首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 15 毫秒
1.
Results of a 7-month field test of in situ bioremediation of carbon tetrachloride (CT) under denitrifying conditions are reported. The demonstration was conducted in a portion of a several-square-mile CT and nitrate plume. Pretest CT and nitrate levels were 12.5 ± 0.14 μM and 3.87 ± 0.26 mM, respectively. During the test, the CT concentration dropped by 3.71 ± μM, representing an estimated total of 1.42 kg of CT destroyed. The total quantities of acetate and nitrate injected during the demonstration were 221 and 300 kg, respectively. Nitra injection was composed of short-duration, high-concentration pulses added with acetate pulses, and continuously injected nitrate that was present in the surrounding groundwater. Biomass was distributed successfully within the flow field without fouling the injection well. Levels of planktonic denitrifiers increased 10- and 5-fold in monitoring wells 3 and 6 m downstream from the injection well, respectively. A distributed growth pattern was indicated through reductions in the concentrations of acetate, nitrate, and nitrite between these wells. Chloroform (CF) production was controlled by adjusting acetate and nitrate pulsing to keep low levels of nitrate in most of the flow field. Under this regime only 1 mol% of transformed CT appeared as CF. In contrast, approximately 33 mol% of CT transformed to appear as CF when nutrient-feeding conditions were adjusted so that nitrate was consistently absent.  相似文献   

2.
The aquifer below an abandoned chemical plant in Hamburg, Germany, is heavily contaminated with chlorinated aromatic compounds, mainly chlorobenzenes. Preliminary evaluations made evident that pump-and-treat remediation of the site would be inefficient due to adsorption of the contaminants and the possible presence of dense nonaqueous phase liquid (DNAPL) in the aquifer. Other preliminary studies indicated that benzenes with a low degree of chlorination, which account for the bulk of the contamination in the aquifer, were aerobically degradable. Thus, in situ bioremediation using dissolved oxygen as an oxidant was proposed as an alternative to pump-and-treat remediation.

To assess the feasibility of bioremediation at this site, a pilot study was conducted on a 55 m x 30 m test plot that was equipped with two injection wells, six extraction wells, and 18 observation wells. Water saturated with oxygen using pure oxygen gas was injected for a period of 433 days.

Application of the three-dimensional reactive transport model, Transport, Biochemistry, and Chemistry (TBC), allowed the distinction between transport and reactive processes and the evaluation of oxygen consuming processes. Preliminary mass balance considerations had indicated that a significant portion of the injected oxygen was used for oxidation of inorganic compounds instead of the contaminants. The model calculations allowed quantification of these effects. Simulation results suggested that in situ bioremediation occurred at the site, but with an unacceptably low efficiency. Only 2% of the injected oxygen was used for contaminant degradation, while 63% was consumed by inorganic reductants, presumably mainly pyrite. Approximately 32% of the injected oxygen was extracted by the extraction wells and approximately 3% remained in the aquifer after the pilot study was completed.  相似文献   

3.
The potential for stimulating microbial U(VI) reduction as an in situ bioremediation strategy for uranium-contaminated groundwater was evaluated in uranium-contaminated sediment from the FRC, Oak Ridge, TN. Sediment was at low pH (pH 4) and contained high (55 mM) concentrations of nitrate. The addition of organic electron donors resulted in a slow removal of ca. 20% of the nitrate over 120 days with a concurrent increase in pH. Uranium precipitated during nitrate reduction. This precipitation of U(VI) was not due to its reduction to U(IV) because over 90% of the uranium in the sediments remained as U(VI). Studies in which the pH of the sediments was artificially raised suggested that an increase in pH alone could not account for the precipitation of the U(VI) during nitrate reduction. Metal-reducing bacteria were recovered from the sediments in enrichment cultures, but molecular analysis of the sediment demonstrated that the addition of electron donors did not stimulate the growth of these metal reducers. Thus, although U(VI) was precipitated from the groundwater with the simple addition of electron donors, most of the uranium in the sediments was in the form of U(VI), and thus was not effectively immobilized.  相似文献   

