exclusively produced in the non-hepatocytes. These results suggest that each PG may have individual roles in the development of rat liver.  相似文献   

2.
Addition of substance P (SP) to astrocytes cultured from rat neonatal spinal cord evoked a time- and concentration-dependent increase in the accumulation of phosphoinositol and the release of prostaglandin (PG) D2 and PGE2. Both basal and stimulated releases were reduced to similar levels by indomethacin. In contrast, astrocytes cultured from cerebral cortex and cerebellum showed no SP-stimulated increase in phosphoinositol accumulation or release of PGs. Release of PGD2 and PGE2 was, however, stimulated by the calcium ionophore A23187, and both phosphoinositol accumulation and PG release were stimulated from cortical astrocytes incubated in the presence of serum. The results from this study suggest that SP-stimulated phosphoinositol accumulation and release of PGs from cultured rat neonatal astrocytes are regionally specialised in favour of cells derived from spinal cord.  相似文献   

3.
The isolation and culture of pulmonary microvascular endothelial (MVE) cells from bovine lungs were established. Primary and early passaged cultures grew best in Dulbecco's Modified Eagle's Medium (DMEM) supplemented with 10% equine plasma-derived serum, bovine retinal growth extract (1%), and heparin (90 micrograms/ml) on gelatin coated plates. A second tissue culture procedure was prepared in which the isolation technique was the same except the culture medium consisted of DMEM supplemented with 10% plasma-derived serum. Either growth medium produced homogeneous, long term, serial cultures for up to 16 passages. MVE cells were characterized in part based on their morphology by light and electron microscopy and positive reaction to Factor VIII-related antigen and uptake of 1,1'-dioctacecyl-1,3,3,3'3-tetramethyl-indocarbocyanine perchlorate acetylated low density lipoprotein (Dil-Ac-LDL). MVE cells were also positive for angiotensin-converting enzyme (ACE) activity and the presence of ACE was localized on the cells by indirect immunofluorescence. MVE cells maintained in the presence of heparin and growth factor principally synthesized prostaglandin (PG) E2 (1512 +/- 159 pg/mg protein at 15 min) and smaller amounts of prostacyclin (PGI2) and thromboxane (Tx) A2 (316 +/- 43 and 588 +/- 105 pg/mg protein/15 min respectively) as measured by radioimmunoassay. However, prostanoid release was not elevated from basal levels upon incubation with arachidonic acid, bradykinin, or ionophore A23187. In contrast, MVE cells cultured without heparin and growth factor secreted more PGI2 than PGE2 (862 +/- 84 and 89 +/- 12 respectively). Incubation with arachidonic acid, bradykinin, or ionophore A23187 induced significant increases in PGI2 and PGE2 production (P less than 0.01). Pulmonary artery endothelial (PAE) cell cultures used as a control for comparison predominantly synthesized PGI2. These findings suggest that in vitro the vessel source and culture conditions may qualitatively and quantitatively affect the pattern and levels of prostanoid synthesized and secreted.  相似文献   

4.
The in vitro effects of endothelin-1 (ET-1) and endothelin-3 (ET-3) on the release of prostaglandin (PG)E2 from the rat median eminence were investigated. The addition of ET-1 from 10(-9) M to 10(-6) M stimulated PGE2 release in a dose-dependent manner (from 10.5 +/- 2.1 to 54.4 +/- 5.6 pg/ME fragment/30 min; mean +/- SEM, p less than 0.001). ET-3 also stimulated the release of PGE2 from 10(-7) M to 10(-5) M dose dependently (from 18.1 +/- 0.7 to 60.9 +/- 17.4 pg/ME fragment/30 min p less than 0.05). The time course effect of ET-3 (10(-6) M) showed that PGE2 release was stimulated within five minutes (control, 1.5 +/- 0.5; ET-3, 15.8 +/- 3.0 pg/ME fragment/5 min, p less than 0.01). These results suggest that ET-1 and ET-3 have some physiological effects on the rat median eminence.  相似文献   

