首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A gas chromatographic-mass spectrometric method is presented which allows the simultaneous determination of the plasma concentrations of fluvoxamine and of the enantiomers of fluoxetine and norfluoxetine after derivatization with the chiral reagent, (S)-(-)-N-trifluoroacetylprolyl chloride. No interference was observed from endogenous compounds following the extraction of plasma samples from six different human subjects. The standard curves were linear over a working range of 10 to 750 ng/ml for racemic fluoxetine and norfluoxetine and of 50 to 500 ng/ml for fluvoxamine. Recoveries ranged from 50 to 66% for the three compounds. Intra- and inter-day coefficients of variation ranged from 4 to 10% for fluvoxamine and from 4 to 13% for fluoxetine and norfluoxetine. The limits of quantitation of the method were found to be 2 ng/ml for fluvoxamine and 1 ng/ml for the (R)- and (S)-enantiomers of fluoxetine and norfluoxetine, hence allowing its use for single dose pharmacokinetics. Finally, by using a steeper gradient of temperature, much shorter analysis times are obtained if one is interested in the concentrations of fluvoxamine alone.  相似文献   

2.
A sensitive analytical procedure is described for the simultaneous determination of lignocaine and the enantiomers of bupivacaine in biological fluids using diazepam as an internal standard. After solvent extraction into hexane, the local anaesthetics were separated using an α1-acid glycoprotein (AGP) column and detected at 214 nm. Calibration curves were linear (r2>0.99) in the concentration range of 5 to 500 ng/ml for the enantiomers of bupivacaine and 12.5 to 1000 ng/ml for lignocaine. The corresponding limits of detection were 4 ng/ml and 10 ng/ml, respectively. The method was applied to the analysis of plasma from a healthy woman undergoing tubal ligation.  相似文献   

3.
A high-performance liquid chromatographic method with solid-phase extraction was developed for the assay of the enantiomers of a novel 20,21-dinoreburnamenine derivative (RU 49041) in rat plasma and brain using a chiral stationary phase (Nucleosil Chiral 2) and ultraviolet detection. The limit of detection was 10 ng/ml (or ng/g) in both tissues and the intra-assay precision was satisfactory (plasma, ca. 5%; brain, ca. 1%). The pharmacokinetic profiles of the two enantiomers were determined following oral administration of the racemate (10 mg/kg). The results show that their pharmacokinetics are very different: whereas both enantiomers appear in the brain, only the 3α,16β-enantiomer is detected in plasma.  相似文献   

4.
A method is described for the determination of the two enantiomers of mirtazapine in human blood plasma by high-performance liquid chromatography. Measurements were performed on drug free plasma spiked with mirtazapine and used to prepare and validate standard curves. Levels of enantiomers of mirtazapine were also measured in patients being treated for depression with racemic mirtazapine. Mirtazapine was separated from plasma by solid-phase extraction using CERTIFY columns. Chromatographic separation was achieved using a Chiralpak AD column and pre-column and compounds were detected by their absorption at 290 nm. Imipramine was used as an internal standard. The assay was validated for each analyte in the concentration range 10–100 ng/ml. The coefficient of variance was 16% and 5.5% for(+)-mirtazapine for 10 and 100 ng/ml control specimens respectively and 15% and 7.3% for mirtazapine for 10 and 100 ng/ml control specimens respectively. This assay is appropriate for use in the clinical range. The range of plasma mirtazapine concentrations from eleven patients taking daily doses of 30–45 mg of racemate was <5 to 69 ng/ml for (+)-mirtazapine and 13–88 ng/ml for (−)-mirtazapine for blood specimens collected 10–17.5 h after taking the dose.  相似文献   

5.
A sensitive, stereoselective high-performance liquid chromatographic method with fluorescence detection for the measurement of bisoprolol enantiomers in human plasma and urine has been developed. Bisoprolol was extracted at alkaline pH with chloroform, followed by solid-phase extraction. The effluent was evaporated, and the reconstituted residue was chromatographed on a Chiralcel OD column with a mobile phase of hexane—2-propanol (10:0.9, v/v) containing 0.01% (v/v) diethylamine. Within the plasma and urine enantiomeric concentration ranges of 5–100 ng/ml and 25–1250 ng/ml, respectively, a linear relationship was obtained between the peak-height ratios and the corresponding concentrations. The limit of quantitation, defined as three times the baseline noise, was 2 ng/ml for each enantiomer in plasma. A preliminary pharmacokinetic study was undertaken in three healthy male volunteers following an oral dose of 5 mg of racemic bisoprolol. The results confirm that this assay is suitable for pharmacokinetic studies of bisoprolol enantiomers in humans following oral administration of the therapeutic dose.  相似文献   

