首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Arbuscular mycorrhizal fungi (AMF) improve the tolerance of hosting plants to arsenic (As) in contaminated soils. This work assessed the phytoprotective effect of Glomus etunicatum, Acaulospora morrowiae, Gigaspora gigantea, and Acaulospora sp. on four leguminous species (Acacia mangium, Crotalaria juncea, Enterolobium contortisiliquum, and Stizolobium aterrimum) in an As-contaminated soil from a gold mining area. AMF root colonization, biomass production, As and P accumulation, as well as arsenic translocation index (TI) from roots to shoots were measured. The AMF phytoprotective effect was assessed by the P/As ratio and the activity of plant antioxidant enzymes. The AMF colonization ranged from 24 to 28%. In general, all leguminous species had low As TI when inoculated with AMF species. Inoculation of C. juncea with Acaulospora sp. improved significantly As accumulation in roots, and decreased the activity of ascorbate peroxidase (APX) and superoxide dismutase (SOD), highlighting its phytoprotective effect and the potential use of this symbiosis for phytoremediation of As-contaminated soils. However, S. aterrimum has also shown a potential for phytoremediation irrespectively of AMF inoculation. APX was a good indicator of the phytoprotective effect against As contamination in C. juncea and A. mangium. In general P/As ratio in shoots was the best indicator of the phytoprotective effect of all AMF species in all plant species.  相似文献   

2.
Brachiaria, a genus of forage grasses of African origin, is gaining considerable importance because of both its nutritional value and its high stress resistance. An extraordinary resistance to Al toxicity has been reported in B. decumbens. The mechanisms of this hyperresistance are still unknown. This study explores the localization of Al in two contrasting Brachiaria species, the hyperresistant B. decumbens and the less resistant B. brizantha. Scanning Electron Microscope/Energy Dispersive Spectrometry, confocal fluorescence microscopy and optical microscopy of lumogallion or morin-stained roots was performed. Species differences in Al resistance were evident at 32 μM Al3+ activity in low ionic strength full nutrient solution containing Si. Roots of B. decumbens accumulated less Al than those of B. brizantha. Moreover, location and Al form seemed different. In B. decumbens Al accumulation was localized in hot spots of high Al concentrations. These sites with high Al accumulation mainly correspond to root hairs. B. brizantha exhibited a more even distribution of Al in cell walls of the root tip. Analysis of soluble phenolic substances in roots revealed species differences in response to Al. An Al-induced increase of chlorogenic acid concentrations was found in B. decumbens but not in B. brizantha. Taken together the results suggest a possible role for chlorogenic acid as a primer for changes in root epidermal cell patterning that may contribute to the Al hyperresistance in B. decumbens.  相似文献   

3.
Arbuscular mycorrhizal fungi (AMF) appear to be highly associated with arsenic (As) uptake in host plants because arsenate (As(V)) and phosphorus (P) share the same transporter, whereby AMF can enhance P uptake. A short-term experiment was conducted for low- (0 to 0.05 mM As) and high-affinity (0 to 2.5 mM As) uptake systems, to investigate the AMF role on As uptake mechanism in plants, which may explain As uptake kinetics in upland rice cultivar: Zhonghan 221. When concentration of As ranged from 0 to 0.05 mM, Funneliformis geosporum (Fg) significantly decreased arsenite (As(III)) and monomethylarsonicacid (MMA) uptake when (p < 0.05) compared to non-mycorrhizal (NM) treatment, since the major route for (As(III)) in rice roots—rice silicon transporter Lsi1 would be influenced by Fg inoculation at high As concentrations. Fg can also reduce As(V) uptake significantly (p < 0.05) under both uptake systems relative to NM treatment, whereas, Funneliformis mosseae (Fm) increased As(V) and MMA uptake in rice roots, with MMA uptake rate generally lower than As(III) and As(V). Using suitable AMF species inoculation with rice, As uptake and accumulation in rice grains can be reduced and the risk to human health, once consumed, can be minimized.  相似文献   

