首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary An incubation medium was established for the microphotometric demonstration of glutamate dehydrogenase (Gldh) in cryostat sections of the rat hippocampus which served as an exemplary brain region. The final incubation medium consisted of 100 mM l-glutamic acid monosodium salt, 5 mM NAD, 10 mM sodium azide (NaN3), 5 mM ADP, 20 mM sodium chloride, 0.15 mM phenazine methosulfate (PMS), 5 mM nitroblue tetrazolium chloride and 22% polyvinyl alcohol (PVA) in 0.05 M Hepes buffer; the final pH was 7.5. — The study showed that in the histochemical demonstration of Gldh the use of relatively high PVA concentrations were necessary to avoid diffusion artefacts because Gldh seems to be only loosely bound to the mitochondrial matrix. The use of NaN3 as a blocker of the respiratory chain was indispensible, because without NaN3 most reduction equivalents were lost through the respiratory chain. With PMS as an exogenous electron carrier, the demonstrable Gldh activities increased significantly indicating that, in the case of Gldh, the endogenous NADH tetrazolium reductase was not sufficiently effective. Furthermore, it was shown that Gldh was affected by many small molecules (e.g. activation by sodium ions, inhibition by magnesium and calcium ions) so that minor variations of the incubation conditions may cause major differences in demonstrable activities. Supported by the Deutsche Forschungsgemeinschaft (Ku 541/2-2)  相似文献   

2.
Lactate and malate dehydrogenases (EC 1.1.1.27 and EC 1.1.1.37, respectively) were precipitated with ammonium sulfate, redissolved in 100 mM phosphate buffer, and the kinetic parameters of each enzyme determined. Lactate dehydrogenase: The enzyme preparation had a specific activity of 0.35 μmole NADH oxidized/min/mg protein for pyruvate reduction, and 0.10 μmole NAD reduced/min/mg protein for lactate oxidation. Km values for the substrates and cofactors were as follows: pyruvate = 0.51, mM; lactate = 3.8 mM; NADH = 0.011 mM; and NAD = 0.17 mM. NADPH, NADP, or d(?)-lactate would not replace NADH, NAD, or l(+)-lactate, respectively. The enzyme was relatively stable at 50 C for 45 min, but much less stable at 60 C; repeated freezing and thawing of the enzyme preparation had little effect on LDH activity. Both p-chloromercuribenzoate (p-CMB) and N-ethylmaleimide (NEM) significantly inhibited LDH activity. Polyacrylamide gel electrophoresis demonstrated the presence of at least two LDH isoenzymes in the unpurified enzyme preparation. The molecular weight was estimated at 160,000 by gel chromatography. Malate dehydrogenase: The enzyme preparation had a specific activity of 6.70 μmole NADH oxidized/min/mg protein for oxaloacetate reduction, and 0.52 μmole NAD reduced/ min/mg protein for malate oxidation. Km values for substrates and cofactors were as follows: l-malate = 1.09 mM; oxaloacetate = 0.0059 mM; NADH = 0.017 mM; and NAD = 0.180 mM. NADP and NADPH would not replace NAD and NADH, respectively, d-malate was oxidized slowly when present in high concentrations (>100 mM). Significant substrate inhibition occurred with concentrations of l-malate and oxaloacetate above 40 mM and 0.5 mM, respectively. The enzyme was unstable at temperatures above 40 C, but repeated freezing and thawing of the enzyme preparation had little effect on MDH activity. Only p-CMB inhibited MDH activity. Polyacrylamide gel electrophoresis demonstrated the presence of at least three MDH isoenzymes in the unpurified enzyme preparation, and the molecular weight was estimated at 49,000 by gel chromatography.  相似文献   