6.
We present a method for the enantioselective analysis of propafenone in human plasma for application in clinical pharmacokinetic studies. Propafenone enantiomers were resolved on a 10-μm Chiralcel OD-R column (250×4.6 mm I.D.) after solid-phase extraction using disposable solid-phase extraction tubes (RP-18). The mobile phase used for the resolution of propafenone enantiomers and the internal standard propranolol was 0.25 M sodium perchlorate (pH 4.0)–acetonitrile (60:40, v/v), at a flow-rate of 0.7 ml/min. The method showed a mean recovery of 99.9% for (S)-propafenone and 100.5% for (R)-propafenone, and the coefficients of variation obtained in the precision and accuracy study were below 10%. The proposed method presented quantitation limits of 25 ng/ml and was linear up to a concentration of 5000 ng/ml of each enantiomer.  相似文献   

7.
A modified method for the determination of gacyclidine enantiomers in human plasma by GC–MS with selected-ion monitoring using the deuterated derivative of gacyclidine (d3-gacyclidine) as internal standard was developed. Following a single-step liquid–liquid extraction with hexane, drug enantiomers were separated on a chiral fused-silica capillary column (CP-Chirasil-Dex; Chrompack). The fragment ion, m/z 266, was selected for monitoring d3-gacyclidine (retention times of 35.2 and 35.6 min for the (+)- and (−)-enantiomer, respectively) whereas the fragment ion, m/z 263, was selected for quantitation of gacyclidine (retention times of 35.4 and 35.9 min for the (+)- and (−)-enantiomer, respectively). The limit of quantitation for each enantiomer was 0.3 ng/ml, using 1 ml of sample, with a relative standard deviation (RSD) <14% and a signal-to-noise ratio of 5. The extraction recovery of both gacyclidine enantiomers from human plasma was about 75%. The calibration curves were linear (r2>0.996) over the working range of 0.312 to 20 ng/ml. Within- and between-day RSD were <9% at 5, 10 and 20 ng/ml, and <16% at 0.312, 0.625, 1.25 and 2.5 ng/ml. Intraday and interday bias were less than 11% for both enantiomers. The chromatographic behavior of d3-gacyclidine remained satisfactory even after more than 500 injections. Applicability of this specific and stereoselective assay is demonstrated for a clinical pharmacokinetic study with racemic gacyclidine.  相似文献   

8.
rac-Isradipine is a dihydropyridine type calcium antagonist. Its calcium entry blocking effect is due primarily to the (+)-(S)-enantiomer. This study describes a sensitive enantioselective method for the determination of isradipine in human serum. Following alkaline extraction into hexane, the enantiomers of isradipine are separated quantitatively by high-performance liquid chromatography on a Chiralcel OJ column at 39°C. The collected fractions were evaporated and assayed using capillary gas chromatography on a HP 50+ column with nitrogen selective detection. Using 2.0 ml of serum, 0.7 nmol/1 (0.26 ng/ml) of each enantiomer could be determined with acceptable precision. The method has successfully been used to measure (+)-(S)- and (−)-(R)-isradipine concentrations in samples from volunteers after intravenous and oral administration of isradipine. Chirality 10:808–812, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

9.
We have developed a simple, sensitive, specific and reproducible stereoselective high-performance liquid chromatography technique for analytical separation of cisapride enantiomers and measurement of cisapride enantiomers in human plasma. A chiral analytical column (ChiralCel OJ) was used with a mobile phase consisting of ethanol–hexane–diethylamine (35:64.5:0.5, v/v/v). This assay method was linear over a range of concentrations (5–125 ng/ml) of each enantiomer. The limit of quantification was 5 ng/ml in human plasma for both cisapride enantiomers, while the limit of detection was 1 ng/ml. Intra- and inter-day C.V.s did not exceed 15% for all concentrations except at 12.5 ng/ml for EII (+)-cisapride, which was 20 and 19%, respectively. The clinical utility of the method was demonstrated in a pharmacokinetic study of normal volunteers who received a 20 mg single oral dose of racemic cisapride. The preliminary pharmacokinetic data obtained using the method we describe here provide evidence for the first time that cisapride exhibits stereoselective disposition.  相似文献   

