首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Resting barley (Hordeum vulgare L.) grains contain acid-proteinase activity. The corresponding enzyme was purified from grain extracts by affinity chromatography on a pepstatin-Sepharose column. The pH optimum of the affinity-purified enzyme was between 3.5 and 3.9 as measured by hemoglobin hydrolysis and the enzymatic activity was completely inhibited by pepstatin a specific inhibitor of aspartic proteinases (EC 3.4.23). Further purification on a Mono S column followed by activity measurements and sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that the affinity-purified enzyme preparation contained two active heterodimeric aspartic proteinases: a larger 48k Da enzyme, consisting of 32-kDa and 16-kDa subunits and a smaller one of 40 kDa, consisting of 29-kDa and 11-kDa subunits. Separation and partial amino acid sequence analysis of each subunit indicate that the 40-kDa enzyme is formed by proteolytic processing of the 48k Da form. Amino-acid sequence alignment and inhibition studies showed that the barley aspartic proteinase resembles mammalian lysosomal cathepsin D (EC 3.4.23.5).  相似文献   

2.
A cDNA clone encoding the human cysteine protease cathepsin L was expressed at high levels in Escherichia coli in a T7 expression system. The insoluble recombinant enzyme was solubilized in urea and refolded at alkaline pH. 38-kDa procathepsin L was purified by gel filtration at pH 8.0, and a 29-kDa form of the enzyme was purified by gel filtration after autoprocessing of the proenzyme at pH 6.5. The kinetic properties of the 29-kDa species of recombinant cathepsin L were similar to those published for the human liver enzyme (Mason, R. W., Green, G. D. J., and Barrett, A.J. (1985) Biochem. J. 226, 233-241), using benzyloxycarbonyl-Phe-Arg-7-(4-methyl)coumarylamide as substrate. However, the stability of the recombinant enzyme, and its pH optimum for this substrate was shifted to a higher pH. Structure-function studies of cathepsin L were performed by constructing mutations in either the propeptide portion or the carboxyl-terminal light chain portion of the protein. These constructions were expressed in the E. coli system, and enzymatic activities were assayed following solubilization, renaturation, and gel filtration chromatography of the mutated proteins. Deletions of increasing size in the propeptide resulted in large proportional losses of activity, indicating that the propeptide is essential for proper enzyme folding and/or processing in this renaturation system. Deletion of part of the light chain containing a disulfide-forming cysteine residue or a single amino acid substitution of alanine for this cysteine residue resulted in almost complete loss of activity. These data suggest that the disulfide bond joining the heavy and light chains of cathepsin L is essential for enzymatic activity.  相似文献   

3.
Cathepsin D was purified and concentrated 469-fold from a homogenate of Clupea harengus muscle. The purified enzyme is a monomer with a molecular weight of 38000-39000. It is inhibited by pepstatin and has optimal activity at pH 2.5 with hemoglobin as the substrate. The isoelectric point is at pH 6.8. Glycosidase treatment and binding to Concanavalin A indicated that the enzyme contains one N-linked carbohydrate moiety of the high-mannose type per molecule. The first 21 amino acid residues of the N-terminal showed high similarity to cathepsin D from antarctic icefish liver (Chionodraco hamatus) and trout ovary (Oncorhynchus mykiss). Digestion of the beta-chain of oxidized insulin resulted in preferential cleavage at Leu(15)-Tyr(16), (47%), Tyr(16)-Leu(17) (34%) and Ala(14)-Leu(15) (18%). Incubation with myofibrils from herring muscle at pH 4.23 showed that the enzyme mainly degraded myosin, actin and tropomyosin.  相似文献   