3.
Using isolated chloroplasts or purified thylakoids from photoautotrophically grown cells of the chromophytic alga Pleurochloris meiringensis (Xanthophyceae) we were able to demonstrate a membrane bound NAD(P)H dehydrogenase activity. NAD(P)H oxidation was detectable with menadione, coenzyme Q0, decylplastoquinone and decylubiquinone as acceptors in an in vitro assay. K m-values for both pyridine nucleotides were in the molar range (K m[NADH]=9.8 M, K m[NADPH]=3.2 M calculated according to Lineweaver-Burk). NADH oxidation was optimal at pH 9 while pH dependence of NADPH oxidation showed a main peak at 9.8 and a smaller optimum at pH 7.5–8. NADH oxidation could be completely inhibited with rotenone, an inhibitor of mitochondrial complex I dehydrogenase, while NADPH oxidation revealed the typical inhibition pattern upon addition of oxidized pyridine nucleotides reported for ferredoxin: NADP+ reductase. Partly-denaturing gel electrophoresis followed by NAD(P)H dehydrogenase activity staining showed that NADPH and NADH oxidizing proteins had different electrophoretic mobilities. As revealed by denaturing electrophoresis, the NADH oxidizing enzyme had one main subunit of 22 kDa and two further polypeptides of 29 and 44 kDa, whereas separation of the NADPH depending protein yielded five bands of different molecular weight. Measurement of oxygen consumption due to PS I mediated methylviologen reduction upon complete inhibition of PS II showed that the NAD(P)H dehydrogenase is able to catalyze an input of electrons from NADH to the photosynthetic electron transport chain in case of an oxidized plastoquinone-pool. We suggest ferredoxin: NADP+ reductase to be the main NADPH oxidizing activity while a thylakoidal NAD(P)H: plastoquinone oxidoreductase involved in the chlororespiratory pathway in the dark acts mainly as an NADH oxidizing enzyme.Abbreviations Coenzyme Q0-2,3-dimethoxy-5-methyl-1,4-benzoquinone - FNR ferredoxin: NADP+ reductase - MD menadione - MV methylviologen - NDH NAD(P)H dehydrogenase - PQ plastoquinone - PQ10 decylplastoquinone - SDH succinate dehydrogenase - UQ10 decylubiquinone (2,3-dimethoxy-5-methyl-6-decyl-1,4-benzoquinone)  相似文献   

4.
Uridine 5′-diphosphate glucose 4-epimerase (EC 5.1.3.2) from Ehrlich ascites carcinoma cells was purified to apparent homogeneity using conventional procedures and NAD-hexane-agarose affinity chromatography. The protein had a molecular weight of 96,000. The ascites enzyme had an absolute requirement for exogenously added NAD (10 ΜM) for stability. This appears to be a unique feature of ascites epimerase since epimerase from other mammalian sources did not exhibit such a dependence. Exogenously added NAD was also needed for catalysis with an apparentK m value of 2.5 ΜM. NADH was a very potent competitive inhibitor (K i = 0.11 ΜM with respect to NAD) of the enzyme activity at pH values close to intracellular pH. The dependence of the enzyme on NAD for stability and its inhibition by NADH may have some potential significance in tumor metabolism  相似文献   

5.
Metabolism of γ-Aminobutyrate in Agaricus bisporus. III. The Succinate-Semialdehyde: NAD (P)+ Oxidoreductase. The succinate-semialdehyde:NAD(P)+ oxidoreductase (E.C. 1.2.1.16) is responsible for the second step in the catabolism of γ-aminobutyrate: the irreversible enzymatic conversion of succinic semialdehyde (SSA) to succinate. Succinate semialdehyde dehydrogenase was extracted from mitochondrial fraction of fruit-bodies of Agaricus bisporus Lge. The mitochondrial pellet was sonicated and centrifuged at 110,000 g; the supernatant obtained was designated the “crude extract”. The enzyme was extremely unstable on storage, unless 1 mM EDTA and 20% glycerol were added. Kinetic studies were carried out at 30°C, and the formation of NADH or NADPH was followed by measuring increase of absorbance at 340 nm with a spectrophotometer. The dehydrogenase was completely inactive when the reaction was run in the absence of thiol and was more active with NAD+ than with NADP+. In the “crude extract” the activity with NADP+ had a pH optimum between 8.6 and 9.1 and the Km values for SSA and NADP+ were 2.0 × 10?4M and 1.4 × 10?4M respectively. The pH optimum with NAD+ was found between 8.6 and 8.8 and the Km value for SSA is 4.8 × 10?4M and for NAD+ 2.0 × 10?3M. With NAD+, the kinetic values (pH, Km) of the “crude extract” chromatographed on hydroxylapatite were unchanged. Inhibition by thiamine pyrophosphate (TPP) was uncompetitive with respect to NAD+, those by malate, ATP, ADP and NADPH non-competitive and that by NADH competitive. These results and the fact that activity with NAD+ was lost more slowly than with NADP+ indicate the possibility of at least two mitochondrial succinate-semialdehyde dehydrogenases, even though the activities of this enzyme assayed with NAD+ and NADP+ respectively were not able to be separated from each other by hydroxylapatite column chromatography. Some speculations on the metabolic regulation of this dehydrogenase and considerations on the significance of these results in the physiology of respiration in Agaricus bisporus Lge are given.  相似文献   

