首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
To investigate both seasonal changes and possible intracorporal gradients of phospholipid fatty acid composition, skeletal muscles (n=124), hearts (n=27), and livers (n=34) from free-living brown hares (Lepus europaeus) were analyzed. Phospholipids from both skeletal muscles and heart had a high degree of unsaturation with 66.8±0.63% and 65.7±0.5% polyunsaturated fatty acids, respectively. This is the highest proportion of polyunsaturated fatty acids reported in any mammalian tissue. Polyunsaturated fatty acid content in skeletal muscles was 2.3% greater in winter compared to summer (F1,106=17.7; P=0.0001), which may reflect thermoregulatory adjustments. Arachidonate (C20:4n-6) showed the greatest seasonal increase (+2.5%; F=7.95; P=0.0057). However, there were no pronounced differences in polyunsaturated fatty acid content between skeletal muscles from different locations in the body (m. iliopsoas, m. longissimus dorsi and m. vastus). Total muscle phospholipid polyunsaturated fatty acid content was correlated with polyunsaturated fatty acid content in triacyglycerols from perirenal white adipose tissue depots (r2=0.61; P=0.004). Polyunsaturated fatty acids were enriched in muscle phospholipids (56.8–73.6%), compared to white adipose tissue lipids (20.9–61.2%), and liver phospholipids (25.1–54.2%). We suggest that the high degree of muscle membrane unsaturation is related to hare-specific traits, such as a high maximum running speed.Abbreviations BMR basal metabolic rate - DPA docosapentaenoic acid - DHA docosahexaenoic acid - FA fatty acid - MUFA monounsaturated fatty acid - PC principal component - PUFA polyunsaturated fatty acid - SFA saturated fatty acid - UI unsaturation index - WAT white adipose tissueCommunicated by: G. Heldmaier  相似文献   

2.
The incorporation in vivo of 14C-18:2 ω6 and 3H-20:4 ω6 fatty acids in phospholipids isolated from gills, hepatopancreas and hemolymph of the crab Carcinus maenas was analysed. PC was the most heavily labelled phospholipid from these ω6-unsaturated fatty acids and appeared to play an important part in the phospholipids metabolism in Crustaceans. The pathway of fatty acids synthesis in phospholipids of C. maenas seems to be similar to those described for mammals. It is at the level of tissue Pl of C. maenas that the renewal of the 20:4 ω6 fatty acid is the most important. It is suggested that the rapid reorganization of phospholipid molecular species composition in the crab is checked by deacylation—reacylation cycle.  相似文献   

3.
Lipid composition of abalone was examined over a one-year interval. A feeding trial was designed to cover a full reproductive cycle in young adult green abalone, Haliotis fulgens, consisting of five diet treatments: the macrophytic algal phaeophyte Egregia menziesii, rhodophyte Chondracanthus canaliculatus, chlorophyte Ulva lobata, a composite of the three algae and a starvation control. The lipid class, fatty acid, sterol and 1-O-alkyl glyceryl ether profiles were determined for foot, hepatopancreas/gonad tissues and larvae. The major fatty acids were 16:0, 18:0, 18:1(n-7)c, 18:1(n-9)c, 20:4(n-6), 20:5(n-3) and 22:5(n-3), as well as 14:0 for abalone fed brown and red algae. 4,8,12-Trimethyltridecanoic acid, derived from algae, was detected for the first time in H. fulgens (hepatopancreas complex, 1.2–13.9%; larvae, 0.5% of total fatty acids). Diacylglyceryl ethers were present in larvae (0.6% of total lipid). The major 1-O-alkyl glycerols were 16:0, 16:1 and 18:0. Additionally, 18:1(n-9) was a major component in hepatopancreas/gonad and larvae. The major sterol was cholesterol (96–100% of total sterols). Highest growth rates were linked to temperature and occurred in abalone fed the phaeophyte E. menziesii (43 μm·day–1, 56 mg·day–1 yearly mean), an alga containing the highest levels of C20 polyunsaturated fatty acids and the highest ratio of 20:4(n-6) to 20:5(n-3). This study provides evidence of the influence of diet and temperature on seasonal changes in abalone lipid profiles, where diet is most strongly related to body mass and temperature to shell length. The allocation of lipids to specific tissues in green abalone clarifies their lipid metabolism. These results provide a basis for improving nutrition of abalone in mariculture through formulation of artificial feeds.  相似文献   