4.
Zn uptake by maize plants may be affected by the presence of arbuscular mycorrhizal fungi (AMF). Collembola often play an important controlling role in the inter-relationship between AMF and host plants. The objective of this experiment was to examine whether the presence of Collembola at different densities (0.4 and 1 individuals g−1 dry soil) and their activity have any effect on Zn uptake by maize through the plant–AMF system. The presence of the AMF (Glomus intraradices) and of the Collembola species Folsomia candida was studied in a laboratory microcosm experiment, applying a Zn exposure level of 250 mg kg−1 dry soil. Biomass and water content of the plants were no different when only AMF or when both AMF and Collembola were present. In the presence of AMF the Zn content of the plant shoots and roots was significantly higher than without AMF. This effect was reduced by Collembola at both low and high density. High densities of Collembola reduced the extent of AMF colonization of the plant roots and hyphal length in the soil, but low densities had no effect on either. The results of this experiment reveal that the F. candidaG. intraradices interaction affects Zn uptake by maize, but the mechanisms are still unknown.  相似文献   

5.
Mohammad MJ  Pan WL  Kennedy AC 《Mycorrhiza》2005,15(4):259-266
Plexiglass pot growth chamber experiments were conducted to evaluate the chemical alterations in the rhizosphere of mycorrhizal wheat roots after inoculation with Glomus intraradices [arbuscular mycorrhizal fungus (AMF)]. Exchange resins were used as sinks for nutrients to determine whether the inoculated plant can increase the solubility and the uptake of P and micronutrients. Treatments included: (1) soil (bulk soil); (2) AMF inoculation no P addition (I–P); (3) no inoculation with no P addition (NI–P); (4) AMF inoculation with addition of 50 mg P (kg soil)–1 (I+P), and (5) no inoculation with addition of 50 mg P (kg soil)–1 (NI+P). The AMF inoculum was added at a rate of four spores of G. intraradices (g soil)–1. The exchange resin membranes were inserted vertically 5 cm apart in the middle of Plexiglass pots. Spring wheat (Triticum aestivum cv. Len) was planted in each Plexiglass pot and grown for 2 weeks in a growth chamber where water was maintained at field capacity. Rhizosphere pH and redox potential (Eh), nutrient bioavailability indices and mycorrhizal colonization were determined. Mycorrhizal inoculation increased the colonization more when P was not added, but did not increase the shoot dry weight at either P level. The rhizosphere pH was lower in the inoculated plants compared to the noninoculated plants in the absence of added P, while the Eh did not change. The decrease in pH in the rhizosphere of inoculated plants could be responsible for the increased P and Zn uptake observed with inoculation. In contrast, Mn uptake was decreased by inoculation. The resin-adsorbed P was increased by inoculation, which, along with the bioavailability index data, may indicate that mycorrhizal roots were able to increase the solubility of soil P.  相似文献   

6.
Brachiaria are increasingly cropped in the tropics because these species combine good fodder quality and yield with high resistance to aluminum (Al) toxicity, an important stress factor in acidic soils. The mechanisms for the extraordinarily high resistance to Al toxicity in Brachiaria decumbens remain unclear. It has been suggested that the presence of a multiseriate exodermis might contribute to efficient Al exclusion in B. decumbens. However, no data concerning the root structure of less Al-resistant Brachiaria species have been reported. The aim of the present study was determine whether the exodermis is a distinctive feature of Al hyper-resistant B. decumbens compared with Brachiaria species with lower Al resistance. B. decumbens, B. brizantha, and B. ruziziensis were grown in nutrient solution without (control) or with 200 μM Al (32 μM Al3+ activity) for 96 h. Differences in the Al resistance were assessed using various indicators: Al-induced inhibition of root elongation, membrane damage, and the maintenance of nutrient homeostasis. Transversal root sections were examined using fluorescence microscopy to reveal the presence of an exodermis through auto-fluorescence. Aluminum resistance decreased in the order B. decumbens > B. brizantha > B. ruziziensis. Both the hyper-resistant B. decumbens and the moderately resistant B. brizantha were more efficient in Al-exclusion than the sensitive B. ruziziensis. Apoplastic barriers, in the form of a multiseriate exodermis, were constitutively present in B. decumbens, but not in Al-sensitive B. ruziziensis. Under control conditions, B. brizantha exhibited slightly auto-fluorescent epidermal cell walls, while under Al exposure auto-fluorescent deposits were observed in the intercellular spaces between the epidermal and sub-epidermal cell layers. The results provide circumstantial evidence of a role for apoplastic barriers in the Al resistance of B. decumbens and, to a lesser extent, in B. brizantha. Nonetheless, additional research is required to determine a causal relationship between the exodermal barrier and Al resistance.  相似文献   