6.
In potato (Solatium tuberosum L. cv. Bintje and Doré) callus a very active hydrox-amate-stimulated NADH-dependent O2-uptake develops during the growth of the callus, which is caused by a peroxidase. More than 95% of the peroxidase activity is found in the 40000 g supernatant. The total activity may be as high as 1000 times the respiratory acitivity of the callus tissue. At least two fractions, obtained by Sephadex gel filtration, can be distinguished showing this peroxidase activity, one of about 15 kDa and one > 50 kDa. The main properties of both fractions are: a) Hydroxamate at 0.2–0.5 mM gives half-maximal stimulation. Maximal stimulation is observed with 1–3 mM benzhydroxamate (BHAM) and 1–15 mM salicylhydroxamate (SHAM). Higher concentrations, especially of BHAM, give less or no stimulation. b) Hydroxamates are not consumed during the reaction. c) Both NADH and NADPH can serve as the electron donor for the reaction. The affinity for NAD(P)H is very low (Km near 10 mM). In the absence of hydroxamates NAD(P)H is only slowly oxidized, with an even lower affinity. d) The peroxidase can carry out two reactions: an O2-consuming and a H2O2-consuming reaction. In both reactions one NAD(P)H is consumed. In the first reaction H2O2 is formed which can be consumed in the second reaction, resulting in an overall stoichiometry of 2 NADH consumed for each O2 molecule and in the production of H2O. e) The reaction is completely blocked by cyanide, superoxide dismutase (EC 1.15.1.1) and (excess) catalase (EC 1.11.1.6), but not by antimycin A or azide. This peroxidase-mediated O2-uptake might interfere with respiratory measurements. In experiments with isolated mitochondria this interference can be prevented by the addition of catalase to the reaction mixture. The use of high concentrations of hydroxamate is not allowed because of inhibitory effects on the cytochrome pathway. In intact callus tissue hydroxamates only stimulate O2-uptake in the presence of exogenous NADH. In vivo the peroxidase does not appear to function in O2-uptake, probably because of its localization (at least partly in the cell wall) and/or its low affinity for NADH. The use of hydroxamates in the determination of cytochrome and alternative pathway activity is discussed.  相似文献   

7.
The malic dehydrogenase (MDH2, l-malate: NAD oxidoreductase, E.C. 1,1.1.37) of Trichomonas gallinae was purified 215-fold and characterized. The molecular weight was found to be 72,000 and the enzyme protein contained essential cations and sulfhydryl groups. Polyacrylamide gel electrophoresis before and after extensive purification yielded a single band of malic dehydrogenase activity strongly suggesting only one molecular form of the enzyme. Analysis of kinetic data yielded the following Km values: oxalocetate, 16 μM; malate, 200 μM; NADH 11 μM; and NAD, 70 μM. The enzyme was absolutely specific for l-malic acid, NAD, and NADH. The enzyme exhibited a broad band of heat stability with an optimum of 51 C. The pH optimum in the direction of oxalacetate reduction was 9.0. The pH optima in the reverse direction were 9.0 and 10.5 A role for this enzyme in T. gallinae metabolism is discussed.  相似文献   

8.
The chromatographic behavior of norepinephrine (NE), epinephrine, dopamine, 3,4-dihydroxyphenylalanine, and 3,4-dihydroxyphenylacetic acid on octylsilane (C8) reversed-phase high-performance liquid chromatography columns was observed under various mobile phase conditions including manipulations of pH, pairing ion and methanol concentrations. The optimum isocratic conditions permitting quantitative resolution of these substances in minimum time and with maximum detector response were determined. Employing a pH 3.0–3.2 mobile phase comprising an aqueous buffer solution containing 0.1 M NaH2PO4, 0.1 mM EDTA, and 0.2 mM 1-octanesulfonate, admixed with a volume of methanol equal to 4% of the aqueous volume, the performance of the C8 columns compares favorably to that of the more widely used C18 columns. The column eluates were monitored with an amperometric detector utilizing a glassy-carbon flow-cell electrode. The detector response for NE was 1.5–2.0 nA/ng and the baseline noise was as little as 0.002 nA thereby permitting quantitation of 5-pg levels or more in the injected samples. By coupling the liquid chromatographic system to a procedure which eliminates non-catechol contaminants from the neuronal and body fluid specimens by alumina adsorption of the catechols, a sensitive and dependable method was developed and employed for the determination of catechol levels in discrete regions of rat brain, cat spinal cord, and in human plasma.  相似文献   