4.
Differences between clones of the diatom Cylindrotheca fusiformi were studied with respect to growth rate, total lipid content and fatty acid composition. Sixty clones were isolated and cultivated under batch conditions. All clones were grown under identical conditions (temperature 22±1°C, light intensity 100 μmol photon m−2 s−1, salinity 28, F/2 medium) and were harvested in the late exponential growth phase for lipid and fatty acid analysis. The results show a wide variation in growth, total lipid content and fatty acid profiles among clones (p<0.05). The major fatty acids in the 60 clones were 14:0 (4.6–9.1%), 16:0 (18.2–32.0%), 16:1n-7 (21.6–33.1%), 20:4n-6 (4.1–13.5%) and 20:5n-3 (6.2–17.2%), with the highest proportion of 20:4n-6 in clone CF13 (13.5%), and the highest proportion of 20:5n-3 in clone CF5 (17.2%). The results support the view that some microalgal fatty acid variation is not restricted to interspecific variation and external factors, but also varies from clone to clone within the same species.  相似文献   

5.
Antarctic euphausiids, Euphausia superba, E. tricantha, E. frigida and Thysanoessa macrura were collected near Elephant Island ¦ during 1997 and 1998. Total lipid was highest in E. superba small juveniles (16 mg g−1 wet mass), ranging from 12 to 15 mg in other euphausiids. Polar lipid (56–81% of total lipid) and triacylglycerol (12–38%) were the major lipids with wax esters (6%) only present in E. tricantha. Cholesterol was the major sterol (80–100% of total sterols) with desmosterol second in abundance (1–18%). 1997 T. macrura and E. superba contained a more diverse sterol profile, including 24-nordehydrocholesterol (0.1–1.7%), trans-dehydrocholesterol (1.1–1.5%), brassicasterol (0.5–1.7%), 24-methylenecholesterol (0.1–0.4%) and two stanols (0.1–0.2%). Monounsaturated fatty acids included primarily 18:1(n−9)c (7–21%), 18:1(n−7)c (3–13%) and 16:1(n−7)c (2–7%). The main saturated fatty acids in krill were 16:0 (18–29%), 14:0 (2–15%) and 18:0 (1–13%). Highest eicosapentaenoic acid [EPA, 20:5(n−3)] and docosahexaenoic acid [DHA, 22:6(n−3)] occurred in E. superba (EPA, 15–21%; DHA, 9–14%), and were less abundant in other krill. E. superba is a good source of EPA and DHA for consideration of direct or indirect use as a food item for human consumption. Lower levels of 18:4(n−3) in E. tricantha, E. frigida and T. macrura (0.4–0.7% of total fatty acids) are more consistent with a carnivorous or omnivorous diet as compared with herbivorous E. superba (3.7–9.4%). The polyunsaturated fatty acid (PUFA) 18:5(n−3) and the very-long chain (VLC-PUFA), C26 and C28 PUFA, were not present in 1997 samples, but were detected at low levels in most 1998 euphausiids. Interannual differences in these biomarkers suggest greater importance of dinoflagellates or some other phytoplankton group in the Elephant Island area during 1998. The data have enabled between year comparisons of trophodynamic interactions of krill collected in the Elephant Island region, and will be of use to groups using signature lipid methodology.  相似文献   