7.
Diversity in phosphorus (P) acquisition strategies was assessed among eight isolates of arbuscular mycorrhizal fungi (AMF) belonging to three Glomus species, all obtained from the same field site. Maize (Zea mays L. cv. Corso) was used as a test plant. Compartmented cultivation containers coupled with 33P radioisotope labeling of soil P were employed to estimate (1) the distance from the roots that AMF were able to acquire soil P from, (2) the rate of soil colonization, (3) the efficiency of uptake of soil P by AMF, (4) benefits provided to maize in terms of P acquisition and growth. Glomus mosseae and G. intraradices took up P 10 cm from roots, whereas G. claroideum only up to 6 cm from the roots. G. mosseae most rapidly colonized the available soil volume and transported significant amounts of P to maize from a distance, but provided no net P uptake benefit to the plants. On the other hand, both G. intraradices and three out of four G. claroideum isolates significantly improved net P uptake by maize. These effects seem to be related to variability between and to a limited extent also within AMF species, in mycelium development, efficiency of hyphal P uptake and effects on plant P acquisition via the root pathway. In spite of absence of maize growth responses to inoculation with any of the AMF isolates, this study indicates remarkable functional diversity in the underground component of the studied field site.  相似文献   

8.
Aims: Bioremediation of highly arsenic (As)‐contaminated soil is difficult because As is very toxic for plants and micro‐organisms. The aim of this study was to investigate soil arsenic removal effects using poplar in combination with the inoculation of a plant growth–promoting rhizobacterium (PGPR). Methods and Results: A rhizobacterium D14 was isolated and identified within Agrobacterium radiobacter. This strain was highly resistant to arsenic and produced indole acetic acid and siderophore. Greenhouse pot bioremediation experiments were performed for 5 months using poplar (Populus deltoides LH05‐17) grown on As‐amended soils, inoculated with strain D14. The results showed that P. deltoides was an efficient arsenic accumulator; however, high As concentrations (150 and 300 mg kg?1) inhibited its growth. With the bacterial inoculation, in the 300 mg kg?1 As‐amended soils, 54% As in the soil was removed, which was higher than the uninoculated treatments (43%), and As concentrations in roots, stems and leaves were significantly increased by 229, 113 and 291%, respectively. In addition, the As translocation ratio [(stems + leaves)/roots = 0·8] was significantly higher than the uninoculated treatments (0·5). About 45% As was translocated from roots to the above‐ground tissues. The plant height and dry weight of roots, stems and leaves were all enhanced; the contents of chlorophyll and soluble sugar, and the activities of superoxide dismutase and catalase were all increased; and the content of a toxic compound malondialdehyde was decreased. Conclusions: The results indicated that the inoculation of strain D14 could contribute to the increase in the As tolerance of P. deltoides, promotion of the growth, increase in the uptake efficiency and enhancement of As translocation. Significance and Impact of the Study: The use of P. deltoides in combination with the inoculation of strain D14 provides a potential application for efficient soil arsenic bioremediation.  相似文献   