5.
The accumulation of inositol phosphates (IPs) in response to prostaglandins (PGs) was studied in NG108-15 cells preincubated with myo-[3H]inositol. As a positive control, bradykinin caused accumulation of IPs transiently at an early phase (within 1 min) and continuously during a late phase (15-60 min) of incubation in the cells. PGD2 and PGF2 alpha did not significantly cause the accumulation of IPs at an early phase but significantly stimulated inositol bisphosphate (IP2) and inositol monophosphate (IP) formation at late phase of incubation. The maximum stimulation was obtained at greater than 10(-7) M concentrations of these PGs, the levels being three-and twofold for IP2 and IP1, respectively. 9 alpha, 11 beta-PGF2 has a slight effect but PGE2 and the metabolites of PGD2 and PGF2 alpha have no effect up to 10(-6)M. The effects of PGD2 and PGF2 alpha were not additive, but the effect of each PG was additive to that of bradykinin at a late phase of incubation. Inositol 1-monophosphate was mainly identified in the stimulation by 10(-5) M PGD2 and 10(-5) M PGF2 alpha, whereas both inositol 1-monophosphate and inositol 4-monophosphate were produced in the stimulation by 10(5) M bradykinin. Depletion of extracellular Ca2+ diminished the stimulatory effect of PGD2 and PGF2 alpha and late-phase effect of bradykinin, but simple Ca2+ influx into the cells by high K+, ionomycin, or A23187 failed to cause such late-phase effects. These results suggest that PGD2 and PGF2 alpha specifically stimulate hydrolysis of inositol phospholipids.  相似文献   

6.
This study was designed to clarify effects of ageing on human gastric mucosal prostaglandin (PG) contents. Forty examinees were divided into 5 age groups of 8 persons each, as follows: age under 40, age 40-49, age 50-59, age 60-69, and age over 70. PG contents in human gastric mucosa were measured by microcolumn high performance liquid chromatography (HPLC) with helium/cadmium laser induced fluorescence detection using biopsy samples obtained by endoscopy. The contents of 6-keto-PGF1 alpha, PGF2 alpha, PGE2, and PGD2 in the under 40 group were 638 +/- 39, 97 +/- 16, 468 +/- 68, 497 +/- 86 (pg/mg tissue), respectively. No significant differences in PG contents among groups aged under 70 were observed. In contrast, significantly low PG contents in the over 70 group were observed, i.e., the contents of 6-keto-PGF1 alpha, PGF2 alpha, PGE2, and PGD2 were 311 +/- 58, 36 +/- 8, 196 +/- 48, 171 +/- 40, respectively, and their contents were significantly lower than those in other age groups. In conclusion, gastric mucosal PG contents decrease significantly in over 70 years-old and this might be a contributing factor in the pathogenesis of gastric ulcers in elderly people.  相似文献   

7.
The relationship of bradykinin and cholecystokinin (CCK) to inflamed gallbladder prostanoid synthesis and release was examined in rabbits treated with common bile duct ligation (BDL) for 24 or 72 h. Gallbladders removed from control and BDL groups were incubated in oxygenated Krebs buffer at 37 degrees C (pH 7.4) for 60 min. The slices were then placed every 20 min in vials containing increasing doses of bradykinin (30-3000 ng) or CCK (30-1000 ng). Incubation fluid was analyzed by RIA for 6-keto-prostaglandin (PG)F1 alpha (PGI2 metabolite), PGE2 and thromboxane (TX) B2. Bradykinin stimulated control gallbladder 6-keto-PGF1 alpha and PGE2 release was modest. Gallbladders from 24- and 72-h BDL groups released 3- to 10-fold higher levels of 6-keto-PGF1 alpha and PGE2 (not TXB2) following bradykinin stimulation when compared to controls, which was abolished with indomethacin pretreatment. CCK did not stimulate gallbladder prostanoid release in the control or BDL groups. These data show that bradykinin and not CCK stimulated PGI2 and PGE2 release from inflamed rabbit gallbladder. Increased BDL gallbladder PGI2 release may be prolonged or augmented by bradykinin as gallbladder distention and progressive acute inflammation stimulate local bradykinin formation.  相似文献   