9.
A simultaneous determination of vanilmandelic acid, homovanillic acid, creatinine and uric acid using capillary electrophoresis was investigated. The optimum conditions of buffer concentration, pH and surfactant concentration were studied, and high resolution was obtained using a 30 mM phosphate buffer (pH 7.0) containing 150 mM sodium dodecyl sulfate. The detection was by UV absorbance at 245 nm and the column was a fused-silica capillary of 67 cm×75 μm I.D.. The determination of these metabolites in human urine was completed within 15 min without any interferences.  相似文献   

10.
Bacterial 2,3-butanediol dehydrogenases   总被引:3,自引:0,他引:3  
Enterobacter aerogenes, Aeromonas hydrophila, Serratia marcescens and Staphylococcus aureus possessing L(+)-butanediol dehydrogenase produced mainly meso-butanediol and small amounts of optically active butanediol; Acetobacter suboxydans, Bacillus polymyxa and Erwinia carotovora containing D(-)-butanediol dehydrogenase produced more optically active butanediol than meso-butanediol. Resting and growing cells of these organisms oxidized only one enantiomer of racemic butanediol. The D(-)-butanediol dehydrogenase from Bacillus polymyxa was partially purified (30-fold) with a specific activity of 24.5. Except NAD and NADH no other cofactors were required. Optimum pH-values for oxidation and reduction were pH 9 and pH 7, respectively. The optimum temperature was about 60°C. The molecular weight was 100000 to 107000. The K m-values were 3.3 mM for D(-)-butanediol, 6.25 mM for meso-butanediol, 0.53 mM for acetoin, 0.2 mM for NAD, 0.1 mM for NADH, 87 mM for diacetyl, 38 mM for 1,2-propanediol; 2,3-pentanedion was not a substrate for this enzyme. The L(+)-butanediol dehydrogenase from Serratia marcescens was purified 57-fold (specific activity 22.3). Besides NAD or NADH no cofactors were required. The optimum value for oxidation was about pH 9 and for reduction pH 4.5. The optimum temperature was 32–36°C. The molecular weight was 100000 to 107000. The K m-values were 5 mM for meso-butanediol, 10 mM for racemic butanediol, 6.45 for acetoin, 1 mM for NAD, 0.25 mM for NADH, 2.08 mM for diacetyl, 16.7 mM for 2,3-pentanedion and 11.8 mM for 1,2-propanediol.Abbreviations Bud 2,3-butanediol - DH dehydrogenase  相似文献   

11.
A simple, rapid and reproducible reversed-phase high-performance liquid chromatographic method for the simultaneous determination of benzoic acid (BA), phenylacetic acid (PAA) and their respective glycine conjugates hippuric acid (HA) and phenaceturic acid (PA) in sheep urine is described. The procedure involves only direct injection of a diluted urine sample, thus obviating the need for an extraction step or an internal standard. The compounds were separated on a Nova-Pak C18 column with isocratic elution with acetate buffer (25 mM, pH 4.5)—methanol (95:5). A flow-rate of 1.0 ml/min, a column temperature of 35°C and detection at 230 nm were employed. These conditions were optimized by investigating the effects of pH, molarity, methanol concentration in the mobile phase and column temperature on the resolution of the metabolites. The total analysis time was less than 15 min per sample. At a signal-to-noise ratio of 3 the detection limits for ten-fold diluted urine were 1.0 μg/ml for BA and HA and 5.0 μg/ml for PAA and PA with a 20-μl injection.  相似文献   

12.
Formaldehyde dehydrogenase and formate dehydrogenase were purified 45- and 16-fold, respectively, from Hansenula polymorpha grown on methanol. Formaldehyde dehydrogenase was strictly dependent on NAD and glutathione for activity. The K mvalues of the enzyme were found to be 0.18 mM for glutathione, 0.21 mM for formaldehyde and 0.15 mM for NAD. The enzyme catalyzed the glutathine-dependent oxidation of formaldehyde to S-formylglutathione. The reaction was shown to be reversible: at pH 8.0 a K mof 1 mM for S-formylglutathione was estimated for the reduction of the thiol ester with NADH. The enzyme did not catalyze the reduction of formate with NADH. The NAD-dependent formate dehydrogenase of H. polymorpha showed a low affinity for formate (K mof 40 mM) but a relatively high affinity for S-formylglutathione (K mof 1.1 mM). The K mvalues of formate dehydrogenase in cell-free extracts of methanol-grown Candida boidinii and Pichia pinus for S-formylglutathione were also an order of magnitude lower than those for formate. It is concluded that S-formylglutathione rather than free formate is an intermediate in the oxidation of methanol by yeasts.  相似文献   