4.
The mechanism by which cathepsin D produces only limited proteolysis of vitellogenins (VTG) was studied in Xenopus oocytes. We first examined mature oocytes for the existence of cathepsin D; immunoblot and biochemical analyses revealed the existence of a 43kDa enzyme protein and its proteolytic activity in oocytes during and after the vitellogenesis. By determining the proteolytic activity of the fractions after subcellular fractionation of oocytes, we confirmed that cathepsin D is preserved in the yolk plasma of mature yolk platelets. The reaction of VTG with cathepsin D was examined in vitro at pH 5.6 as a function of NaCl concentrations. Lipovitellins generated from the VTG were preserved for several days at 37°C in the presence of the enzyme if the NaCl concentration was 0.15 mol/L or lower. The amount of lipovitellins decreased with increased molarity of the salt and at 0.5 mol/L NaCl they were rapidly degraded. The precipitates, growing in the reaction tube with 0.15 mol/L NaCl, included all constituents of yolk proteins and were ultrastructurally shown to have crystal structures perforated by empty cavities. No precipitates appeared at 0.5 mol/L NaCl. The results indicate that the limitation on proteolysis of the VTG by cathepsin D is due to the insolubility of yolk proteins at physiological salt concentrations, which explains why yolk can be stored stably in the presence of acid hydrolases over a long period.  相似文献   

5.
We have studied the role of N-linked oligosaccharides and proteolytic processing on the targeting of cathepsin D to the lysosomes in the human hepatoma cell line HepG2. In the presence of tunicamycin cathepsin D was synthesized as an unglycosylated 43-kDa proenzyme which was proteolytically processed via a 39-kDa intermediate to a 28-kDa mature form. Only a small portion was secreted into the culture medium. During intracellular transport the 43-kDa procathepsin D transiently became membrane-associated independently of binding to the mannose 6-phosphate receptor. Subcellular fractionation showed that unglycosylated cathepsin D was efficiently targeted to the lysosomes via intermediate compartments similar to the enzyme in control cells. The results show that in HepG2 cells processing and transport of cathepsin D to the lysosomes is independent of mannose 6-phosphate residues. Inhibition of the proteolytic processing of 53-kDa procathepsin D by protease inhibitors caused this form to accumulate intracellularly. Subcellular fractionation revealed that the procathepsin D was transported to lysosomes, thereby losing its membrane association. Procathepsin D taken up by the mannose 6-phosphate receptor also transiently became membrane-associated, probably in the same compartment. We conclude that the mannose 6-phosphate-independent membrane-association is a transient and compartment-specific event in the transport of procathepsin D.  相似文献   

6.
Cathepsin D was purified from porcine spleen to near homogeneity as determined by gel electrophoresis. The isolation scheme involved an acid precipitation of tissue extract, DEAE-cellulose and Sephadex G-200 chromatography, and isoelectric focusing. The end product represented about a 1000-fold purification and about a 10% recovery. The purified enzyme was the major isoenzyme, which represented 60% of cathepsin D present in porcine spleen. Two minor isoenzymes of cathepsin D were present in small amounts. The purified enzyme resembled porcine pepsin in molecular weight (35,000), amino acid composition, and inactivation by specific pepsin inactivators. The pH activity curve of the purified enzyme showed two optima near pH 3 and 4. The relative activities at these optimal pH values were affected by salt concentration. Experimental evidence indicated that the two-optima phenomenon is a property of a single enzyme species.  相似文献   