6.
The objectives of the present work were to investigate the temporal variation in the fatty acid (FA) composition of the octocoral Veretillum cynomorium, examine the effects of reproduction and environmental factors on FA variation, and establish a chemotaxonomic identification for this species. Mean oocyte size-frequency distributions showed that the majority of the oocytes had an intermediate size (Group II) before spawning (April and June). The late-vitellogenic oocytes (Group III) became absent in August and October and, during this post-spawning period, oocytes were primarily of small size (Group I). Most of the major FA, 16:0, 18:0, 20:4n-6, 20:5n-3, and the tetracosapolyenoic fatty acid (TPA), 24:6n-3, varied significantly throughout the year (p < 0.01), with two peaks in August/October and February. The boost in early oogenesis, also associated with warmer temperatures, seemed to be responsible for the observed increase in FA content between June and August. The highest values of FA content were observed in February when intermediate oogenesis (Group II) was at its peak and there were considerable levels of available food in the environment. Also, the increase in food availability seemed to trigger the final stages of gametogenesis. The high quantity of 18:1n-7, odd-numbered and branched FAs, suggested the presence of a dynamic bacterial community in V. cynomorium, probably as an adaptive response to the lack of symbiotic microalgae. Although the presence of TPAs is the main feature distinguishing octocorals from other coral species, here we showed that there was no single FA clearly dominating the FA composition of V. cynomorium throughout the year. Instead, four main FAs share similar concentrations: 16:0, 20:4n-6, 20:5n-3 and 24:6n-3. The predominance of these four FAs combined with the higher amount of 24:6n-3 when compared to 24:5n-6 may serve as a chemotaxonomic feature to distinguish this octocoral species (or genus).  相似文献   

7.
Increasing oil content and improving the fatty acid composition in the seed oil are important breeding goals for rapeseed (Brassica napus L.). The objective of the study was to investigate a possible relationship between fatty acid composition and oil content in an oilseed rape doubled haploid (DH) population. The DH population was derived from a cross between the German cultivar Sollux and the Chinese cultivar Gaoyou, both having a high erucic acid and a very high oil content. In total, 282 DH lines were evaluated in replicated field experiments in four environments, two each in Germany and in China. Fatty acid composition of the seed oil was analyzed by gas liquid chromatography and oil content was determined by NIRS. Quantitative trait loci (QTL) for fatty acid contents were mapped and their additive main effects were determined by a mixed model approach using the program QTLMapper. For all fatty acids large and highly significant genetic variations among the genotypes were observed. High heritabilities were determined for oil content and for all fatty acids (h 2 = 0.82 to 0.94), except for stearic acid content (h 2= 0.38). Significant correlations were found between the contents of all individual fatty acids and oil content. Closest genetic correlations were found between oil content and the sum of polyunsaturated fatty acids (18:2 + 18:3; r G = −0.46), the sum of monounsaturated fatty acids (18:1 + 20:1 + 22:1; r G = 0.46) and palmitic acid (16:0; r G = −0.34), respectively. Between one and eight QTL for the contents of the different fatty acids were detected. Together, their additive main effects explained between 28% and 65% of the genetic variance for the individual fatty acids. Ten QTL for fatty acid contents mapped within a distance of 0 to 10 cM to QTL for oil content, which were previously identified in this DH population. QTL mapped within this distance to each other are likely to be identical. The results indicate a close interrelationship between fatty acid composition and oil content, which should be considered when breeding for increased oil content or improved oil composition in rapeseed.  相似文献   

8.
Dietary fatty acid incorporation and changes in various lipid and phospholipid classes in the mussel Mytilus galloprovincialis subjected to three different dietary regimens were analysed and compared. Group A was unfed; group B received a diet consisting of 100% Thalassiosira weissflogii, exhibiting the typical fatty acid composition of diatoms, and group C received a diet consisting of 100% wheat germ conferring a 18:2:n-6 abundance. Biochemical analyses of diets and mussels were carried out at the beginning and at the end of the 30-day experimental period. Starvation and T. weissflogii based diet poorly affected mussel growth and fatty acid composition which remained unchanged. On the contrary, the wheat germ-based diet increased the condition index and deeply affected the fatty acid profile of all lipid and phospholipid classes. The high dietary 18:2n-6 level drastically reduced tissue content of 20:4n-6, 20:5n-3 and 22:6n-3. The biosynthesis of Non Methylene Interrupted (NMI) dienoic fatty acid appeared to be insensitive to the high input of 16:1n-7 and 18:1n-9 respectively from diet B and C, and to the PUFA shortage of diet C. Nevertheless the two NMI trienoic derivatives, 20:3Δ5,11,14 and 22:3Δ7,13 16, were found higher in C with respect to other groups, presumably due to the high 18:2n-6 content of this diet.  相似文献   