8.
In studies on human skin fibroblasts originating from three patients with Bartter's syndrome and in corresponding age and sex matched controls, the bradykinin stimulated release of PGE2, PGI2, PGF2a and of arachidonic acid was examined. The studies were aimed at demonstrating the possible changes of prostaglandin production under the influence of changing extracellular potassium concentrations (0–12 mmol K/l) in the two study groups. Earlier studies were confirmed and extended by one more pair of fibroblast cultures, showing a decreased bradykinin stimulated PGE2 production in fibroblasts from patients with Bartter's syndrome as compared to control. The difference in bradykinin stimulated PGE2 production was significant, irrespective of the extracellular potassium concentrations, to which the cultures were exposed. The bradykinin stimulated PGE2 and PGF2a-production by control fibroblasts was directly proportional to extracellular potassium concentrations, whereas the PG-production of Bartter's syndrome fibroblasts remained uninfluenced by extracellular potassium. Extra- and intracellular potassium concentrations were directly proportional and there was no difference in this relationship between controls and Bartter's syndrome.The direct proportionality between bradykinin stimulated PGE2 production and potassium concentrations in control fibroblasts is, despite the apparent contradiction, in accordance with findings in the literature. The lack of a comparable proportionality in fibroblasts from patients with Bartter's syndrome is interpreted to correspond to an insensitivity to changes of potassium concentrations and thus to an insensitivity to one of the modulators of AA metabolism.  相似文献   

9.
The regulation of PGE2 (prostaglandin E2) and PGI2 (prostaglandin I2; prostacyclin) formation was investigated in isolated adipocytes. The formation of both PGs was stimulated by various lipolytic agents such as isoproterenol, adrenaline and dibutyryl cyclic AMP. During maximal stimulation the production of PGE2 and PGI2 (measured as 6-oxo-PGF1 alpha) was 0.51 +/- 0.04 and 1.21 +/- 0.09 ng/2 h per 10(6) cells respectively. Thus PGI2 was produced in excess of PGE2 in rat adipocytes. The production of the PGs was inhibited by indomethacin and acetylsalicylic acid in a concentration-dependent manner. The half-maximal effective concentration of indomethacin was 328 +/- 38 nM and that of acetylsalicylic acid was 38.5 +/- 5.3 microM. The PGs were maximally inhibited by 70-75% after incubation for 2 h. In contrast with their effect on PG production, the two agents had a small potentiating effect on the stimulated lipolysis (P less than 0.05). The phospholipase inhibitors mepacrine and chloroquine inhibited both PG production and triacylglycerol lipolysis and were therefore unable to indicate whether the PG precursor, arachidonic acid, originates from phospholipids or triacylglycerols in adipocytes. Angiotensin II significantly (P less than 0.05) stimulated both PGE2 and PGI2 production in rat adipocytes without affecting triacylglycerol lipolysis. Finally, it was shown that PGE2 and PGI2 were also produced in human adipocytes, although in smaller quantities than in rat adipocytes. It is concluded that the production of PGs in isolated adipocytes is regulated by various hormones. Moreover, at least two separate mechanisms for PG production may exist in adipocytes: (1) a mechanism that is activated concomitantly with triacylglycerol lipolysis (and cyclic AMP) and (2) an angiotensin II-sensitive, but lipolysis (and cyclic AMP)-independent mechanism.  相似文献   