4.
Controlled releases of unleaded gasoline were used to evaluate the biotransformation of the soluble aromatic hydrocarbons (benzene, toluene, ethylbenzene, xylene isomers, trimethylbenzene isomers, and naphthalene) within a source zone using nitrate and oxygen as electron acceptors. Experiments were performed within two 2 m×2 m×3.5 m deep sheet-piling cells. A gasoline-contaminated zone was created below the water table in each treatment cell. Groundwater amended with electron acceptors was then flushed continuously through the cells for 174 d. One cell received approximately 100 mg/L nitrate and “microaerophilic” (i.e., 2 mg/L or less) dissolved oxygen (DO), a second cell received micro aerophilic DO only. Electron-acceptor utilization and hydrocarbon-metabolite formation were observed in both cells, suggesting that some microbial activity had been induced in response to flushing. However, nitrate utilization was slow relative to the cell residence time, and aromatic-hydrocarbon mass losses in response to microaerophilic DO addition were not apparent under these in situ conditions. Concentration trends in both cells suggested that there was relatively little biotransformation of the aromatic hydrocarbons over the 2-m flow path monitored in this experiment. Extraction-well concentration trends, for example, were consistent with abiotic gasoline dissolution. The results from the nitrate-amended cell suggest that a large denitrifying population capable of aromatic hydrocarbon biotransformation failed to develop within the gasoline source zone over a 14-month period of nitrate exposure. This study reinforces the need for detailed aquifer-specific testing prior to selecting bioremediation for full-scale cleanup, particularly for recent hydrocarbon spills.  相似文献   

5.
Microorganisms associated with basalt core were compared to those suspended in groundwater pumped from the same well in the eastern Snake River Plain Aquifer (Idaho, USA). Two wells located at different distances from the source of a mixed-waste plume in the fractured basalt aquifer were examined. In the well more distal from the plume source, an array of dialysis chambers filled with either deionized water or crushed basalt was equilibrated to compare the microorganisms collected in this fashion with those from core and groundwater samples collected in a traditional manner from the same well. The samples were characterized to determine the total amount of biomass, presence of specific populations or physiological groups, and potential community functions. Microorganisms and their activities were nearly undetectable in core and groundwater collected from the well farthest from the plume source and substantially enriched in both core and groundwater from the well closest to the plume source. In both wells, differences (statistically significant for some measures) were found between bacteria associated with the cores and those suspended in the groundwater. Significantly higher populations were found in the basalt- and water-filled dialysis chambers incubated in the open well compared with core and groundwater samples, respectively. For a given parameter, the variation among dialysis chambers incubated at different depths was much less than the high variation observed among core samples. Analyses on selected basalt- and water-filled dialysis chamber samples suggested that these two communities were compositionally similar but exhibited different potential functions. Documented knowledge of cell physiological changes associated with attachment and potential differences between attached and unattached communities in aquifers indicate that careful consideration should be given to the type of sample media (i.e., core, groundwater, substrata incubated in a well) used to represent a subsurface environment.  相似文献   

6.
The concentrations of 10 metals (As, Cd, Cr, Cu, Fe, Hg, Mn, Pb, Se, Zn) were determined in drinking water in Khingan, China, a forest zone after long-term excessive deforestation. These metals’ concentrations in water exceeded background values of metals in some other regions of the world, indicating that there were other metal sources contributing to such high levels of metals in Khingan. Arsenic was the only metal whose concentration exceeded the maximum levels allowed in drinking water. Principal component analysis showed that As, Cd, Cu, and Se originated from anthropogenic sources and exhibited significantly high concentrations in north Khingan, while Fe and Mn derived from natural formation and showed significantly high concentrations in central Khingan. Health risks from metals were evaluated by a model recommended by the U.S. Environmental Protection Agency. Ingestion was the predominant pathway of exposure to metals in water for local residents. Arsenic was also the only metal causing both noncarcinogenic hazard and carcinogenic risk in Khingan. The high risks occurred mainly in north Khingan and are associated with coal combustion. This study indicates that long-term excessive deforestation may increase As concentration considerably in drinking water and then pose health risks to local residents.  相似文献   