9.
Diets rich in unsaturated and polyunsaturated fatty acids have a positive effect on mammalian torpor, whereas diets rich in saturated fatty acids have a negative effect. To determine whether the number of double bonds in dietary fatty acids are responsible for these alterations in torpor patterns, we investigated the effect of adding to the normal diet 5% pure fatty acids of identical chain length (C18) but a different number of double bonds (0, 1, or 2) on the pattern of hibernation of the yellow-pine chipmunk, Eutamias amoenus. The response of torpor bouts to a lowering of air temperature and the mean duration of torpor bouts at an air temperature of 0.5°C (stearic acid C18:0, 4.5±0.8 days, oleic acid C18:1, 8.6±0.5 days; linoleic acid C18:2, 8.5±0.7 days) differed among animals that were maintained on the three experimental diets. The mean minimum body temperatures (C18:0, +2.3±0.3°C; C18:1, +0.3±0.2°C; C18:2,-0.2±0.2°C), which torpid individuals defended by an increase in metabolic rate, and the metabolic rate of torpid animals also differed among diet groups. Moreover, diet-induced differences were observed in the composition of total lipid fatty acids from depot fat and the phospholipid fatty acids of cardiac mitochondria. For depot fat 7 of 13 and for heart mitochondria 7 of 14 of the identified fatty acids differed significantly among the three diet groups. Significant differences among diet groups were also observed for the sum of saturated, unsaturated and polyunsaturated fatty acids. These diet-induced alterations of body fatty acids were correlated with some of the diet-induced differences in variables of torpor. The results suggest that the degree of unsaturation of dietary fatty acids influences the composition of tissues and membranes which in turn may influence torpor patterns and thus survival of hibernation.Abbreviations bm body mass - T a air temperature - T b body temperature - FA fatty acid - MR metabolic rate - MUFA monounsaturated fatty acids - PUFA polyunsaturated fatty acids - VO2 rate of oxygen consumption - SFA saturated fatty acids - UFA unsaturated fatty acids - UI unsaturation index - SNK Student-Newman-Keuls test  相似文献   

10.
Limited information is available regarding the composition of cellular fatty acids in Armillaria and the extent to which fatty acid profiles can be used to characterize species in this genus. Fatty acid methyl ester (FAME) profiles generated from cultures of A. tabescens, A. mellea, and A. gallica consisted of 16–18 fatty acids ranging from 12–24 carbons in length, although some of these were present only in trace amounts. Across the three species, 9-cis,12-cis-octadecadienoic acid (9,12-C18:2), hexadecanoic acid (16:0), heneicosanoic acid (21:0), 9-cis-octadecenoic acid (9-C18:1), and 2-hydroxy-docosanoic acid (OH-22:0) were the most abundant fatty acids. FAME profiles from different thallus morphologies (mycelium, sclerotial crust, or rhizomorphs) displayed by cultures of A. gallica showed that thallus type had no significant effect on cellular fatty acid composition (P > 0.05), suggesting that FAME profiling is sufficiently robust for species differentiation despite potential differences in thallus morphology within and among species. The three Armillaria species included in this study could be distinguished from other lignicolous basidiomycete species commonly occurring on peach (Schizophyllum commune, Ganoderma lucidum, Stereum hirsutum, and Trametes versicolor) on the basis of FAME profiles using stepwise discriminant analysis (average squared canonical correlation = 0.953), whereby 9-C18:1, 9,12-C18:2, and 10-cis-hexadecenoic acid (10-C16:1) were the three strongest contributors. In a separate stepwise discriminant analysis, A. tabescens, A. mellea, and A. gallica were separated from one another based on their fatty acid profiles (average squared canonical correlation = 0.924), with 11-cis-octadecenoic acid (11-C18:1), 9-C18:1, and 2-hydroxy-hexadecanoic acid (OH-16:0) being most important for species separation. When fatty acids were extracted directly from mycelium dissected from naturally infected host tissue, the FAME-based discriminant functions developed in the preceding experiments classified all samples (n = 16) as A. tabescens; when applied to cultures derived from the same naturally infected samples, all unknowns were similarly classified as A. tabescens. Thus, FAME species classification of Armillaria unknowns directly from infected tissues may be feasible. Species designation of unknown Armillaria cultures by FAME analysis was identical to that indicated by IGS-RFLP classification with AluI.  相似文献   