10.
Peripheral noxious stimuli have been shown to induce prostaglandin (PG) E2 release at the site of inflammation and in the spinal cord. The antiinflammatory and antinociceptive effects of cyclooxygenase-inhibiting drugs are thought to depend on the inhibition of PG synthesis. R-Flurbiprofen, however, does not inhibit cyclooxygenase activity in vitro but still produces antinociceptive effects. To find out whether R-flurbiprofen acts via inhibition of spinal PG release, concentrations of PGE2 and flurbiprofen in spinal cord tissue were assessed by microdialysis. The catheter was transversally implanted through the dorsal horns of the spinal cord at level L4. R- and S-flurbiprofen (9 and 27 mg kg(-1), respectively) were administered intravenously 10-15 min before subcutaneous injection of formalin into the dorsal surface of one hindpaw. Flurbiprofen was rapidly distributed into the spinal cord with maximal concentrations after 30-45 min. Baseline PGE2 dialysate concentrations were 100.6 +/- 6.4 pg ml(-1) (mean +/- SEM). After formalin injection they rose about threefold with a maximum of 299.4 +/- 68.4 pg ml(-1) at 7.5 min. After approximately 1 h PGE2 levels returned to baseline. Both flurbiprofen enantiomers completely prevented the formalin-induced increase of spinal PGE2 release and reduced PGE2 concentrations below basal levels. S- and R-flurbiprofen at 9 mg kg(-1) produced a minimum of 15.8 +/- 5.2 and 27.7 +/- 14.9 pg ml(-1), respectively, and 27 mg kg(-1) S- and R-flurbiprofen resulted in 11.7 +/- 1.7 and 9.3 +/- 4.7 pg ml(-1), respectively. PGE2 levels remained at the minimum up to the end of the observation period at 5 h. When 27 mg kg(-1) R-flurbiprofen was injected intravenously without subsequent formalin challenge, baseline immunoreactive PGE2 concentrations were not affected. S-Flurbiprofen (27 mg kg(-1)), however, led to a moderate reduction (approximately 40%). The data suggest that antinociception produced by R-flurbiprofen is mediated at least in part by inhibition of stimulated spinal PGE2 release and support the current view that increased spinal PGE2 release significantly contributes to nociceptive processing.  相似文献   

11.
Recent data suggest that prostaglandins (PGs) are involved in the regulation of basophil activation. The aim of this study was to characterize the basophil PG-binding sites by means of radioreceptor assays using 3H-labeled PGs. Scatchard analysis for pure (greater than 95%) chronic myeloid leukemia (CML) basophils revealed two classes of PGE1-binding sites differing in their affinity for the natural ligand (Bmax1 = 217 +/- 65 fmol/10(8) cells; Kd1 = 0.5 +/- 0.2 nM; Bmax2 = 2462 +/- 381 fmol/10(8) cells; Kd2 = 47 +/- 20 nM; IC50 = PGE1 less than PGI2 less than PGD2 less than PGE2 less than PGF2 alpha) as well as two classes of PGI2 (iloprost)-binding sites (Bmax1 = 324 +/- 145 fmol/10(8) cells; Kd1 = 0.5 +/- 0.3 nM; Bmax2 = 2541 +/- 381; Kd2 = 27 +/- 6 nM; IC50 = PGI2 less than PGE1 less than PGD2 less than PGE2 less than PGF2 alpha. In addition, CML basophils exhibited a single class of PGD2-binding sites (Bmax = 378 +/- 98 fmol/10(8) cells; Kd = 13 +/- 4 nM; IC50: PGD2 less than PGI2 less than PGE1 less than PGE2 less than PGF2 alpha). In contrast, we were unable to detect specific saturable PGE2-binding sites. Primary and immortalized (KU812) CML basophils revealed an identical pattern of PG receptor expression. Basophils (KU812) expressed significantly (p less than 0.001) lower number of PGE1 (PGI2)-binding sites (Bmax1: 9% (20%) of control; Bmax2: 36% (50%) of control) when cultured with recombinant interleukin 3 (rhIL-3), a basophil-activating cytokine, whereas rhIL-2 had no effect on PG receptor expression. Functional significance of binding of PGs to basophils was provided by the demonstration of a dose-dependent increase in cellular cAMP upon agonist activation, with PGE1 (ED50 = 1.7 +/- 1.1 nM) and PGI2 (ED50 = 2.8 +/- 2.3 nM) being the most potent compounds. These findings suggest that human basophils express specific receptors for PGE1, PGI2 as well as for PGD2.  相似文献   