7.
The breakdown of cytoplasmic tubulin from brain (purified by ammonium sulfate fractionation and DEAE cellulose chromatography) by cathepsin D from brain (purified by ammonium sulfate fractionation and pepstatin Sepharose chromatography) was studied; changes in the intensity of tubulin gel bands were determined. The pH optimum of hemoglobin breakdown by cathepsin D was 3.2; the pH optimum for tubulin breakdown was 5.8; at pH 5.8 there was no significant hemoglobin breakdown by the enzyme. Tubulin breakdown had an apparent Km of 1.8 × 10−5 M and a Vmax of 0.56 μg tubulin (μg enzyme per min). The rate of breakdown was heterogeneous and studied on length of incubation; the major portion of tubulin was rapidly broken down and a smaller portion was more stable. The rate under our experimental conditions was 18%/h in the 1–4 h period and 2%/h after 4 h. This was not due to enzyme instability: after 4 h of inhibition freshly added tubulin was rapidly broken down, whereas freshly added enzyme did not increase the rate of breakdown. Thus breakdown heterogeneity was due to substrate (tubulin) heterogeneity. Pepstatin inhibited cathepsin D breakdown of tubulin at acid pH; at pH 7.6 it had no effect. Leupeptin was not inhibitory. We calculated that the cathepsin D content in brain, if fully active, could break down cytoplasmic tubulin with a half-life of 24 h, but it is likely that under in vivo conditions enzyme activity is greatly modified.  相似文献   

8.
Progestins increase the activity and rate of synthesis of cathepsin D, a lysosomal aspartyl protease, in the uterine luminal epithelium in ovariectomized rats. Western blot analysis of luminal epithelial proteins determined that the progestin, medroxyprogesterone acetate (MPA) increased the 43-kDa form of cathepsin D by 7-fold in 24 hr, whereas estradiol increased the amount of the same form by only 2-fold. To examine the precursor-product relationship between cathepsin D proteins in the luminal epithelium and stroma-myometrium after progestin or estradiol treatment, uterine proteins were prelabeled by incubation with [35S]methionine in vitro, cathepsin D was isolated by immunoprecipitation, and equal amounts of labeled cathepsin D were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis. After each hormonal treatment in each uterine tissue, a 48-kDa precursor was processed into a 44-kDa cathepsin D product. Endoglycosidase H digestion of [35S]methionine-labeled cathepsin D from the luminal epithelium and stroma-myometrium of medroxyprogesterone-treated rats shifted the molecular masses of the cathepsin D proteins by approximately 5.7 kDa. To examine the contribution of increased mRNA to increased rates of cathepsin D synthesis, we measured levels of cathepsin D mRNA in uterine tissues after progestin and estrogen treatment. Total RNA was isolated from the uterine luminal epithelium and from the stroma-myometrium. Northern blot analysis identified a single 2.2-kb RNA band corresponding to the size expected for cathepsin D mRNA. Medroxyprogesterone increased levels of cathepsin D mRNA in the luminal epithelium (greater than 17-fold) and in the stroma myometrium (3-fold), with maximum increases at 9 hr after treatment. Estradiol also increased cathepsin D mRNA levels in both uterine tissues, but by only 2-fold. No hormonal effects on liver cathepsin D mRNA were observed. Increases in cathepsin D synthesis and activity in uterine tissues in response to progestin and estrogen appear to depend in part upon increased levels of mRNA.  相似文献   

9.
Two unique cathepsin D-type proteases apparently present only in rat thoracic duct lymphocytes and in rat lymphoid tissues are described. One, termed H enzyme, has an apparent molecular weight of similar to95,000; the other, termed L enzyme, has an apparent molecular weight of similar to45,000, in common with that of most cathepsins D from other tissues and species. Both enzymes differ from cathepsin D, however, by a considerably greater sensitivity to inhibition by pepstatin and by a smaller degree of inhibition by an antiserum which inhibits rat liver cathepsin D. H enzyme is converted to L enzyme by treatment with beta-mercaptoethanol; the relationship between the two enzymes remains unknown. H and L enzyme have been detected in rat lymphoid tissues and in mouse spleen, but they are not present in other rat tissues (liver, kidney, adrenals), rabbit tissues, calf thymus, bovine spleen, or human tonsils. As measured on acid-denatured bovine hemoglobin as substrate, both enzymes have pH activity curves identical with that of rat liver cathepsin D, with optimal activity at pH 3.6. Activity on human serum albumin is much less and also shows an optimum at pH 3.6; hence, neither enzyme has the properties of cathepsin E. Thiol-reactive inhibitiors have no effect on the activity of H and L enzyme; thus they do not belong to the B group of cathepsins. Additional information, discussed in this paper, leads us to conclude that partially purified H and L enzymes are cathepsin D-type proteases.  相似文献   

