首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Alfalfa plants co-inoculated with Rhizobium meliloti nodulation (Nod-) and infection mutants deficient in exopolysaccharide production (Inf-EPS-) formed mixed infected nodules that were capable of fixing atmospheric nitrogen. The formation of infected nodules was dependent on close contact between the inoculation partners. When the partners were separated by a filter, empty Fix- nodules were formed, suggesting that infection thread formation in alfalfa is dependent on signals from the nodulation and infection genes. In mixed infected nodules, both nodulation and infection mutants colonized the plant cells and differentiated into bacteroids. The formation of bacteroids was not dependent on cell-to-cell contact between the mutants. Immunogold/silver staining revealed that the ratio of the two mutants varied considerably in colonized plant cells following mixed inoculation. The introduction of an additional nif/fix mutation into one of the inoculation partners did not abolish nitrogen fixation in mixed infected nodules. The expression of nif D::lacZ fusions additionally demonstrated that mutations in the nodulation and infection genes did not prevent the nif genes from being expressed in the mutant bacteroids.  相似文献   

2.
3.
4.
5.
During the symbiotic interaction between alfalfa and the nitrogen-fixing bacterium Rhizobium meliloti, the bacterium induces the formation of nodules on the plant roots and then invades these nodules. Among the bacterial genes required for nodule invasion are the exo genes, involved in production of an extracellular polysaccharide, and the ndv genes, needed for production of a periplasmic cyclic glucan. Mutations in the exoD gene result in altered exopolysaccharide production and in a nodule invasion defect. In this work we show that the stage of symbiotic arrest of exoD mutants is similar to that of other exo and ndv mutants. However, the effects of exoD mutations on exopolysaccharide production and growth on various media are different from the effects of other exo and ndv mutations. Finally, exoD mutations behave differently from other exo mutations in their ability to be suppressed or complemented extracellularly. The results suggest that exoD represents a new class of Rhizobium genes required for nodule invasion, distinct from the other exo genes and the ndv genes. We discuss models for the function of exoD.  相似文献   

6.
To identify bacterial genes involved in symbiotic nodule development, ineffective nodules of alfalfa (Medicago sativa) induced by 64 different Fix-mutants of Rhizobium meliloti were characterized by assaying for symbiotic gene expression and by morphological studies. The expression of leghemoglobin and nodulin-25 genes from alfalfa and of the nifHD genes from R. meliloti were monitored by hybridizing the appropriate DNA probes to RNA samples prepared from nodules. The mutants were accordingly divided into three groups. In group I none of the genes were expressed, in group II only the plant genes were expressed and in group III all three genes were transcribed. Light and electron microscopical analysis of nodules revealed that nodule development was halted at different stages in nodules induced by different group I mutants. In most cases nodules were empty lacking infection threads and bacteroids or nodules contained infection threads and a few released bacteroids. In nodules induced by a third mutant class bacteria were released into the host cells, however the formation of the peribacteroid membrane was not normal. On this basis we suggest that peribacteroid membrane formation precedes leghemoglobin and nodulin-25 induction, moreover, after induction of nodulation by the nod genes at least two communication steps between the bacteria and the host plants are necessary for the development of the mature nodule. By complementing each mutant of group I with a genomic R. meliloti library made in pLAFRl, four new fix loci were identified, indicating that several bacterial genes are involved in late nodule development.  相似文献   