9.
Guenni  Orlando  Marín  Douglas  Baruch  Zdravko 《Plant and Soil》2002,243(2):229-241
The introduction of African grasses in Neotropical savannas has been a key factor to improve pasture productivity. We compared the response of five Brachiaria species to controlled drought (DT) in terms of biomass yield and allocation, pattern of root distribution, plant water use, leaf growth, nutrient concentration and dry matter digestibility. The perennial C4 forage grasses studied were B. brizantha (CIAT 6780), B. decumbens (CIAT 606), B. dictyoneura (CIAT 6133), B. humidicola (CIAT 679) and B. mutica. Two DT periods, which mimic short dry spells frequent in the rainy season, were imposed by suspending irrigation until wilting symptoms appeared. They appeared after 14 days in B. brizantha, B. decumbens and B. mutica, and after 28 days in B. humidicola and B. dictyoneura. The impossed drought stress was mild and only the largest grass, B. brizantha, showed reduced (23%) plant yield. The other grasses were able to adjust growth and biomass allocation in response to DT leaving total plant yield relatively unaffected. Brachiaria mutica, had a homogeneous root distribution throughout the soil profile. In the other species more than 80% of root biomass was allocated within the first 30 cm of the soil profile. Brachiaria brizantha and B. decumbens had the lowest proportion of roots below 50 cm. Drought caused a general reduction in root biomass. The shoot:root ratio in B. mutica and B. humidicola increased in response to DT at the expense of a reduction in root yield down to 50 cm depth. Although the total water volume utilized under DT was similar among grasses, the rate of water use was highest (0.25 l day–1) in B. brizantha, B. decumbens and B. mutica and lowest (0.13 l day–1) in B. humidicola and B. dictyoneura. In all species leaf expansion was reduced by DT but it was rapidly reassumed after rewatering. Drought increased specific leaf mass (SLM) only in B. brizantha compensating for leaf area reduction, but leaf area ratio (LAR) was unaffected in all species. In almost all grasses DT increased leaf N and K concentration and in vitro dry matter digestibility. The results indicate that B. brizantha, B. decumbens and to a lesser extent, B. mutica are better adapted to short dry periods, whereas B. humidicola and B. dictyoneura are better adapted to longer dry periods.  相似文献   

10.
A split-root experiment investigated the effects of inoculation with the arbuscular mycorrhizal fungus Glomus mosseae and arsenic (As) addition on As uptake by Pteris vittata L. Either part or all of the root system was inoculated with G. mosseae or exposed to As addition (50 ml 1000 μmol L−1 As 1 week before harvest). Mycorrhizal colonization substantially increased frond and root dry weight and P and As contents irrespective of As addition. Frond As contents in mycorrhizal plants were highest when the whole root system was exposed to As. Frond As concentrations and contents were higher when inoculation and As addition were in the same parts of the root system than when spatially separate. There were positive effects of arbuscular mycorrhiza inoculation on plant growth and As uptake, and inoculation of part of the roots seemed to be as effective as inoculation of the whole root system.  相似文献   

11.
Abstract

Little attention has been paid to the combined use of arbuscular mycorrhizal fungus (AMF) and steel slag (SS) for ameliorating heavy metal polluted soils. A greenhouse pot experiment was conducted to study the effects of SS and AMF?Funneliformis mosseae (Fm), Glomus versiforme (Gv) and Rhizophagus intraradices (Ri) on plant growth and Cd, Pb uptake by maize grown in soils added with 5?mg Cd kg?1 and 300?mg Pb kg?1 soil. The combined usage of AMF and SS (AMF?+?SS) promoted maize growth, and Gv?+?SS had the most obvious effect. Meanwhile, single SS addition and AMF?+?SS decreased Cd, Pb concentrations in maize, and the greater reductions were found in combined utilization, and the lowest Cd, Pb concentrations of maize appeared in Gv?+?SS. Single SS amendment and AMF?+?SS enhanced soil pH and decreased soil diethylenetriaminepentaacetic acid (DTPA)-extractable Cd, Pb concentrations. Furthermore, alone and combined usage of AMF and SS increased contents of soil total glomalin. Our research indicated a synergistic effect between AMF and SS on enhancing plant growth and reducing Cd, Pb accumulation in maize, and Gv?+?SS exerted the most pronounced effect. This work suggests that AMF inoculation in combination with SS addition may be a potential method for not only phytostabilization of Pb-Cd-contaminated soil but maize safety production.  相似文献   