10.
Degradation of rod outer segment proteins by cathepsin D.   总被引:1,自引:0,他引:1  
The degradation of proteins of the rod outer segment (ROS) fraction by partially purified cathepsin D [EC 3.4.23.5] from the retinal pigment epithelium was studied. The ROS fraction, prepared from bovine eyes by sucrose density gradient centrifugation, had little cathepsin D activity. Partially purified cathepsin D, obtained from crude extract of bovine retinal pigment epithelium using bovine serum albumin as a substrate, hydrolyzed the porteine of the ROS fraction. The rate of degradation of ROS proteins was proportional to both the enzyme concentration and the incubation time. With ROS proteins as substrate, the optimal pH of cathepsin D was about 3.5. The degradation of ROS proteins was inhibited by pepstatin.  相似文献   

11.
In a continuing study of control processes of cerebral protein catabolism we compared the activity of cathepsin D from three sources (rat brain, bovine brain, and bovine spleen) on purified CNS proteins (tubulin, actin, calmodulin, S-100 and glial fibrillary acidic protein). The pH optimum was 5 for hydrolysis with tubulin as substrate for all three enzyme preparations, and it was pH 4 with the other substrates. The pH dependence curve was somewhat variable, with S-100 breakdown relatively more active at an acidic pH range. The formation of initial breakdown products and the further catabolism of the breakdown products was dependent on pH; hence the pattern of peptides formed from glial fibrillary acidic protein was different in incubations at different pH's. The relative activity of the enzyme preparations differed, depending on the substrate: with tubulin and S-100 as substrates, rat brain cathepsin D was the most active and the bovine spleen enzyme was the least active. With calmodulin and glial fibrillary acidic protein as substrates, rat brain and spleen cathepsin D activities were similar, and bovine brain cathepsin D showed the lowest activity. Actin breakdown fell between these two patterns.The rates of breakdown of the substrates were different; expressed as μg of substrate split per unit enzyme per h, with rat brain cathepsin D activity was 8–9 with calmodulin and S-100, 4 with glial fibrillary acidic protein, 1.8 with actin, and 0.9 with tubulin. The results show that there are differences in the properties of a protease like cathepsin D, depending on its source; furthermore, the rate of breakdown and the characteristics of breakdown are also dependent on the substrate.We recently measured the breakdown of brain tubulin by cerebral cathepsin D in a continuing study of the mechanisms and controls of cerebral protein catabolism (Bracco et al., 1982a). We found that tubulin breakdown is heterogeneous, that membrane-bound tubulin is resistant to cathepsin D but susceptible to thrombin (Bracco et al., 1982b), and that cytoplasmic tubulin was in at least two pools, one with a higher, another with a lower, rate of breakdown. The pH optimum of tubulin breakdown by cerebral cathepsin D differed significantly from the pH optimum of hemoglobin breakdown by the same enzyme.These findings showed that the properties of breakdown by a cerebral protease depend on the substrate. To further examine this dependence of properties of breakdown on the substrate, we now report measurements of pH dependence of breakdown of several purified proteins (tubulin, actin, calmodulin, S-100, glial fibrillary acidic protein [GFA]) from brain by cathepsin D preparations from three sources, rat brain, bovine brain, and bovine spleen. We also compare the rate of breakdown of the various proteins with the rate of hemoglobin breakdown.  相似文献   