12.
Stimulation of prostaglandin (PG) release in rat astroglial cultures by various substances, including phorbol esters, melittin, or extracellular ATP, has been reported recently. It is shown here that glucocorticoids (GCs) reduced both basal and stimulated PGD2 release. Hydrocortisone, however, did not inhibit ATP-, calcium ionophore A23187-, or tetradecanoyl phorbol acetate (TPA)-stimulated arachidonic acid release, and only TPA stimulations were affected by dexamethasone. GC-mediated inhibition of PGD2 release thus appeared to exclude regulation at the phospholipase A2 (PLA2) level. Therefore, the effects of GCs on the synthesis of lipocortin I (LC I), a potent, physiological inhibitor of PLA2, were studied in more detail. Dexamethasone was not able to enhance de novo synthesis of LC I in freshly seeded cultures and failed to increase LC I synthesis in 2-3-week-old cultures. It is surprising that LC I was the major LC synthesized in those cultures, and marked amounts accumulated with culture time, reaching plateau levels at approximately day 10. In contrast, LC I was barely detectable in vivo. This tonic inhibition of PLA2 is the most likely explanation for unsuccessful attempts to evoke PG release in astrocyte cultures by various physiological stimuli. GC receptor antagonists (progesterone and RU 38486) given throughout culture time reduced LC I accumulation and simultaneously increased PGD2 release. Nonetheless, a substantial production of LC I persisted in the presence of antagonists. Therefore, LC I induction did not seem to involve GC receptor activation. This was confirmed in serum- and GC-free brain cell aggregate cultures. Here also a marked accumulation of LC I was observed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The effects of antiinflammatory steroids on arachidonic acid metabolite release from human lung fragments were analyzed. Incubation of lung fragments for 24 hr with 10(-6) M dexamethasone inhibited the net release of the prostacyclin metabolite 6-keto-PGF1 alpha, PGE2, and PGF2 alpha from lung fragments stimulated with anti-IgE but failed to inhibit the anti-IgE-induced release of PGD2, TXB2, and iLTC4. The IC50 of dexamethasone for inhibition of both spontaneous and anti-IgE-induced 6-keto-PGF1 alpha release was approximately 2 X 10(-8) M, and a 6-hr preincubation with the drug was required for 50% inhibition of prostaglandin release. Other agents were tested for activity in stimulating arachidonic acid metabolite release from human lung fragments. FMLP (fmet-leu-phe) stimulated the release of all metabolites tested (6-keto-PGF1 alpha, PGD2, PGE2, PGF2 alpha, TXB2, iLTC4); platelet-activating factor (PAF), but not lysoPAF, stimulated the release of PGD2, TXB2, and iLTC4. In contrast to the case with anti-IgE, where dexamethasone failed to inhibit net PGD2 and TXB2 release, the steroid inhibited the release of these metabolites stimulated by both FMLP and PAF. The steroid inhibited iLTC4 release induced by the highest concentration of PAF (10(-6)M) but did not inhibit iLTC4 release stimulated by either 10(-7) M PAF, FMLP, or anti-IgE. Because neither FMLP nor PAF caused the release of PGD2 or TXB2 from purified human lung mast cells, and because they also failed to induce histamine release from lung fragments, it is suggested that these stimuli produce PGD2 and TXB2 release in lung fragments through an action on a cell distinct from the mast cell. This suggestion is supported by the selective inhibition of the release of these arachidonic acid metabolites by dexamethasone. We suggest that the inhibitory action of steroids on arachidonic acid metabolite in human lung fragments contributes to their therapeutic efficacy in pulmonary diseases.  相似文献   