11.
Octadecenoic (18:1) trans-fatty acid fractions from margarine, butter and plasma phospholipids (PL) were isolated by silver ion TLC, and nine positional isomers (n-11-n-3) were identified by GC-MS based on their ozonolysis products. The GC analysis of the isolated fractions gave similar peak profiles and separated seven trans-isomers (n-11-n-6 and n-3). Without a preceding isolation step, the reproducibility of the Gc method for plasma PL elaidic (18:1 n-9 trans) and trans-vaccenic acids (n-7) was 3.4 and 2.7% (R.S.D.), respectively. These trans-isomers were rapidly incorporated and cleared in plasma PL and they closely reflected both increased and decreased intake of 18:1 trans-fatty acids during moderate fat substitutions. Significant associations between high-density lipoprotein cholesterol (HDL-C) and PL elaidic and trans-vaccenic acids appeared in habitual margarine users only.  相似文献   

12.
  • 1.1. Lipid and phospholipid compositions of endemic freshwater molluscs belonging to the class Gastropoda, Baicalia oviformus and Benedictia baicalensis, were studied.
  • 2.2. The fatty acids composition of total lipids, neutral, glyco- and phospholipid fraction was investigated by capillary gas chromatography-mass spectrometry.
  • 3.3. Ninety-five fatty acids were identified: 23 saturated (both iso- and anteiso-), 28 monoenoic, 14 dienoic and 30 polyenoic.
  • 4.4. High percentage of the two main acids, 18:4 and 18:4(n-3) in phospholipid and glycolipid fractions were identified.
  • 5.5. A number of unusual polyunsaturated fatty acids, such as 19:4, 18:5(n-3), 24:4(n-6), 24:5(n-6), 24:6(n-3), and furanoid acids, were found.
  相似文献   

13.
Previous research has demonstrated that whole cellular fatty acids analysis is a useful tool for identifying and establishing taxonomic relationships between anastomosis groups (AGs) and related Rhizoctonia isolates. In this experiment, the composition of fatty acid of 28 isolates of teleomorph genus Ceratobasidium cornigerum, consisting of binucleate Rhizoctonia, AG-A, AG-B(o), AG-C, AG-P, and AG-Q, was evaluated using gas chromatography. Eleven fatty acids identified, i.e., myristic, pentadecanoic, palmitic, 2-hydroxypalmitic, palmitoleic, heptadecanoic, 9-heptadecenoic, stearic, oleic, linoleic, and linolenic acids, were present in isolates of AG-A, AG-B(o), AG-C, AG-P, and AG-Q. The major fatty acids, palmitic, oleic, and linoleic acids, were common in all isolates, constituting 87.1% to 94.7% of the whole cellular fatty acids identified. Isolates within the same AG were closely clustered, whereas isolates from different AGs were clearly and distinctly clustered based on average linkage cluster analysis of whole cellular fatty acids. Principal-component analysis generated from all fatty acids also confirmed the divergent separation of the 5 AGs of binucleate Rhizoctonia.  相似文献   

14.
One solution to the global crisis of antibiotic resistance is the discovery of novel antimicrobial compounds for clinical application. Marine organisms are an attractive and, as yet, relatively untapped resource of new natural products. Cell extracts from the marine diatom, Phaeodactylum tricornutum, have antibacterial activity and the fatty acid, eicosapentaenoic acid (EPA), has been identified as one compound responsible for this activity. During the isolation of EPA, it became apparent that the extracts contained further antibacterial compounds. The present study was undertaken to isolate these additional antibacterial factors using silica column chromatography and reverse-phase high-performance liquid chromatography. Two antibacterial fractions, each containing a pure compound, were isolated and their chemical structures were investigated by mass spectrometry and nuclear magnetic resonance spectroscopy. The antibacterial compounds were identified as the monounsaturated fatty acid (9Z)-hexadecenoic acid (palmitoleic acid; C16:1 n-7) and the relatively unusual polyunsaturated fatty acid (6Z, 9Z, 12Z)-hexadecatrienoic acid (HTA; C16:3 n-4). Both are active against Gram-positive bacteria with HTA further inhibitory to the growth of the Gram-negative marine pathogen, Listonella anguillarum. Palmitoleic acid is active at micro-molar concentrations, kills bacteria rapidly, and is highly active against multidrug-resistant Staphylococcus aureus. These free fatty acids warrant further investigation as a new potential therapy for drug-resistant infections.  相似文献   