12.
An extract of rat neutrophils was found to contain a high hemoglobin-hydrolyzing activity at pH 3.2, about 70% of which does not cross-react with anti-rat liver cathepsin D antibody. A neutrophil non-cathepsin D acid proteinase was successfully isolated from cathepsin D and characterized in comparison with the properties of rat liver cathepsin D. The neutrophil enzyme differed from cathepsin D in chromatographic and electrophoretic behaviors as well as immunological cross-reactivity, and its molecular weight was estimated to be 98,000 by gel filtration on Toyopearl HW 55. These findings strongly suggest that the neutrophil enzyme could be classified as cathepsin E. The enzyme, now designated rat cathepsin E, had an optimal pH at 3.0-3.2, preferred hemoglobin to albumin as substrate, and was markedly resistant to urea denaturation. Rat cathepsins D and E cleaved the insulin B-chain at six and eight sites, respectively; five sites were common for both enzymes. Possible relations among cathepsin E and cathepsin D-like or E-like acid proteinases reported so far were discussed.  相似文献   

13.
The action and some properties of cathepsin D, partly purified from unfertilized loach eggs, embryos and skeletal muscles were determined. The enzyme from embryo cells displays the activity maximum at pH 3.0 and pH 4.8 while enzyme from skeletal muscles--only at pH 3.0. Cathepsin D purified from all three sources splits actively hemoglobin, albumin, alpha-glycerophosphate dehydrogenase, pyruvate kinase and practically does not influence casein, hexokinase, glucose-6-phosphate dehydrogenase. The enzyme is comparatively thermolabile and its activity decreases in the presence of thiol compounds. The main part of cathepsin D in skeletal muscle cells and in embryo cells is precipitated after differential centrifugation of homogenates (25000 g; 60 min).  相似文献   

14.
A comparison of the substrate specificities of cathepsin D and pseudorenin   总被引:3,自引:0,他引:3  
Cathepsin D, purified from hog spleen, releases angiotensin I from tetradecapeptide renin substrate and from protein renin substrates purified from hog and human plasma. However, the enzyme does not act on the naturally occurring renin substrate as it exists in plasma nor on purified substrate in the presence of plasma. Cathepsin D releases angiotensin I quantitatively from tetradecapeptide renin substrate and does not further degrade the angiotensin I on prolonged incubation. The pH optimum for cathepsin D prolonged incubation. The pH optimum for cathepsin D acting on tetradecapeptide renin substrate is 4.5, and there is very low activity above pH 7. These properties are very similar to those of pseudorenin, an angiotensin-forming enzyme originally isolated from human kidney, indicating that cathepsin D and pseudorenin may be identical.  相似文献   

15.
Gelatin zymography revealed the presence of proteolytic activity in conditioned medium (CM) from a serum-free, non-infected Spodoptera frugiperda, Sf9 insect cell culture. Two peptidase bands at about 49 and 39 kDa were detected and found to be proform and active form of the same enzyme. The 49-kDa form was visible on zymogram gels in samples of CM taken on days 4 and 5 of an Sf9 culture, while the 39-kDa form was seen on days 6 and 7. On basis of the inhibitor profile and substrate range, the enzyme was identified as an Sf9 homologue of cathepsin L, a papain-like cysteine peptidase. After lowering the pH of Sf9 CM to 3.5, an additional peptidase band at 22 kDa appeared. This peptidase showed the same inhibitor profile, substrate range and optimum pH (5.0) as the 39-kDa form, indicating that Sf9 cathepsin L has two active forms, at 39 and 22 kDa. Addition of the cysteine peptidase inhibitor E-64c to an Sf9 culture inhibited all proteolytic activities of Sf9 cathepsin L but did not influence the proliferation of Sf9 cells.  相似文献   