14.
The effects of prostaglandin (PG) E2 and D2 on the plasma levels of arginine-vasopressin (AVP) and oxytocin (OXT) in rabbits, and on the release of the both hormones from the isolated posterior pituitary of rats were examined. An intraventricular administration of PGE2 to a rabbit raised the plasma levels of the both hormones. An intraventricular injection of PGD2 also increased the plasma level of OXT but not that of AVP. The release of AVP and OXT from fragments of the posterior pituitary of a rat was not influenced by perfusion with Eagle MEM medium containing 10(-6) or 10(-5) M PGE2 and D2.  相似文献   

15.
In the presence of ouabain, prostaglandin (PG) E2 stimulated a gradual secretion of catecholamines from cultured bovine adrenal chromaffin cells. PGE2 or ouabain alone evoked a marginal secretory response. The synergism of ouabain was also observed with muscarine. PGE2, like muscarine, induced a concentration-dependent formation of inositol phosphates: rapid rises in inositol trisphosphate and inositol bisphosphate followed by a slower accumulation of inositol monophosphate. This effect on phosphoinositide metabolism was accompanied by an increase in cytosolic free Ca2+. The potency of PGs (PGE2 greater than PGF2 alpha greater than PGD2) to stimulate catecholamine release was well correlated with that to affect phosphoinositide metabolism and that to increase the level of intracellular Ca2+. PGE2 did not stimulate cAMP generation significantly in bovine chromaffin cells. The effect of PGE2 on catecholamine release was mimicked by 12-O-tetradecanoylphorbol 13-acetate and A23187, but not by the cAMP analogue dibutyryl cAMP nor by forskolin. These results indicate that PGE2 may enhance catecholamine release from chromaffin cells by activating protein kinase C in concert with the increment of intracellular Ca2+.  相似文献   

16.
We have observed that the contents of prostaglandin (PG) D2 and 6-keto-PGF1 alpha were five times higher than those of PGE2 and PGF2 alpha in rat gastric mucosa. In order to elucidate the role of PGs in the function of gastric mucosa, we studied the effect of hypoxia on the levels of PGs in relation to the degree of gastric mucosal lesions. 6-Keto-PGF1 alpha levels were significantly decreased only by severe and long-term hypoxia (10% O2, 18 hours) when severe ulcerative lesions were observed. PGE2 levels were significantly decreased even by mild and short-term hypoxia (13% O2, 4 hours) when slight ulcerative lesions were observed. PGF2 alpha and PGD2 levels were significantly decreased by mild and short-term hypoxia; however, there was no significant difference from the control group under severe and long-term hypoxia. These results suggest that each of the PGs plays a different role in the pathogenesis of acute gastric mucosal lesions induced by hypoxia.  相似文献   

17.
In primary cultures of bovine adrenal medulla, chromaffin cells responded to prostaglandin (PG) E2 by stimulating phosphoinositide metabolism (Yokohama et al. (1988) J. Biol. Chem. 263, 1119-1122). In contrast, nonchromaffin cells were found to respond to PGD2 by elevating their intracellular cAMP level. The formation of cAMP was detected at as low as 0.1 nM PGD2 and increased more than 100-fold over the basal level at 0.1 microM, and the response was specific for PGD2 (greater than PGE1 greater than PGE2 greater than PGF2 alpha = PGI2). The magnitude of cAMP formation and its specificity to PGD2 were retained throughout a 40-day culture period. Based on the inhibitory effect of cis-4-hydroxy-L-proline, an inhibitor of collagen synthesis, on cAMP formation, morphology, and immunoreactivity of cells to anti-collagen type I antiserum, the responsive cells were identified as fibroblasts. These results taken together demonstrate that the adrenal medulla is composed of chromaffin and nonchromaffin cells, which respond to PGE2 and PGD2, respectively, by two different signal transduction pathways. The cAMP formation by PGD2 was also observed in fibroblasts from bovine embryonic trachea among cell lines tested, suggesting that some populations of fibroblasts responsive to PGD2 exist in various tissues and may discriminate the signal from that of PGE1 or PGE2.  相似文献   

