The purpose of this study was to investigate the possible presence of phenylbutazone in plasma samples from fighting bulls killed in 2nd and 3rd category bullrings in the province of Salamanca (Spain) in 1998, 1999 and 2000. For quantitative and qualitative determination, a high-performance liquid chromatograph was used, equipped with a photodiode-array detector and setting wavelengths at 240, 254 and 284 nm. The mobile phase optimized for the simultaneous detection of dexamethasone, betamethasone, flunixin and phenylbutazone, was 0.01 M acetic acid pH 3 in methanol (35:65 v/v) at a flow rate of 1 ml/min. Plasma samples were deproteinized with 400 microl of acetonitrile and 20 microl of the supernatant were injected directly into the chromatographic system equipped with a Lichrospher 60 RP select B column and guard column. For the quantitative analysis, standard calibration curves were made in a concentration range between 0.25 and 30 microg/ml, using betamethasone as internal standard. The retention time of phenylbutazone was 8.7 +/- 0.2 min and recovery was 83%. The detection and quantification limits were 0.016 and 0.029, respectively for A=240 nm. The study results show that 17 of the 74 samples analyzed in 1998, 18 of those from 1999 and 10 of those from 2000 were positive for phenylbutazone. 相似文献
A selective semi-automated solid-phase extraction (SPE) of the non-steroidal anti-inflammatory drugs diclofenac sodium, indomethacin and phenylbutazone from urine prior to high-performance liquid chromatography was investigated. The drugs were recovered from urine buffered at pH 5.0 using C18 Bond-Elut cartridges as solid sorbent material and mixtures of methanol–aqueous buffer or acetonitrile–aqueous buffer as washing and elution solvents. The extracts were chromatographed on a reversed-phase ODS column using 10 mM acetate buffer (pH 4.0)–acetonitrile (58:42, v/v) as the mobile phase, and the effluent from the column was monitored at 210 nm with ultraviolet detection. Absolute recoveries of the anti-inflammatory drugs within the range 0.02–1.0 μg/ml were about 85% for diclofenac and indomethacin, and 50% for phenylbutazone without any interference from endogenous compounds of the urine. The within-day and between-day repeatabilities were in all cases less than 5% and 10%, respectively. Limits of detection were 0.007 μg/ml for diclofenac sodium and indomethacin and 0.035 μg/ml for phenylbutazone, whereas limits of quantitation were 0.02 μg/ml for diclofenac and indomethacin and 0.1 μg/ml for phenylbutazone. 相似文献
Uterine biopsy in the mare on day 4 post-ovulation causes an acute inflammatory reaction which results in premature luteolysis. In this study, seven mares (4 to 6 years of age) were used in a switchback experimental design to test the hypothesis that in the mare parenterally administered PBZ will block luteolysis induced by uterine biopsy on day 4 post-ovulation. All mares were allowed two normal estrous cycles (range 18 to 24 days). On the first day of estrus of the third estrous cycle each mare was intravenously given 2 grams PBZ (treatment) or 10 ml 0.9% saline (control) daily until signs of estrus were exhibited. The day of ovulation (day 0) was determined by rectal palpation and subsequently verified by peripheral plasma progesterone concentrations. On day 4 following ovulation all mares were subjected to uterine biopsy, and subsequent estrus detection was performed daily using an andro-genized gelding. A total of 19 estrous cycles (ten for PBZ treatment and nine for controls) were evaluated. Mean number of days (+/-SE) from uterine biopsy to induced estrus was 5.00+/-0.16 for control cycles and was significantly different (P<0.025) when compared with 9.20+/-0.34 days for treatment cycles. Results of this study suggest that PBZ can block luteolysis in the mare induced by uterine biopsy on day 4 post-ovulation, possibly as a result of accumulating PBZ in acutely inflamed uterine tissue and inhibiting prostaglandin synthesis. 相似文献
Lipid peroxidation was investigated to evaluate the deleterious effect on tissues by phenylbutazone (PB). PB induced lipid peroxidation of microsomes in the presence of horseradish peroxidase and hydrogen peroxide (HRP-H2O2). The lipid peroxidation was completely inhibited by catalase but not by superoxide dismutase. Mannitol and dimethylsulfoxide had no effect. These results indicated no paticipation of superoxide and hydroxyl radical in the lipid peroxidation. Reduced glutathione (GSH) efficiently inhibited the lipid peroxidation. PB radicals emitted electron spin resonance (ESR) signals during the reaction of PB with HRP-H2O2. Microsomes and arachidonic acid strongly diminished the ESR signals, indicating that PB radicals directly react with unsaturated lipids of microsomes to cause thiobarbituric acid reactive substances. GSH sharply diminished the ESR signals of PB radicals, suggesting that GSH scavenges PB radicals to inhibit lipid peroxidation. Also, 2-methyl-2-nitrosopropan strongly inhibited lipid peroxidation. R-Phycoerythrin, a peroxyl radical detector substance, was decomposed by PB with HRP-H2O2. These results suggest that lipid peroxidation of microsomes is induced by PB radicals or peroxyl radicals, or both. 相似文献