16.
《Insect Biochemistry》1991,21(2):165-176
A lysosomal aspartic protease with cathepsin D activity, from the mosquito, Aedes aegypti, was purified and characterized. Its isolation involved ammonium sulfate (30–50%) and acid (pH 2.5) precipitations of protein extracts from whole previtellogenic mosquitoes followed by cation exchange chromatography. Purity of the enzyme was monitored by SDS-PAGE and silver staining of the gels. The native molecular weight of the purified enzyme as determined by polyacrylamide gel electrophoresis under nondenaturing conditions was 80,000. SDS-PAGE resolved the enzyme into a single polypeptide with Mr = 40,000 suggesting that it exists as a homodimer in its non-denatured state. The pI of the purified enzyme was 5.4 as determined by isoelectric focusing gel electrophoresis. The purified enzyme exhibits properties characteristic of cathepsin D. It utilizes hemoglobin as a substrate and its activity is completely inhibited by pepstatin-A and 6M urea but not by 10 mM KCN. Optimal activity of the purified mosquito aspartic protease was obtained at pH 3.0 and 45°C. With hemoglobin as a substrate the enzyme had an apparent Km of 4.2 μ M. Polyclonal antibodies to the purified enzyme were raised in rabbits. The specificity of the antibodies to the enzyme was verified by immunoblot analysis of crude mosquito extracts and the enzyme separated by both non-denaturing and SDS-PAGE. Density gradient centrifugation of organelles followed by enzymatic and immunoblot analyses demonstrated the lysosomal nature of the purified enzyme. The N-terminal amino acid sequence of the purified mosquito lysosomal protease (19 amino acids) has 74% identity with N-terminal amino acid sequence of porcine and human cathepsins D.  相似文献   

17.
We have defined the in vivo and in vitro metabolic fate of internalized cholera toxin (CT) in the endosomal apparatus of rat liver. In vivo, CT was internalized and accumulated in endosomes where it underwent degradation in a pH-dependent manner. In vitro proteolysis of CT using an endosomal lysate required an acidic pH and was sensitive to pepstatin A, an inhibitor of aspartic acid proteases. By nondenaturating immunoprecipitation, the acidic CT-degrading activity was attributed to the luminal form of endosomal cathepsin D. The rate of toxin hydrolysis using an endosomal lysate or pure cathepsin D was found to be high for native CT and free CT-B subunit, and low for free CT-A subunit. On the basis of IC(50) values, competition studies revealed that CT-A and CT-B subunits share a common binding site on the cathepsin D enzyme, with native CT and free CT-B subunit displaying the highest affinity for the protease. By immunofluorescence, partial colocalization of internalized CT with cathepsin D was confirmed at early times of endocytosis in both hepatoma HepG2 and intestinal Caco-2 cells. Hydrolysates of CT generated at low pH by bovine cathepsin D displayed ADP-ribosyltransferase activity towards exogenous Gsalpha protein suggesting that CT cytotoxicity, at least in part, may be related to proteolytic events within endocytic vesicles. Together, these data identify the endocytic apparatus as a critical subcellular site for the accumulation and proteolytic degradation of endocytosed CT, and define endosomal cathepsin D an enzyme potentially responsible for CT cytotoxic activation.  相似文献   

18.
A sialidase [EC 3.2.1.18] from the ovary of starfish Asterina pectinifera was isolated and highly purified by preparative PAGE. The SDS-PAGE separation of the purified enzyme revealed two natures of protein bands, upper (50 kDa) and a lower (47 kDa). To identify the protein, N-terminal amino acid sequence of the upper band was done. The sequence matched with the N-terminal amino acid sequence of human lysosomal mature cathepsin D and cathepsin D activity was also found in all the preparation steps. Protease inhibitor pepstatin A inhibited the proteolysis activity of cathepsin D against a synthetic substrate. The two enzymes sialidase and cathepsin D were separated from each other by using high-performance gel-filtration chromatography. The Western blot analysis and isoelectric focusing showed the co-purified cathepsin D is a 50 kDa protein with a PI value of 4.2.  相似文献   