15.
Vegetatively propagated Ctenanthe setosa (Rosc.) Eichler (Marantaceae) plants were grown in plastic pots under laboratory irrigation and water deficit conditions. One set of plants was submitted to water irrigation regularly and another set of plants was submitted to water deficit conditions. After a 28 d water deficit stress, the leaves started to roll. Approximately after 33–35 d, the leaves were tightly rolled. Water stress significantly increased the dry weight of rolled leaves. After the 35 d period of water deficit the open (non-stressed) and rolled (stressed, water deficit) leaves were harvested for lipid content and class compositional analysis. The fatty acids consistently identified in phospholipids and glycolipids as well as in total leaf lipid were 16:0, 18:0, 18:1, 18:2 and 18:3. The 16:0, 18:3 and 18:1 acids in control plant and 18:2, 16:0 and 18:3 acids in rolled leaves were determined as the major fatty acids. While the percentage composition of 16:0, 18:1 and 18:3 acids decreased in rolled leaves, the level of 18:2 acid increased. However, the percentage composition of unsaturation in phospholipid (71%) and glycolipid (80.4%) fractions in rolled leaves were found higher than in control leaves. The results show that the degree of unsaturation in phospholipid, glycolipid and total lipid was significantly altered during leaf rolling. The increase in unsaturation degree may regulate membrane permeability and thus adapt the leaves to water stress in the drought environment.  相似文献   

16.
The free fatty acid and phospholipid composition of 5 psychrotrophic marine Pseudomonas spp. have been determined in chemostat culture with glucose as the limiting substrate over the range 0–20°C. The predominant fatty acid present in all the isolates was hexadecenoic acid (C16:1) together with lesser quantities of octadecenoic acid (C 18:1) whilst none contained acids with chain lengths exceeding 18 carbon atoms. Decreasing the growth temperature from 20°C to 0°C resulted in little significant change in fatty acid composition. The principal phospholipid components of the five psychrotrophic pseudomonads have been identified as phosphatidylserine, phosphatidylglycerol, phosphatidylethanolamine and diphosphatidylglycerol. Decreasing the growth temperature did not elicit significant changes either in the total quantities of phospholipid synthesized or in the concentration of individual phospholipid components in any of the isolates. All the psychrotrophs showed maximum glucose uptake between 15°C and 20°C and the rate decreased rapidly as the temperature was decreased towards 0°C.Abbreviations PS Phosphatidylserine - PE phosphatidylethanolamine - PG phosphatidylglycerol - DPG diphosphatidylglycerol  相似文献   

17.
The lipid content and composition of Nereis (Hediste) diversicolor O. F. Müller (Annelida, Polychaeta, Nereidae) a mud-dwelling, intertidal errant polychaete in the Tagus estuary (Portugal), were examined on the monthly basis by lipid extraction, TLC and capillary GC. In this estuary, N. diversicolor is by far the dominant species among polychaeta and the main food item in the natural diet of several flatfishes. The biochemical elucidation of its lipid structure and distribution throughout the year, described in this study, provides information not only about the physiological role of lipids in the animal under consideration but also about dietary fatty acid requirements of some flatfishes in the wild and under laboratory conditions.The total lipid content varied between a maximum of 19.3% lyophilized dry weight in February (4.4% fresh weight) and a minimum of 6.6% in August (1.9% fresh weight). The major lipid classes were triacylglycerol, phospholipid, free sterol, free fatty acid, sterol ester/wax ester and alkyldiacylglycerol.The fatty acid composition was rather unsaturated with a 1:2 mean ratio of n-3: n-6. The major fatty acids were C160:0, C18:1n-9, C18:2n-6, and C20:5n-3; there were smaller amounts of C180:0, C18:1n-11, C18:1n-7, C18:3n-3, C20:1, C20:2n-6, C20:4n-6, C22:2, C22:5n-3, and many other fatty acids were detected at trace levels. The unsaturation ranged from 36.9 mg/g dry weight in summer to 107.4 mg/g in winter. An accumulation of fatty acids from plant origin was evident, in particular linoleic acid (C18:2n-6), which was quantitatively one of the major fatty acids throughout the year.  相似文献   