10.
A sensitive HPLC method for the quantification of praziquantel enantiomers in human serum is described. The method involves the use of a novel disc solid-phase extraction for sample clean-up prior to HPLC analysis and is also free of interference from trans-4-hydroxypraziquantel, the major metabolite of praziquantel. Chromatographic resolution of the enantiomers was performed on a reversed-phase cellulose-based chiral column (Chiralcel OJ-R) under isocratic conditions using a mobile phase consisting of 0.1 M sodium perchlorate–acetonitrile (66:34, v/v) at a flow-rate of 0.5 ml/min. Recoveries for R-(−)- and S-(+)-praziquantel enantiomers were in the range of 84–89% at 50–500 ng/ml levels. Intra-day and inter-day precisions calculated as R.S.D. were in the ranges of 3–8% and 1–8% for both enantiomers, respectively. Intra-day and inter-day accuracies calculated as percent error were in the 0.2–5% and 0.3–8% ranges for both enantiomers, respectively. Linear calibration curves were in the concentration range 10–600 ng/ml for each enantiomer in serum. The limit of quantification of each enantiomer was 10 ng/ml. The detection limit for each enantiomer in serum using a UV detector set at 210 nm was 5 ng/ml (S/N=2).  相似文献   

11.
The protein binding of the enantiomers of gallopamil has been investigated in solutions of human serum albumin, α1-acid glycoprotein and serum. Over the range of concentrations attained after oral gallopamil administration, the binding of both enantiomers to albumin, α1-acid glycoprotein, and serum proteins was independent of gallopamil concentration. The binding to both human serum albumin (40 g/liter) [range of fraction bound (fb) R: 0.624 to 0.699; S: 0.502 to 0.605] and α1-acid glycoprotein (0.5 g/liter) (range of fb R: 0.530 to 0.718; S: 0.502 to 0.620) was stereoselective, favoring the (R)-enantiomer (predialysis gallopamil concentrations 2.5 to 10,000 ng/ml). When the enantiomers (predialysis gallopamil concentration 10 ng/ml) were studied separately in drug-free serum samples from six healthy volunteers the fraction of (S)-gallopamil bound (fb: 0.943 ± 0.016) was lower (P < 0.05) than that of (R)-gallopamil (fb: 0.960 ± 0.010). The serum protein binding of both (R)- and (S)-gallopamil was unaffected by their optical antipodes (fb R: 0.963 ± 0.011; S: 0.948 ± 0.015) indicating that at therapeutic concentrations a protein binding enantiomer–enantiomer interaction does not occur. The protein binding of (R)- and (S)-gallopamil ex vivo 2 h after single dose oral administration of 50 mg pseudoracemic gallopamil (fb R: 0.960 ± 0.010: predialysis [R] 6.9 to 35.3 ng/ml; S: 0.943 ± 0.016: predialysis [S] 9.5 to 30.7 ng/ml) was comparable to that observed in vitro in drug-free serum. Gallopamil metabolites formed during first-pass following oral administration, therefore, do not influence the protein binding of (R)- or (S)-gallopamil. © 1993 Wiley-Liss, Inc.  相似文献   

12.
A simple, rapid, sensitive and selective method has been developed for the stereospecific determination of verapamil and its metabolite, norverapamil in urine. For sample preparation we utilized a membrane-based solid-phase extraction (SPE) disk consisting of a thin, particle-loaded membrane inserted in a plastic syringe-like barrel. The particles, which may be C8 or C18 bonded phase (C8 in this work), are embedded within a matrix of PTFE (Teflon) fibrils. Overall analyte recoveries were above 85%, even at low concentration of 3.0 ng/ml with reproducibilities (C.V. values) below 13.1%. This method of extraction has the advantage of speed and considerable reduction in solvent volumes compared to conventional SPE and solvent extraction. The separation of all the enantiomers was achieved using a single chiral stationary phase column, the cellulose-based reversed-phase, Chiralcel OD-R. Analyte concentrations of less than 3.0 ng/ml could be quantitated with C.V. values below 14%. Calibration curves were linear in the range 2.5–300 ng/ml. Intra-day and inter-day reproducibilities were 10.5–14.2% at 3 ng/ml, 4.8–9.3% at 138.5 ng/ml and 7.8–10.1% at 280 ng/ml level, respectively, for all the enantiomers.  相似文献   