7.
Anthropogenic activities like agriculture have resulted in increased concentrations of some trace elements of toxicological and environmental concern in soils. Application of fertilizers has been one of the major inputs of these contaminants to agricultural soils in developing countries. Twenty-two fertilizers, including straight nitrogen (N), phosphorus (P), potassium (K), and NK fertilizers and micronutrient sources, were analyzed by inductively coupled plasma optical emission spectrometry (ICP-OES) for arsenic (As), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), molybdenum (Mo), nickel (Ni), lead (Pb), vanadium (V), and zinc (Zn). As expected, the trace element content of fertilizers was highly variable and related to the origin of the material. Phosphorus fertilizers, especially triple superphosphate, presented the highest As, Cd, Cu, Cr, Ni, V, and Zn concentrations. In some of these fertilizers, the Cr, V, and Zn contents reached values greater than 3475 mg kg?1 of P, and the Cd content (up to 288 mg kg?1 of P) was several times higher than the regulatory limits of different countries. Some micronutrient sources presented the highest concentrations of Mn and Pb. In the cases of N, K, and NK fertilizers, the trace element concentration was very low, sometimes below the detection limits. In some agricultural systems the input of trace elements such as As and Cd to the soil through P fertilizers application may be higher than the outputs through plant uptake and leaching; therefore the long-term use of these fertilizers may cause the trace element concentration to increase in the plow layer of agricultural soils.  相似文献   

8.
9.
This work reveals the great potential of in situ dielectric spectroscopy for deciphering the motion of ions and electrons on different scales in lithium‐ion battery electrodes. One of the main bottlenecks limiting composite electrode kinetics and energy density, is a critical lack of fundamental understanding with respect to the electronic and the ionic transport within the electrode architecture. The latter is a granular material made up of clusters of particles, in which the particles are separated by boundaries that limit the electronic transport. The ionic transport is also severely restricted due to its tortuous porosity. Here, in situ dielectric spectroscopy is used to study the lithium‐ion battery LiNi1/3Co1/3Mn1/3O2 composite electrodes. Short‐ and long‐range motions of ions are evident in the low‐frequency region. At higher frequencies, the influence of the adsorbed electrolyte ions on the electronic transfer at the micrometer scale is shown.  相似文献   

10.
Abstract: In examining steroid synthesis in the CNS, expression of the mRNAs encoding for cytochrome P450 side-chain cleavage enzyme (P450SCC) and 3β-hydroxysteroid dehydrogenase/Δ54 isomerase (3β-HSD) has been studied in the rat brain. P450SCC transforms cholesterol into pregnenolone and 3β-HSD transforms pregnenolone into progesterone. PCR was used to amplify cDNA sequences from total RNA extracts. Classical steroidogenic tissues, like adrenal and testis, as well as the non-steroidogenic tissue lung have been used as controls. The expression of P450SCC and 3β-HSD have been demonstrated by PCR in cortex, cerebellum, and spinal cord. In addition, primary cultures of rat cerebellar glial cells and rat cerebellar granule cells were found to express P450SCC and 3β-HSD at comparable levels. Furthermore, three of the four known isoenzymes of 3β-HSD were identified, as determined using selective PCR primers coupled with discriminative restriction enzymes and sequencing analysis of the amplified brain products. Using RNA probes, in situ hybridization indicated that P450SCC and 3β-HSD are expressed throughout the brain at a low level and mainly in white matter. Enrichment of glial cell cultures in oligodendrocytes, however, does not increase the relative abundance of P450SCC and 3β-HSD mRNA detected by PCR. This discrepancy suggests that the developmental state of cultured cells and their intercellular environment may be critical for regulating the expression of these enzymes. These findings support the proposal that the brain apparently has the capacity to synthesize progesterone from cholesterol, through pregnenolone, but that the expression of these enzymes appears to be quite low. Furthermore, the identification of these messages in cerebellar granule cell cultures implies that certain neurons, in addition to glial cells, may express these steroidogenic enzymes.  相似文献   