18.
G. S. Warren  M. W. Fowler 《Planta》1979,144(5):451-454
The fatty acid composition of five embryo stages following the induction of embryogenesis in cultures of Daucus carota have been studied. Quantitative rather than qualitative changes in fatty acid content were observed, although globular embryos do possess some fatty acids of long (C 20 and above) chain length not observed in earlier or later stages in development. The major fatty acids present were C 16:0, 18:0, 18:1, 18:2 and 18:3.Abbreviations SM small meristematic - LV large vacuolated - GLC gas-liquid chromatography - TLC thin lager chromatography  相似文献   

19.
The free fatty acid and phospholipid composition of 4 psychrophilic marineVibrio spp. have been determined in chemostat culture with glucose as the limiting substrate over a temperature range 0–20°C. All the isolates show maximum glucose and lactose uptake at 0°C and this correlates with maximum cell yield. None of the isolates contain fatty acids with a chain length exceeding 17 carbon atoms.Vibrio AF-1 andVibrio AM-1 respond to decreased growth temperatures by synthesizing increased proportions of unsaturated fatty acids (C15:1, C16:1 and C17:1) whereas inVibrio BM-2 the fatty acids undergo chain length shortening. The fourth isolate (Vibrio BM-4) contains high levels (60%) of hexadecenoic acid at all growth temperatures and the fatty acid composition changes little with decreasing temperature. The principal phospholipid components of the four psychrophilic vibrios were phosphatidylserine, phosphatidylglycerol, phosphatidylethanolamine and diphosphatidylglycerol. Lyso-phosphatidylethanolamine and 2 unknown phospholipids were additionally found inVibrio AF-1. The most profound effect of temperature on the phospholipid composition of these organisms was the marked increase in the total quantities synthesized at 0°C. At 15°C phosphatidylglycerol accumulated in the isolates as diphosphatidylglycerol levels decreased. Additionally inVibrio BM-2 andVibro BM-4 phosphatidylserine accumulates as phosphatidylethanolamine biosynthesis was similarly impaired. The observed changes in fatty acid and phospholipid composition in these organisms at 0°C may explain how solute transport is maintained at low temperature.Abbreviations PS Phosphatidylserine - PE phosphatidylethanolamine - PG phosphatidylglycerol - DPG diphosphatidylglycerol - lyso PE lysophosphatidylethanolamine  相似文献   

20.
We describe the isolation and characterization of a gene (MAELO) that encodes a fatty acid elongase from arachidonic acid-producing fungus Mortierella alpina 1S-4. Although the homologous MAELO gene had already been isolated from M. alpina ATCC 32221, its function had not yet been identified. The MAELO gene from M. alpina 1S-4 was confirmed to encode a fatty acid elongase by its expression in yeast Saccharomyces cerevisiae. Analysis of the fatty acid composition of the yeast transformant revealed the accumulation of 22-, 24-, and 26-carbon saturated fatty acids. On the other hand, RNA interference of the MAELO gene in M. alpina 1S-4 was carried out. The gene-silenced strain obtained on RNA interference exhibited low contents of 20-, 22-, and 24-carbon saturated fatty acids and a high content of stearic acid (18 carbons), compared with those in the wild strain. The enzyme encoded by the MAELO gene was demonstrated to be involved in the biosynthesis of 20-, 22-, and 24-carbon saturated fatty acids in M. alpina 1S-4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号