Prostaglandin E1 and prostaglandin E2 speed up the dark-induced (scotonastic) and light-induced (photonastic) leaflet movements of Cassia fasciculata. The precursors of prostaglandin biosynthesis, homo -linolenic and arachidonic acids, and an intermediary product, prostaglandin-interm-5, act in the same manner on these movements. Inhibitors of prostaglandin biosynthesis, indomethacin and phenylbutazone, inhibited the scotonastic but promoted the photonastic movements in an unexpected way. Since the pulvinar movements are mediated by water and ion migrations, the observed modifications of these movements indicate that prostaglandins and their precursors may affect, as in animal cells, processes linked to a variation of membrane permeability.Abbreviations PGE1
prostaglandin E1
- PGE2
prostaglandin E2相似文献
Glucuronidation is a major metabolic pathway in the biotransformation of many xenobiotics and endogeneous compounds. There have been many studies on the formation of O-, N- or S-glucuronides and identification of the UDP-glucuronosyltransferase (UGT) isoforms responsible for the formation of these glucuronides. However, there is no information available on which UGT isoform(s) catalyzes C-glucuronidation. In the present study, 16 human UGTs (UGTs 1A1, 1A3, 1A4, 1A5, 1A6, 1A7, 1A8, 1A9, 1A10, 2B4, 2B7, 2B10, 2B11, 2B15, 2B17 and 2B28) were cloned and expressed in baculovirus-infected insect cells and investigated to determine their C-glucuronidating activity toward phenylbutazone (PB). Among the UGT isoforms investigated, only UGT1A9 catalyzed PB C-glucuronidation. Human liver and kidney microsomes, which are well known to express UGT1A9, had C-glucuronidating activity toward PB. However, the jejunum, which did not express UGT1A9, had no C-glucuronidating activity. These results demonstrate for the first time that PB C-glucuronidation is catalyzed by only UGT1A9. 相似文献
Phenylbutazone (PB) is known to be biotransformed to its O- and C-glucuronide. Recently, we reported that PB C-glucuronide formation is catalyzed by UGT1A9. Interestingly, despite UGT1A8 sharing high amino acid sequence identity with UGT1A9, UGT1A8 had no PB C-glucuronidating activity. In the present study, we constructed eight UGT1A9/UGT1A8 chimeras and evaluated which region is important for PB C-glucuronide formation. All of the chimeras and UGT1A8 and UGT1A9 had 7-hydroxy-(4-trifluoromethyl)coumarin (HFC) O-glucuronidating activity. The Km values for HFC glucuronidation of UGT1A8, UGT1A9 and their chimeras were divided into two types, UGT1A8 type (high Km) and UGT1A9 type (low Km), and these types were determined according to whether their amino acids at positions 69-132 were those of UGT1A8 or UGT1A9. Likewise, PB O-glucuronidating activity was also detected by all of the chimeras, and their Km values were divided into two types. On the contrary, PB C-glucuronidating activity was detected by UGT1A9(1-132)/1A8(133-286), UGT1A9(1-212)/1A8(213-286), UGT1A8(1-68)/1A9(69-286), and UGT1A8(1-68)/1A9(69-132)/1A8(133-286) chimeras. The region 1A9(69-132) was common among chimeras having PB C-glucuronidating activity. Of interest is that UGT1A9(1-68)/1A8(69-132)/1A9(133-286) had lost PB C-glucuronidation activity, but retained activities of PB and HFC O-glucuronidation. These results strongly suggested that amino acid positions 69-132 of UGT1A9 are responsible for chemoselectivity for PB and affinity to substrates such as PB and HFC. 相似文献
It has now been over twenty years since a novel herpesviral genome was identified in Kaposi's sarcoma biopsies. Since then, the cumulative research effort by molecular biologists, virologists, clinicians, and epidemiologists alike has led to the extensive characterization of this tumor virus, Kaposi's sarcoma-associated herpesvirus(KSHV; also known as human herpesvirus 8(HHV-8)), and its associated diseases. Here we review the current knowledge of KSHV biology and pathogenesis, with a particular emphasis on new and exciting advances in the field of epigenetics. We also discuss the development and practicality of various cell culture and animal model systems to study KSHV replication and pathogenesis. 相似文献