11.
Toxicity of Microcystis blooms to warm-blooded animals generated by microcystins has bew reported world wide. The ecological relevance of microcystin production for cyanobacteria remains unknown. The microcystin concentration in Microcystis blooms occurring in the Bautzen reservoir Was investigated. The microcystin content of samples were determined by HPLC and ranged from undetectabel to 14.7 μg mg−1. Various chemical and physical parameters were monitored at the same time as Microcystis sampling, however, there was no correlation between these parameters and microcystin dynamics. The spatial distribution of microcystin in the Microcystis population was investigated once and showed no difference between samples taken at five stations. The microcystin concentration in ihc cell free water from the reservoir was below the detection threshold (< 1 μg L−1). Size dependent Fractions of the Microcystis population analyzed for microcystin concentration correlated with colony sim. In the small fraction (>30 <66 μm) microcystin was not detected. In the medium fraction (> 6 h < 100μm) lower microcystin concentrations were detected than in large fraction (>100μm) in which the highest microcystin concentrations were found.  相似文献   

12.
A solution‐processed neutral hole transport layer is developed by in situ formation of MoO3 in aqueous PEDOT:PSS dispersion (MoO3‐PEDOT:PSS). This MoO3‐PEDOT:PSS composite film takes advantage of both the highly conductive PEDOT:PSS and the ambient conditions stability of MoO3; consequently it possesses a smooth surface and considerably reduced hygroscopicity. The resulting bulk heterojunction polymer solar cells (BHJ PSC) based on poly[2,3‐bis‐(3‐octyloxyphenyl)quinoxaline‐5,8‐diyl‐alt‐thiophene‐2,5‐diyl] (TQ1):[6,6]‐phenyl‐C71‐butyric acid methyl ester (PC70BM) blends using MoO3‐PEDOT:PSS composite film as hole transport layer (HTL) show considerable improvement in power conversion efficiency (PCE), from 5.5% to 6.4%, compared with the reference pristine PEDOT:PSS‐based device. More importantly, the device with MoO3‐PEDOT:PSS HTL shows considerably improved stability, with the PCE remaining at 80% of its original value when stored in ambient air in the dark for 10 days. In comparison, the reference solar cell with PEDOT:PSS layer shows complete failure within 10 days. This MoO3‐PEDOT:PSS implies the potential for low‐cost roll‐to‐roll fabrication of high‐efficiency polymer solar cells with long‐term stability at ambient conditions.  相似文献   

13.
In order to evaluate the possibility of Epstein-Barr virus (EBV) and human herpesvirus 6 (HHV-6) transmission via breast milk, a total of 331 serum specimens collected from bottle-fed and breast-fed children and their mothers, in 2 endemic areas of human T-cell lymphotropic virus type I (HTLV-I) in Japan, were assayed for antibodies to EBV and HHV-6. The seroprevalences of EBV and HHV-6 were over 95% both in the mothers of bottle-fed children and in those of breast-fed children. The seroprevalence of EBV at 12–23 months of age was 54.5% (36/66) and 55.8% (24/43) in breast-fed children and bottle-fed children, respectively. The seroprevalence of HHV-6 at 12–23 months of age was 90.9% (60/66) and 93.0% (40/43) in breast-fed children and bottle-fed children, respectively. No difference was observed between the seroprevalences of EBV and HHV-6 in breast-fed and bottle-fed children at 12–23 months of age. Our seroepidemiologic data indicate that breast milk is not a significant source of early EBV or HHV-6 infection in infancy.  相似文献   

14.
This case study sought to examine how temporal variability in hydrological and hydraulic conditions might affect the feeding opportunities of juvenile Atlantic salmon in two hydrologically contrasting years of 2002 and 2003, which were characterised by high and low flows respectively. Firstly, measures of hydraulic influence were calculated to define what might be ecologically meaningful disturbance periods during high flows. Secondly, for identifying such periods, the parameter Critical Displacement Velocity (CDV) was derived from a river discharge time series as a first approximation of the amount of time in two hydrologically extreme years when fish foraging strategies for specific age classes of juvenile Atlantic salmon (Salmo salar) might be disrupted by flows. The CDV estimates the threshold velocity above which juvenile salmon are unable to hold station and it is dependent upon fish size and stream temperature. In the wet year 2002, the CDV was exceeded on 18% and 21% of days for 0+ and 1+ fish respectively. In 2003 these respective numbers fell to 6% and 15%. The data suggest that hydrological conditions during certain times of the year have the potential to affect foraging behaviour. This in turn might have implications for recruitment and growth rates for juvenile salmon in upland streams.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号