12.
Guenni  Orlando  Baruch  Zdravko  Marín  Douglas 《Plant and Soil》2004,258(1):249-260
Neotropical savannas are exposed to recurrent dry periods of varied duration, and forage grasses must be able to cope with such temporal stresses to maintain productive pastures. This study compared leaf water relations and net photosynthesis under drought of five perennial Brachiaria species: the tufted B. brizantha (CIAT 6780), the semi-stoloniferous B. decumbens (CIAT 606) and B. mutica, and the stoloniferous B. humidicola (CIAT 679) and B. dictyoneura (CIAT 6133). Plants of the five grasses were grown in large pots and subjected to drought by suspending watering until first wilting symptoms (14 days for B. brizantha, B. decumbens and B. mutica, and 29 days for B. humidicola and B. dictyoneura). Afterwards, they were re-watered and a second soil dry cycle was imposed. Time trends in leaf water potential (l), relative water content (RWC), osmotic potential at full turgor (0 100), stomatal conductance (Gs) and net photosynthesis (A) of stressed (DT) plants were compared to those of well-irrigated (CT) plants. Predawn l in DT plants decreased to a minimum of –1.5 and –2.0 MPa in B. brizantha and B. mutica, compared to –2.5 to –3.0 MPa in B. decumbens, B. humidicola and B. dictyoneura. RWC decreased up to 50% in B. brizantha, compared to 75% in the other species. In B. humidicola, B. dictyoneura and in a lesser extent, B. decumbens, leaves of DT plants adjusted osmotically, by an apparent accumulation of nutrient solutes, at a rather constant ratio of turgid to dry weight of the tissue. Calculated osmotic adjustment ranged between 0.38 (B. decumbens) to 0.87 MPa (B. humidicola). This adjustment in 0 100 was in some cases maintained 7 days after re-watering. In B. brizantha and B. mutica, Gs and A were significantly affected by drought, with maximum reduction percentages at the second drought period of 65 and 80%, respectively. The corresponding reduction in B. decumbens was 53 and 55%, respectively; whereas in B. humidicola and B. dictyoneura Gs and A were reduced less than 20%. In all species, re-watering allowed for the water relations (except 0 100) and photosynthetic activity of leaves of DT plants to reach values comparable to those of CT plants. Results are discussed in term of root morphology and soil water extraction pattern, as well as leaf traits that may contribute to withstand drought under moderate soil water stress.  相似文献   

13.
Abstract

The uptake and distribution of arsenic (As) and some heavy metals was determined in three Viola endemic species from As‐overloaded soil in an abandoned mine at Alchar, Republic of Macedonia (FYROM – The Former Yugoslav Republic of Macedonia). Some essential elements were also analyzed in order to characterize the common geochemical properties of this site. Total As content in soil ranged from 3347 to 14,467 mg kg?1, and plant available As from 23 to 1589 mg kg?1. The concentration of As in roots ranged from 783 mg kg?1 in Viola macedonica to 2124 mg kg?1 in Viola arsenica. Only a small amount of As accumulated in the aboveground parts of these species (<100 mg kg?1), while in shoots of Viola allchariensis, As accumulated in the range 187–439 mg kg?1. Arsenic accumulation in the roots of these Viola species may make these plants valuable tools for the bioindication and phytoremediation (phytostabilization) of As in naturally loaded and anthropogenically contaminated soils.  相似文献   

14.
T. Luongo  L.Q. Ma 《Plant and Soil》2005,277(1-2):117-126
This research was conducted to understand the mechanisms of arsenic hyperaccumulation in Pteris vittata by comparing the characteristics of arsenic accumulation in Pteris and non-Pteris ferns. Seven Pteris (P.vittata, P. Cretica Rowerii, P. Cretica Parkerii, P. Cretica Albo-lineata, P. Quadriavrita, P. Ensiformis and P. Dentata) and six non-Pteris (Arachnoides simplicor, Didymochlaena truncatula, Dryopteris atrata, Dryopteris erythrosora, Cyrtomium falcatum, and Adiantum hispidulum) ferns were exposed to 0, 1 and 10 mgL−1 arsenic as sodium arsenate for 14-d in hydroponic systems. As a group, the Pteris ferns were more efficient in arsenic accumulation than the non-Pteris ferns, with P. vittata being the most efficient followed by P. cretica. When exposed to 10 mg L−1 As, arsenic concentrations in the fronds and roots of P. vittata were 1748 and 503 mg kg−1. Though not all Pteris ferns were efficient in accumulating arsenic, none of the non-Pteris ferns was an efficient As accumulator (the highest concentration being 452 mg kg−1). The fact that frond arsenic concentrations in the control were highly correlated with those exposed to As (r 2 = 0.76–0.87) may suggest that they may be used as a preliminary tool to screen potential arsenic hyperaccumulators. Our research confirms that the ability of P. vittata to translocate arsenic from the roots to the fronds (73–77% As in the fronds), reduce arsenate to arsenite in the fronds (>50% AsIII in the fronds), and maintain high concentrations of phosphate in the roots (48–53% in the roots) all contributed to its arsenic tolerance and hyperaccumulation.  相似文献   