Curcumin is the yellow pigment of turmeric that interacts irreversibly forming an adduct with thioredoxin reductase (TrxR), an enzyme
responsible for redox control of cell and defence against oxidative stress. Docking at both the active sites of TrxR was performed to compare
the potency of three naturally occurring curcuminoids, namely curcumin, demethoxy curcumin and bis-demethoxy curcumin. Results show
that active sites of TrxR occur at the junction of E and F chains. Volume and area of both cavities is predicted. It has been concluded by
distance mapping of the most active conformations that Se atom of catalytic residue SeCYS498, is at a distance of 3.56 from C13 of
demethoxy curcumin at the E chain active site, whereas C13 carbon atom forms adduct with Se atom of SeCys 498. We report that at least
one methoxy group in curcuminoids is necessary for interation with catalytic residues of thioredoxin. Pharmacophore of both active sites of
the TrxR receptor for curcumin and demethoxy curcumin molecules has been drawn and proposed for design and synthesis of most probable
potent antiproliferative synthetic drugs. 相似文献
正Dear Editor,In December 2019, a novel human coronavirus caused an epidemic of severe pneumonia(Coronavirus Disease 2019,COVID-19) in Wuhan, Hubei, China(Wu et al. 2020; Zhu et al. 2020). So far, this virus has spread to all areas of China and even to other countries. The epidemic has caused 67,102 confirmed infections with 1526 fatal cases 相似文献
The young pistils in the melanthioid tribes, Hewardieae, Petrosavieae and Tricyrteae, are uniformly tricarpellate and syncarpous. They lack raphide idioblasts. All are multiovulate, with bitegmic ovules. The Petrosavieae are marked by the presence of septal glands and incomplete syncarpy. Tepals and stamens adhere to the ovary in the Hewardieae and the Petrosavieae but not in the Tricyrteae. Two vascular bundles occur in the stamens of the Hewartlieae and Tricyrtis latifolia. Ventral bundles in the upper part of the ovary of the Hewardieae are continuous with compound septal bundles and placental bundles in the lower part. Putative ventral bundles occur in the alternate position in the Tricyrteae and putative placental bundles in the opposite. position in the Petrosavieae. The dichtomously branched stigma in each carpel of the Tricyrteae is supplied by a bifurcated dorsal bundle. 相似文献
Microbial resistance to antibiotics is an unresolved global concern, which needs urgent and coordinated action. One of the guidelines of the Centers for Disease Control and Preventions (CDC) to combat antibiotic resistance is the development of new antibiotics to treat drug-resistant bacteria. In our effort to find new antibiotics, we report the synthesis and antimicrobial studies of 30 new pyrazole derivatives. These novel molecules have been synthesized by using readily available starting materials and benign reaction conditions. Some of these molecules have shown activity with MIC values as low as 0.78?µg/mL against four bacterial strains; Staphylococcus aureus, methicillin-resistant S. aureus, Bacillus subtilis, and Acinetobacter baumannii. Furthermore, active molecules are non-toxic to mammalian cell line.相似文献
正Dear Editor,Chikungunya virus (CHIKV), an arbovirus in the family of Togaviridae, genus Alphavirus, is transmitted by the A.aegyptii or A. albopictus mosquito, and causes disease in humans characterized by fever, rash, and arthralgia (Silva and Dermody 2017; Suhrbier 2019). It was first reported in 1953 in Tanzania, and caused only a few outbreaks and sporadic cases in Africa and Asia in last century. However, in the epidemic in 2004, CHIKV acquired mutations that conferred enhanced transmission by the A. albopictus mosquito(Schuffenecker et al. 2006). Since then, it has successively caused outbreaks in Africa, the Indian Ocean, South East Asia, the South America, and Europe (Zeller et al. 2016). 相似文献
Highlights 1. The N-terminal tail of histone H3 is specifically cleaved during EV71 infection. 2. Viral protease 3C is identified as a protease responsible for proteolytically processing the N-terminal H3 tail. 3. Our finding reveals a new epigenetic regulatory mechanism for Enterovirus 71 in virus-host interactions. 相似文献
Highlights1. SARS-CoV-2 variants, particularly BF.7 and BQ.1, escaped most neutralizing antibodies isolated from the recovered COVID-19 individuals and vaccine recipients.2. Five potent neutralizing antibodies were identified that showed a broad neutralizing profile to Omicron subvariants and other VOCs.3. These broad neutralizing antibodies targeted the receptor binding domain of the spike protein, competing with ACE2 for binding. 相似文献