7.
Rhizobium sp. strain NGR234 produces large amounts of acidic exopolysaccharide. Mutants that fail to synthesize this exopolysaccharide are also unable to nodulate the host plant Leucaena leucocephala. A hybrid strain of Rhizobium sp. strain NGR234 containing exo genes from Rhizobium meliloti was constructed. The background genetics and nod genes of Rhizobium sp. strain NGR234 are retained, but the cluster of genes involved in exopolysaccharide biosynthesis was deleted. These exo genes were replaced with genes required for the synthesis of succinoglycan exopolysaccharide from R. meliloti. As a result of the genetic manipulation, the ability of these hybrids to synthesize exopolysaccharide was restored, but the structure was that of succinoglycan and not that of Rhizobium sp. strain NGR234. The replacement genes were contained on a cosmid which encoded the entire known R. meliloti exo gene cluster, with the exception of exoB. Cosmids containing smaller portions of this exo gene cluster did not restore exopolysaccharide production. The presence of succinoglycan was indicated by staining with the fluorescent dye Calcofluor, proton nuclear magnetic resonance spectroscopy, and monosaccharide analysis. Although an NGR234 exoY mutant containing the R. meliloti exo genes produced multimers of the succinoglycan repeat unit, as does the wild-type R. meliloti, the deletion mutant of Rhizobium sp. strain NGR234 containing the R. meliloti exo genes produced only the monomer. The deletion mutant therefore appeared to lack a function that affects the multiplicity of succinoglycan produced in the Rhizobium sp. strain NGR234 background. Although these hybrid strains produced succinoglycan, they were still able to induce the development of an organized nodule structure on L. leucocephala. The resulting nodules did not fix nitrogen, but they did contain infection threads and bacteroids within plant cells. This clearly demonstrated that a heterologous acidic exopolysaccharide structure was sufficient to enable nodule development to proceed beyond the developmental barrier imposed on mutants of Rhizobium sp. strain NGR234 that are unable to synthesize any acidic exopolysaccharide.  相似文献   

8.
9.
Under nitrogen-depleted conditions nitrogen-fixing soil bacteria of the family Rhizobiaceae are able to induce symbiotic nodules on the roots of leguminous plants where bacteroids convert atmospheric nitrogen to ammonia. The presence of exogenous nitrogen source inhibits the development and the functioning of bacterium-plant symbiosis. Earlier experiments demonstrated that nitrate inhibited all stages of symbiotic interaction, affecting primarily the host functions. The investigation of the possible involvement of the microsymbiont in nitrogen regulation showed that two signalling steps were controlled by ammonium. The synthesis of the first bacterial signal, the Nod factor was repressed by ammonium. The nitrogen signal is conveyed to nodulation (nod) genes by the general nitrogen regulatory (ntr) system and by the nodD3-syrM self-amplifying system. The fine control also involves a negative regulatory factor, ntrR. When ntrR is mutated, more efficient nodule formation and nitrogen fixation is observed in symbiosis with alfalfa even in the presence of ammonium. The biosynthesis of the second bacterial signal succinoglycan is also controlled by ammonium. SyrM, a common regulatory factor for nod and exo gene expression, may contribute to the adjustment of the amount of succinoglycan and the ratio of its biologically active form.  相似文献   

10.
We describe a new Rhizobium meliloti gene, exoX, that regulates the synthesis of the exopolysaccharide, succinoglycan, exoX resembled the psi gene of R. leguminosarum bv. phaseoli and the exoX gene of Rhizobium sp. strain NGR234 in its ability to inhibit exopolysaccharide synthesis when present in multiple copies, exoX did not appear to regulate the expression of exoP. The effect of exoX was counterbalanced by another R. meliloti gene, exoF. exoF is equivalent to Rhizobium sp. strain NGR234 exoY and resembles R. leguminosarum bv. phaseoli pss2 in its mutant phenotype and in portions of its deduced amino acid sequence. The effect of exoF on the succinoglycan-inhibiting activity of exoX depended on the relative copy numbers of the two genes. exoX-lacZ fusions manifested threefold-higher beta-galactosidase activities in exoF backgrounds than in the wild-type background. exoX mutants produced increased levels of succinoglycan. However, the exoF gene was required for succinoglycan synthesis even in an exoX mutant background. exoF did not affect the expression of exoP. Strains containing multicopy exoX formed non-nitrogen-fixing nodules on alfalfa that resembled nodules formed by exo mutants defective in succinoglycan synthesis. exoX mutants formed nitrogen-fixing nodules, indicating that, if the inhibition of succinoglycan synthesis within the nodule is necessary for nitrogen fixation, then exoX is not required for this inhibition. We present indirect evidence that succinoglycan synthesis within the nodule is not necessary for bacteroid function.  相似文献   