18.
Prostaglandin (PG) production was evaluated in the three cell types (endothelial, smooth muscle, and fibroblast) comprising the bovine pulmonary artery. Prostacyclin (PGI2) was the predominant prostaglandin (PG) produced by endothelial, smooth muscle, and fibroblast cells as they exist in culture or in freshly excised tissue fragments. In addition to PGI2, measurable amounts of PGE2, PGF2a, and thromboxane A2 (TXA2) were also produced by these cells. Endothelial cells were the most active producers of PGs. However, the type of PG produced was characteristic of the particular cell type, while the level of production was dependent on external factors. Prostaglandin production by cultured cells, both under basal conditions and in response to stimulatory agents, was quite similar to that of the respective freshly excised tissue fragments containing a given cell type. These cells in culture could be stimulated to produce PGI2 by both angiotensin and bradykinin at very low (physiological) concentrations, a further indication of the retention of the physiological responsiveness of these cells in culture. Endothelial cells and fibroblasts were activated by bradykinin at concentrations as low as 10(-12) M but did not respond to angiotensin. Smooth muscle cells in primary and first passage cultures were activated by both bradykinin and angiotensin at 10(-12) M concentrations. Serial subcultivations of smooth muscle cells resulted in a progressive loss in their responsiveness to bradykinin stimulation. The state of cell growth proved to be an important determinant of PG production. Actively growing cells in culture synthesized less PG when compared to cells which had entered into a "quiescent" nongrowth state.  相似文献   

19.
Purified bovine myometrial plasma membranes were used to characterize prostaglandin (PG) E2 binding. Two binding sites were found: a high-affinity site with a dissociation constant (KD) of 0.27 +/- 0.08 nM and maximum binding (Bmax) of 102.46 +/- 8.6 fmol/mg membrane protein, and a lower affinity site with a KD = 6.13 +/- 0.50 nM and Bmax = 467.93 +/- 51.63 fmol/mg membrane protein. Membrane characterization demonstrated that [3H]PGE2 binding was localized in the plasma membrane. In binding competition experiments, unlabelled PGE1 displaced [3H]PGE2 from its receptor at the same concentrations as did PGE2. Neither PGF2 alpha nor PGD2 effectively competed for [3H]PGE2 binding. Adenylyl cyclase activity was inhibited at concentrations of PGE2 that occupy the high-affinity receptor. These data demonstrate that two receptor sites, or states of binding within a single receptor, are present for PGE2 in purified myometrial membranes. PGE2 inhibition of adenylyl cyclase activity support the view that cAMP has a physiological role in the regulation of myometrial contractility by PGE2.  相似文献   

20.
We examined the effect of in vitro incubation with the oral gold compound auranofin (AF) on arachidonic acid (AA) release and metabolism by rat alveolar macrophages (AMs). AF stimulated dose- and time-dependent release of 14C-AA from prelabeled AMs, which reached 4.7 +/- 0.3% (mean +/- SEM) of incorporated radioactivity at 10 micrograms/ml for 90 min, as compared to 0.5 +/- 0.1% release following control incubation for 90 min (p less than 0.001). Similar dose- and time-dependent synthesis of thromboxane (Tx) A2 (measured as TxB2) and prostaglandin (PG) E2 was demonstrated by radioimmunoassay of medium from unlabeled cultures, reaching 18-fold and 9-fold, respectively, of the control values at 10 micrograms/ml AF for 90 min (p less than 0.001 for both). AF-induced TxB2 and PGE2 synthesis was inhibited by indomethacin as well as by pretreatment with methylprednisolone. No increase in the synthesis of immunoreactive leukotrienes (LT) B4 or C4 was noted at any dose or time of AF. High performance liquid chromatographic separation of 14C-eicosanoids synthesized by prelabeled AMs confirmed that AF induced the release of free AA and its metabolism to cyclooxygenase, but not 5-lipoxygenase, metabolites. The ability of AF to trigger macrophage AA metabolism may be relevant to the exacerbation of certain inflammatory processes which sometimes accompany gold therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号