15.
Nitrification by soil nitrifiers may result in substantial losses of applied nitrogen through NO3 leaching and N2O emission. The biological inhibition of nitrification by crop plants or pasture species is not well known. This study was conducted to evaluate the ability of three pasture species, Brachiaria humidicola, B. decumbens and Melinis minutiflora to inhibit nitrification. Plants were grown in a growth chamber for sixty days, fertilized with (NH4)2SO4. After harvesting, the soil was incubated with (NH4)2SO4 for 24 days. Ammonium oxidizing bacteria (AOB), NH4-N levels, and N2O emission were monitored at 4 d intervals. Among the species studied, B. humidicola inhibited nitrification and maintained NH4-N in soil to a much greater extent than the other two species. This nitrification inhibition lasted for 12 days after initiation of soil incubation study (i.e. from 60 DAS when the plants were harvested). The AOB populations and N2O emission from the soil were significantly lower in the soils where B. humidicola has been grown compared to the other two species. Root exudates and soil extracts of B. humidicola suppressed AOB populations, whereas those of B. decumbens and M. minutiflora did not. The results are in consistence with the hypothesis that B. humidicola suppressed nitrification and N2O emissions through an inhibitory effect on the AOB population.  相似文献   

16.
In the Orinoco lowlands, savannas have been often replaced by pastures composed of the C4 grass, Brachiaria decumbens Stapf. We addressed following questions: (1) How does the replacement of the native vegetation affect CO2 exchange on seasonal and annual scales? (2) How do biophysical constraints change when the landscape is transformed? To assess how these changes affect carbon exchange, we determined simultaneously the CO2 fluxes by eddy covariance, and the soil CO2 efflux by a chamber-based system in B. decumbens and herbaceous savanna stands. Measurements covered a one-year period from the beginning of the dry season (November 2008) to the end of the wet season (November 2009). During the wet season, the net ecosystem CO2 exchange reached maximum values of 23 and 10 μmol(CO2) m?2 s?1 in the B. decumbens field and in the herbaceous savanna stand, respectively. The soil CO2 efflux for both stands followed a temperature variation during the dry and wet seasons, when the soil water content (SWC) increased above 0.087 m3 m?3 in the latter case. Bursts of CO2 emissions were evident when the dry soil experienced rehydration. The carbon source/sink dynamics over the two canopies differed markedly. Annual measurements of the net ecosystem production indicated that the B. decumbens field constituted a strong carbon sink of 216 g(C) m?2 y?1. By contrast, the herbaceous savanna stand was found to be only a weak sink [36 g(C) m?2 y?1]. About 53% of the gross primary production was lost as the ecosystem respiration. Carbon uptake was limited by SWC in the herbaceous savanna stand as evident from the pattern of water-use efficiency (WUE). At the B. decumbens stand, WUE was relatively insensitive to SWC. Although these results were specific to the studied site, the effect of land use changes and the physiological response of the studied stands might be applicable to other savannas.  相似文献   