13.
The inability of many organisms to degrade pollutants at low concentrations is a problem when selecting inocula for bioremediation of sites with these low concentrations. Thus, a study was conducted to determine the effect of low concentrations of p-nitrophenol (PNP) on growth of four PNP-degrading bacteria and their abilities to metabolize low concentrations of the compound in culture and samples from an oligotrophic lake. PNP did not increase the growth rates of Flavobacterium sp. M4, Pseudomonas sp. K, Flavobacterium sp. M1, and Pseudomonas sp. SP3 at concentrations of less than 2, 4, 10, and 100 ng/ml, respectively, when it was the sole added carbon source in culture, but it stimulated multiplication at higher concentrations. In liquid culture with the nitro compound as sole added carbon source, the four bacteria extensively mineralized PNP at 50 and 100 ng/ml, and three of the four degraded much of the substrate at 25 ng/ml. Pseudomonas sp. SP3 mineralized more than 20% but the two Flavobacterium strains converted less than 10% of the substrate to C02 at 10 ng/ml, and none of the three mineralized more than 5% at 1 and 5 ng PNP/ml. Under conditions where more than 99% of the radioactivity from 14C-PNP added at 1 ng/ml remained in solution, two of the isolates formed organic products. Pseudomonas sp. K had no activity at 1, 5, and 10 ng/ml. In contrast, when each of the bacteria was separately inoculated into samples of water from an oligotrophic lake and from a well in which PNP was not biodegraded, the bacteria were able to mineralize as little as 1 ng PNP/ml. The addition to a salts solution of 10 ng of glucose per ml resulted in mineralization of PNP at concentrations too low to be mineralized when the nitro compound was the sole source of added carbon. Bacteria may thus be able to mineralize substrates in natural waters at concentrations below those suggested by tests conducted in culture media, possibly because of the availability of other carbon sources for the bacteria.Offprint requests to: M. Alexander.  相似文献   

14.
A sensitive and stereospecific method for the quantitation of trimipramine enantiomers in human serum was developed. The assay involves the use of a novel mixed-mode disc solid-phase extraction for serum sample clean-up prior to HPLC analysis and is also free of interference from the enantiomers of desmethyltrimipramine, 2-hydroxytrimipramine, and 2-hydroxydesmethyltrimipramine, the three major metabolites of trimipramine. Chromatographic resolution of trimipramine enantiomers was performed on a reversed-phase cellulose-based chiral column (Chiralcel OD-R) under isocratic conditions using a mobile phase consisting of 0.3 M aqueous sodium perchlorate-acetonitrile (58:42, v/v) at a flow-rate of 0.5 ml/min. Recoveries for R- and S-trimipramine enantiomers were in the range of 93–96% at 25–185 ng/ml levels. Intra-day and inter-day precisions calculated as R.S.D. were in the ranges of 0.30-8.00% and 1.60-10.20% for both enantiomers, respectively. Intra-day and inter-day accuracies calculated as percent error were in the 0.01–2.10% and 1.00–3.00% ranges for both enantiomers, respectively. Linear calibration curves were in the concentration range 15–250 ng/ml for each enantiomer in serum. The limit of quantification of each enantiomer was 15 ng/ml. The detection limit for each enantiomer in serum using a UV detector set at 210 nm was 10 ng/ml (S/N =2). In addition, separation of the enantiomers of desmethyltrimipramine, 2-hydroxytrimipramine, and 2-hydroxydesmethyltrimipramine were investigated. The desmethyltrimipramine enantiomers could be resolved on the Chiralcel OD-R column under the same chromatographic conditions as the trimipramine enantiomers, but the other two metabolite enantiomers required different mobile phases on the Chiralcel OD-R column to achieve satisfactory resolution with Rs values of 1.00.  相似文献   