11.
Southern hybridization with nif (nitrogen fixation) and nod (nodulation) DNA probes from Rhizobium meliloti against intact plasmid DNA of Rhizobium japonicum and Bradyrhizobium japonicum strains indicated that both nif and nod sequences are on plasmid DNA in most R. japonicum strains. An exception is found with R. japonicum strain USDA194 and all B. japonicum strains where nif and nod sequences are on the chromosome. In R. japonicum strains, with the exception of strain USDA205, both nif and nod sequences are on the same plasmid. In strain USDA205, the nif genes are on a 112-megadalton plasmid, and nod genes are on a 195-megadalton plasmid. Hybridization to EcoRI digests of total DNA to nif and nod probes from R. meliloti show that the nif and nod sequences are conserved in both R. japonicum and B. japonicum strains regardless of the plasmid or chromosomal location of these genes. In addition, nif DNA hybridization patterns were identical among all R. japonicum strains and with most of the B. japonicum strains examined. Similarly, many of the bands that hybridize to the nodulation probe isolated from R. meliloti were found to be common among R. japonicum strains. Under reduced hybridization stringency conditions, strong conservation of nodulation sequences was observed in strains of B. japonicum. We have also found that the plasmid pRjaUSDA193, which possess nif and nod sequences, does not possess sequence homology with any plasmid of USDA194, but is homologous to parts of the chromosome of USDA194. Strain USDA194 is unique, since nif and nod sequences are present on the chromosome instead of on a plasmid as observed with all other strains examined.  相似文献   

12.
By using cloned Rhizobium meliloti nodulation (nod) genes and nitrogen fixation (nif) genes, we found that the genes for both nodulation and nitrogen fixation were on a plasmid present in fast-growing Rhizobium japonicum strains. Two EcoRI restriction fragments from a plasmid of fast-growing R. japonicum hybridized with nif structural genes of R. meliloti, and three EcoRI restriction fragments hybridized with the nod clone of R. meliloti. Cross-hybridization between the hybridizing fragments revealed a reiteration of nod and nif DNA sequences in fast-growing R. japonicum. Both nif structural genes D and H were present on 4.2- and 4.9-kilobase EcoRI fragments, whereas nifK was present only on the 4.2-kilobase EcoR2 fragment. These results suggest that the nif gene organizations in fast-growing and in slow-growing R. japonicum strains are different.  相似文献   

13.
Genetic experiments have indicated that succinoglycan (EPS I), the acidic Calcofluor-binding exopolysaccharide, of the nitrogen-fixing bacterium Rhizobium meliloti strain Rm1021 is required for nodule invasion and possibly for later events in nodule development on alfalfa and other hosts. Fourteen exo loci on the second megaplasmid have been identified that are required for, or affect, the synthesis of EPS I. Mutations in certain of these loci completely abolish the production of EPS I and result in mutants that form empty Fix- nodules. We have identified two loci, exoR and exoS, that are involved in the regulation of EPS I synthesis in the free-living state. Certain exo mutations which completely abolish EPS I production are lethal in an exoR95 or exoS96 background. Histochemical analyses of the expression of exo genes during nodulation using exo::TnphoA fusions have indicated that the exo genes are expressed most strongly in the invasion zone. In addition, we have discovered that R. meliloti has a latent capacity to synthesize a second exopolysaccharide (EPS II) that can substitute for the role(s) of EPS I in nodulation of alfalfa but not of other hosts. Possible roles for exopolysaccharides in symbiosis are discussed.  相似文献   