19.
Angiostatin, a potent endogenous inhibitor of angiogenesis, is generated by cancer-mediated proteolysis of plasminogen. The culture medium of human prostate carcinoma cells, when incubated with plasminogen at a variety of pH values, generated angiostatic peptides and miniplasminogen. The enzyme(s) responsible for this reaction was purified and identified as procathepsin D. The purified procathepsin D, as well as cathepsin D, generated two angiostatic peptides having the same NH(2)-terminal amino acid sequences and comprising kringles 1-4 of plasminogen in the pH range of 3.0-6.8, most strongly at pH 4.0 in vitro. This reaction required the concomitant conversion of procathepsin D to catalytically active pseudocathepsin D. The conversion of pseudocathepsin D to the mature cathepsin D was not observed by the prolonged incubation. The affinity-purified angiostatic peptides inhibited angiogenesis both in vitro and in vivo. Importantly, procathepsin D secreted by human breast carcinoma cells showed a significantly lower angiostatin-generating activity than that by human prostate carcinoma cells. Since deglycosylated procathepsin D from both prostate and breast carcinoma cells exhibited a similar low angiostatin-generating activity, this discrepancy appeared to be attributed to the difference in carbohydrate structures of procathepsin D molecules between the two cell types. The seminal vesicle fluid from patients with prostate carcinoma contained the mature cathepsin D and procathepsin D, but not pseudocathepsin D, suggesting that pseudocathepsin D is not a normal intermediate of procathepsin D processing in vivo. The present study provides evidence for the first time that cathepsin D secreted by human prostate carcinoma cells is responsible for angiostatin generation, thereby causing the prevention of tumor growth and angiogenesis-dependent growth of metastases.  相似文献   

20.
Human cathepsin B1. Purification and some properties of the enzyme   总被引:8,自引:31,他引:8       下载免费PDF全文
1. Cathepsin B1 was purified from human liver by a method involving autolysis, fractional precipitation with acetone, adsorption on, and stepwise elution from, CM-cellulose and an organomercurial adsorbent, gel chromatography and finally equilibrium chromatography on CM-cellulose. 2. The early stages of the procedure, including the use of the organomercurial adsorbent, were suitable for the simultaneous isolation of cathepsin D. The two cathepsins were sharply separated on the organomercurial column, and particular attention was given to the method for the preparation and use of this adsorbent. 3. A method is described for the staining of analytical isoelectric-focusing gels for cathepsin B1 activity, as well as protein. By this method it was shown that cathepsin B1 was represented by at least six isoenzymes during the greater part of the purification procedure. After the gel-chromatography step this group of isoenzymes was obtained essentially free of other proteins, in good yield. The isoenzymes were resolved from this mixture by chromatography on CM-cellulose. The purified enzyme was stable for several weeks at slightly acid pH values in the absence of thiol compounds; it was unstable above pH7. 4. The pI values of the isoenzymes of cathepsin B1 extended from pH4.5 to 5.5, that of the major isoenzyme tending to increase from 5.0 to 5.2 during the purification procedure. Gel chromatography indicated a molecular weight of 27500 for all of the isoenzymes, whereas polyacrylamide-gel electrophoresis in the presence of sodium dodecyl sulphate gave a value of 24000. 5. An antiserum raised in sheep against the purified enzyme reacted specifically with the alkali-denatured molecule. Purified cathepsin B1 contained no material precipitable by an anti-(human cathepsin D) serum. 6. The enzyme hydrolysed several N-substituted derivatives of l-arginine 2-naphthylamide, as well as haemoglobin, azo-haemoglobin, azo-globin and azo-casein. Greatest activity was obtained near pH6.0. 7. The sensitivity of human cathepsin B1 to chemical inhibitors was generally similar to that of other thiol proteinases. The enzyme was inactivated by the chloromethyl ketones derived from tosylphenylalanine, tosyl-lysine, acetyltetra-alanine and acetyldialanylprolylalanine. 8. The hydrolysis of alpha-N-benzoyl-dl-arginine 2-naphthylamide by extracts of human liver at pH6 was attributable entirely to cathepsin B1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号