15.
Methocarbamol enantiomers in rat and human plasma were quantified using a stereospecific high-performance liquid chromatographic method. Racemic methocarbamol and internal standard, (R)-(−)-flecainide, were isolated from plasma by a single-step extraction with ethyl acetate. After derivatization with the enantiomerically pure reagent (S)-(+)-1-(1-naphthyl)ethyl isocyanate, methocarbamol diastereomers and the (R)-flecainide derivative were separated on a normal-phase silica column with a mobile phase consisting of hexane—isopropanol (95:5, v/v) at a flow-rate of 1.6 ml/min. Ultraviolet detection was carried out at a wavelength of 280 nm. The resolution factor between the diastereomers was 2.1 (α = 1.24). An excellent linearity was observed between the methocarbamol diastereomers/internal standard derivative peak-area ratios and plasma concentrations, and the intra- and inter-day coefficients of variation were always <9.8%. The lowest quantifiable concentration was 0.5 μg/ml for each enantiomer (coefficients of variation of 9.8 and 8.8% for (S)- and (R)-methocarbamol, respectively), while the limit of detection (signal-to-noise ratio 3:1) was approximately 10 ng/ml. The assay was used to study the pharmacokinetics of methocarbamol enantiomers in a rat following intravenous administration of a 120 mg/kg dose of racemic methocarbamol and to evaluate plasma and urine concentrations in a human volunteer after oral administration of a 1000-mg dose of the racemate. The method is suitable for stereoselective pharmacokinetic studies in humans as well as in animal models.  相似文献   

16.
A sensitive and relatively rapid reversed-phase HPLC method was applied to the enantiomeric separation of tramadol and its two main metabolites, O-desmethyltramadol (M1) and N-desmethyltramadol (M2) in plasma samples. Chromatography was performed on an AGP column containing alpha1-acid glycoprotein as chiral selector with a mobile phase of 30 mM diammonium hydrogen phosphate buffer-acetonitrile-triethylamine (98.9:1:0.1, v/v), adjusted to pH 7 by phosphoric acid, and a flow rate of 0.5 ml/min. The fluorescence of analytes was detected at excitation and emission wavelengths of 200 and 301 nm, respectively. The sample preparation was a simple extraction with ethyl acetate using fluconazol as internal standard (IS). The enantiomers of all analytes and IS peaks eluted within 32 min, without any endogenous interference. The calibration curves were linear (r(2) > 0.993) in the concentration range of 2-200, 2.5-100 and 2.5-75 ng/ml for tramadol, M1, and M2 enantiomers, respectively. The within- and between-day variation determined by the measurement of quality control samples at four tested concentrations, showed acceptable values. The lower limit of quantitation was 2 ng/ml for tramadol enantiomers and 2.5 ng/ml for M1 or M2 enantiomers. Mean recoveries of enantiomers from plasma samples were > 81% for all analytes. The procedure was applied to assess the pharmacokinetics of the enantiomers of tramadol and its two main metabolites following oral administration of single 100-mg doses to healthy volunteers.  相似文献   

17.
An HPLC method was developed to determine the plasma concentrations of R(+)- and S(−)-thiopentone for pharmacokinetic studies in sheep. The method required separation of the thiopentone enantiomers from the corresponding pentobarbitone enantiomers which are usually present as metabolites of thiopentone. Phenylbutazone was used as an internal standard. After acidification, the plasma samples were extracted with a mixture of ether and hexane (2:8). The solvent was evaporated to dryness and the residues were reconstituted with sodium hydroxide solution (pH 10). The samples were chromatographed on a 100 mm × 4 mm I.D.. Chiral AGP-CSP column. The mobile phase was 4.5% 2-propanol in 0.1 M phosphate buffer (pH 6.2) with a flow-rate of 0.9 ml/min. This gave k′ values of 1.92, 2.92, 5.71, 9.30 and 11.98 for R(+)-pentobarbitone, S(−)-pentobarbitone, R(+)-thiopentone, S(−)-thiopentone, and phenylbutazone, respectively. At detection wavelength of 287 nm, the limit of quantitation was 5 ng/ml for R(+)-thiopentone and 6 ng/ml for S(−)-thiopentone. The inter-day coefficients of variation at concentrations of 0.02, 0.1 and 8 μg/ml were, respectively, 4.8, 4.4 and 3.5% for R(+)-thiopentone and, respectively, 5.0, 4.3 and 3.9% for S(−)-thiopentone (n = 6 each enantiomer). At the same concentrations, the intra-day coefficients of variation from six sets of replicates (measured over six days) were, respectively, 8.0, 8.0 and 8.8% for R(+)-thiopentene and 8.8, 7.4 and 9.6% for S(−)-thiopentone. Linearity over the standard range, 0.01–40 μg/ml, was shown by correlation coefficients> 0.998. This method has proven suitable for pharmacokinetic studies of thiopentone enantiomers after administration of rac-thiopentone in human plasma also and would be suitable for pharmacokinetic studies of the pentobarbitone eantiomers.  相似文献   