17.
Summary A microplot field experiment was conducted in the presence or absence of P and N application to evaluate the influence of the seed inoculation of mustard (cv. Baruna T59) withAzospirillum lipoferum on N2-fixation in rhizosphere, association of the bacteria with the roots and grain yield and N uptake. Inoculation significantly increased the N content in rhizosphere soil particularly at early stage (40 days) of plant growth, which was accompanied by the increased association of the bacteria (A. lipoferum) in rhizosphere soil, root surface washing and surface-sterilized macerated root. A significant increase in grain yield and N uptake was also observed due to inoculation. Application of P particularly at the 20 kg. ha–1 level further enhanced the beneficial effect ofAzospirillum lipoferum inoculation, while N addition markedly reduced such an effect.  相似文献   

18.
Vetiver (Chrysopogon zizanioides) is a fast-growing, high biomass producing plant employed for environmental rehabilitation. The study evaluated the effects of arbuscular mycorrhizal fungi (AMF) on the growth and trace element phytoextracting capabilities of vetiver in a substrate containing coalmine wastes in Southern Brazil. AMF included Acaulospora colombiana, Acaulospora morrowiae, Acaulospora scrobiculata, Dentiscutata heterogama, Gigaspora margarita, and Rhizophagus clarus. Among those, A. colombiana, G. margarita, and R. clarus promoted higher growth. AMF stimulated average increments in the accumulated P of 82% (roots), 194% (shoots first harvest—90 days) and 300% (shoots second harvest—165 days) and affected the phytoextraction of trace elements by vetiver, with larger concentrations in the roots. Plants inoculated with A. colombiana, A. morrowiae, and A. scrobiculata, in addition to the control, presented the highest levels of Cu and Zn in the roots. Overall, G. margarita stimulated the highest production of biomass, and, therefore, showed the most significant levels of trace elements in the plants. This work shows the benefits of certain AMF (especially A. morrowiae, G. margarita, and R. clarus) for the production of biomass and P uptake by vetiver, demonstrating the potential of those species for the rehabilitation of coal-mine-degraded soils.  相似文献   

19.
Arbuscular mycorrhizal fungi (AMF) can promote plant growth and reduce plant uptake of heavy metals. Phosphorus (P) fertilization can affect this relationship. We investigated maize (Zea mays L.) uptake of heavy metals after soil AMF inoculation and P fertilization. Maize biomass, glomaline and chlorophyll contents and uptake of Fe, Mn, Zn, Cu, Cd and Pb have been determined in a soil inoculated with AMF (Glomus aggregatum, or Glomus intraradices) and treated with 30 or 60 µg P-K2HPO4 g?1 soil. Consistent variations were found between the two mycorrhizal species with respect to the colonization and glomalin content. Shoot dry weight and chlorophyll content were higher with G. intraradices than with G. aggregatum inoculation. The biomass was highest with 30 µg P g?1 soil. Shoot concentrations of Cd, Pb and Zn decreased with G. aggregatum inoculation, but that of Cd and Pb increased with G. intraradices inoculation. Addition of P fertilizers decreased Cd and Zn concentrations in the shoot. AMF with P fertilization greatly reduced maize content of heavy metals. The results provide that native AMF with a moderate application rate of P fertilizers can be exploited in polluted soils to minimize the heavy metals uptake and to increase maize growth.  相似文献   

20.

Background and aims

Microalgae are ubiquitous in paddy soils. However, their roles in arsenic (As) accumulation and transport in rice plants remains unknown.

Methods

Two green algae and five cyanobacteria were used in pot experiments under continuously flooded conditions to ascertain whether a microalgal inoculation could influence rice growth and rice grain As accumulation in plants grown in As-contaminated soils.

Results

The microalgal inoculation greatly enhanced nutrient uptake and rice growth. The presence of representative microalga Anabaena azotica did not significantly differ the grain inorganic As concentrations but remarkably decreased the rice root and grain DMA concentrations. The translocation of As from roots to grains was also markedly decreased by rice inoculated with A. azotica. This subsequently led to a decrease in the total As concentration in rice grains.

Conclusions

The results of the study indicate that the microalgal inoculation had a strong influence on soil pH, soil As speciation, and soil nutrient bioavailability, which significantly affected the rice growth, nutrient uptake, and As accumulation and translocation in rice plants. The results suggest that algae inoculation can be an effective strategy for improving nutrient uptake and reducing As translocation from roots to grains by rice grown in As-contaminated paddy soils.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号