14.
15.
16.
Ineffective alfalfa nodules were examined at the light and electron microscope level after inoculation with Rhizobium meliloti strains with mutations in nif and fix genes. All the mutant strains induced nodules that contained elongated bacteroids within the host cells, but the bacteroids quickly senesced. The nodules were small and numerous, and the host cells also exhibited symptoms of an ineffective symbiosis. nifB, fixA, and fixB bacteroids appeared to be completely differentiated (by ultrastructural criteria), i.e., as bacteroids developed, they increased in diameter and length and their cytoplasm underwent a change from homogeneous and electron dense to heterogeneous and electron transparent after enlargement. In contrast, nifA bacteroids rarely matured to this state. The bacteroids degenerated at an earlier stage of development and did not become electron transparent.  相似文献   

17.
Seventeen arginine auxotrophic mutants of Sinorhizobium meliloti Rmd201 were isolated by random transposon Tn5 mutagenesis using Tn5 delivery vector pGS9. Based on intermediate feeding studies, these mutants were designated as argA/argB/argC/argD/argE (ornithine auxotrophs), argF/argI, argG and argH mutants. The ornithine auxotrophs induced ineffective nodules whereas all other arginine auxotrophs induced fully effective nodules on alfalfa plants. In comparison to the parental strain induced nodule, only a few nodule cells infected with rhizobia were seen in the nitrogen fixation zone of the nodule induced by the ornithine auxotroph. TEM studies showed that the bacteroids in the nitrogen fixation zone of ornithine auxotroph induced nodule were mostly spherical or oval unlike the elongated bacteroids in the nitrogen fixation zone of the parental strain induced nodule. These results indicate that ornithine or an intermediate of ornithine biosynthesis, or a chemical factor derived from one of these compounds is required for the normal development of nitrogen fixation zone and transformation of rhizobial bacteria into bacteroids during symbiosis of S. meliloti with alfalfa plants.  相似文献   

18.
exo mutants of Rhizobium meliloti SU47, which fail to secrete acidic extracellular polysaccharide (EPS), induce Fix- nodules on alfalfa. However, mutants of R. meliloti Rm41 carrying the same exo lesions induce normal Fix+ nodules. We show that such induction is due to a gene from strain Rm41, which we call lpsZ+, that is missing in strain SU47. lpsZ+ does not restore EPS production but instead alters the composition and structure of lipopolysaccharide. In both SU47 and Rm41, either lpsZ+ or exo+ is sufficient for normal nodulation. This suggests that in R. meliloti EPS and lipopolysaccharide can perform the same function in nodule development.  相似文献   

19.
Mutants of alfalfa symbiont Rhizobium meliloti SU47 that fail to make extracellular polysaccharide (exo mutants) induce the formation of nodules that are devoid of bacteria and consequently do not fix nitrogen. This Fix- phenotype can be suppressed by an R. meliloti Rm41 gene that affects lipopolysaccharide structure. Here we describe mutations preventing suppression that map at two new chromosomal loci, lpsY and lpsX, present in both strains. Two other lps mutations isolated previously from SU47 also prevented suppression.  相似文献   

20.
Symbiosis is a complex genetic regulatory biological evolution which is highly specific pertaining to plant species and microbial strains. Biological nitrogen fixation in legumes is a functional combination of nodulation by nod genes and regulation by nif, fix genes. Three rhizobial strains (Rhizobium leguminosarum, Bradyrhizobium japonicum, and Mesorhizobium ciceri) that we considered for in silico analysis of nif A are proved to be the best isolates with respect to N2 fixing for ground nut, chick pea and soya bean (in vitro) out of 47 forest soil samples. An attempt has been made to understand the structural characteristics and variations of nif genes that may reveal the factors influencing the nitrogen fixation. The primary, secondary and tertiary structure of nif A protein was analyzed by using multiple bioinformatics tools such as chou-Fasman, GOR, ExPasy ProtParam tools, Prosa -web. Literature shows that the homology modeling of nif A protein have not been explored yet which insisted the immediate development for better understanding of nif A structure and its influence on biological nitrogen fixation. In the present predicted 3D structure, the nif A protein was analyzed by three different software tools (Phyre2, Swiss model, Modeller) and validated accordingly which can be considered as an acceptable model. However further in silico studies are suggested to determine the specific factors responsible for nitrogen fixing in the present three rhizobial strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号