18.
An analytical method was developed for the determination of enantiomers of dencichine in plasma. Sample extraction from plasma was achieved by a solid-phase extraction (SPE) procedure using a C(18) cartridge, with carbocisteine as the internal standard. Plasma was deproteinized using inorganic acid and derivatizated before the SPE. Chiral separation of dencichine enantiomers was achieved by pre-column derivatization using o-phthaldialdehyde (OPA) and the chiral thiol N-isobutanoyl-L-cysteine (NIBC) to form diastereoisomeric isoindole derivatives that were separable by ODS column using a gradient solvent programme. The column eluent was monitored using mass spectrometry (MS). The conditions of MS detection were optimized, and selected ion monitoring was used to selectively detect D-dencichine and its arrangement isomer. High sensitivity and selectivity were obtained using this method. The limit of detection was determined to be 10 ng/ml for D-dencichine and 8 ng/ml for L-dencichine in plasma. The linearity was demonstrated over a wide range of concentrations, from 0.5 to 50 microg/ml for both enatiomers. The intra- and inter-day precision (C.V.), studied at four concentrations, was less than 7.0%. No interferences from endogenous amino acids and isomers of dencichine were found. The method was suitable for pharmacokinetic studies of dencichine enantiomers.  相似文献   

19.
Bolesatine, a glycoprotein fromBoletus satanas Lenz, has previously been shown to be mitogenic in rat and human lymphocytes at very low concentrations, whereas higher concentrations inhibited protein synthesisin vitro and in severalin vivo systems. The low concentrations (1–10 ng/ml) of bolesatine were shown to activate protein kinase C (PKC)in vitro (cell-free system) and in Vero cells. In the same time, Vero cells significantly proliferated when incubated with bolesatine concentrations ranging from 1 to 10 ng/ml; the DNA synthesis increased by 27–59% as referred to the control, and InsP3 release increased in a concentration-dependent manner, up to 142%. At higher concentrations, 1–10 g in cell-free systems, bolesatine inhibits protein synthesis by hydrolyzing the nucleoside triphosphates GTP and ATP.In the present work, the implication of other toxic mechanisms, such as lipid peroxidation and active radical production, was investigated in relation to inhibition of cell growth, whereas possible modifications of the ratio m5dC/dC+m5dC were determined in order to correlate with the biphasic action of bolesatine in Vero cells.Low concentrations of bolesatine up to 10 ng/ml do not increase malonaldehyde (MDA) production, while they induce hypomethylation (5.2% as compared to 7.1%). Higher concentrations (above 20 ng/ml) increase MDA production, from 58 ng/mg of cellular proteins to 113 ng/mg at a concentration of 50 ng/ml, for example, and induce hypermethylation in Vero cell DNA. It is concluded that low concentrations of bolesatine that are proliferative induce hypomethylation, which could be one of the pathways whereby bolesatine induces cell proliferation. Higher concentrations which enhance lipid peroxidation also induce hypermethylation. These mechanisms could be at least partly implicated in the pathway whereby bolesatine induces cell death.Abbreviations MDA malonaldehyde - TBA thiobarbituric acid  相似文献   

20.
A practical and selective HPLC method for the separation and quantification of omeprazole enantiomers in human plasma is presented. C18 solid phase extraction (SPE) cartridges were used to extract the enantiomers from plasma samples and the chiral separation was carried out on a Chiralpak AD column protected with a CN guard column, using ethanol:hexane (70:30) as the mobile phase, at a flow rate of 0.5 ml/min. The detection was carried out at 302 nm. The method proved to be linear in the range of 10-1000 ng/ml for each enantiomer, with a quantification limit of 5 ng/ml. Precision and accuracy, demonstrated by within-day and between-day assays, were lower than 10%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号