13.
Nitrate Reduction in Different Grass Species   总被引:2,自引:0,他引:2  
Optimal extraction conditions, assay conditions, and levels of nit rate reductase activity (NRA) were determined for eight forage grass species adaptable to growing conditions in western North Dakota. Optimal pH for extraction of the enzyme nitrate reductase (NADH: nitrate oxidoreductase) for these species ranged from 7.0 to 9.5, whereas assay pH was 7.6 in all eight species. Substrate concentrations ranged from 1.0 to 10.0 mM for maximum NRA with higher concentrations (100 mM) significantly inhibiting NRA. The enzyme was NADH2 (0.1 to 0.2 mM for maximum activity) specific. Enhancement of maximum activity with the addition of cysteine during extraction was species dependent; six species required high cysteine concentrations between 5 mM and 10 mM and one species required only a 2.5 mM concentration. The degree of sulfhydryl protection offered by cysteine also varied. Comparisons were made between in vivo and in vitro assay methods. Ratios of in vitro to in vivo NRA ranged from 2.2. to 10.8. Use of bovine serum albumin as a protein stabilizer during extraction increased the measurable NRA in some species. Applications of nitrate reductase assay techniques to field work will be discussed.  相似文献   

14.
Mitochondrial NADH dehydrogenase has been purified to homogeneity by resolution of Complex I from beef heart mitochondria with the chaotrope NaClO4 and precipitation of the enzyme with ammonium sulfate. The enzyme is water-soluble, has a molecular weight of 69,000 ± 1000 as determined by gel filtration on Sephadex G-100 and agarose 1.5 M. It is an iron-sulfur flavoprotein, with the ratio of flavin (FMN) to nonheme iron to labile sulfide being 1:5–6:5–6. The FMN content suggests a minimum molecular weight of 74,000 ± 3000 for the enzyme. NADH dehydrogenase is composed of three subunits with apparent Mr values, as determined by acrylamide gel electrophoresis as well as by gel filtration on agarose 5 M both in the presence of sodium dodecyl sulfate, of about 51,000, 24,000, and 9–10,000. Coomassie blue stain intensities of the subunits on acrylamide gels suggest that they are present in NADH dehydrogenase in equimolar amounts. However, summation of the apparent Mr values of the dodecyl sulfate-treated subunits appears to overestimate the molecular weight of the native enzyme. The amino acid compositions of NADH dehydrogenase and of each of the isolated and purified subunits have been determined. NADH dehydrogenase catalyzes the oxidation of NADH and NADPH by quinones, ferric compounds, and NAD (3-acetylpyridine adenine dinucleotide was used). All the activities of NADH dehydrogenase are greatly stimulated by addition of guanidine (up to 150 mm), alkylguanidines, arginine, and arginine methyl ester to the assay medium. Phosphoarginine had no effect. These results pointed to the importance of the positively charged guanido group, which appears to interact with and neutralize the negative charges on NAD(P)H and thereby allow for better enzyme-substrate interaction. In the absence of guanidine, NADPH is essentially unoxidized by the enzyme at pH values above 6.0. However, both NADPH dehydrogenase and NADPH → NAD transhydrogenase activities increase dramatically as the assay pH is lowered below pH = 6. Since the pK of the 2′-phosphate of NADPH is 6.1, it appears that the above pH effect is related to protonation of the 2′-phosphate, thus rendering NADPH a closer electronic analog of NADH, which is the primary substrate of the enzyme.  相似文献   

15.
Summary The apparent Michaelis constant (K m) of NADH for muscle-type (M4 isozyme) lactate dehydrogenases (LDHs) is highest, at any given temperature of measurement, for LDHs of cold-adapted vertebrates (Table 1). However, these interspecific differences in theK m of NADH are not due to variations in LDH-NADH binding affinity. Rather, theK m differences result entirely from interspecific variation in the substrate turnover constant (k cat) (Fig. 1; Table 2). This follows from the fact that theK m of NADH is equal tok cat divided by the on constant for NADH binding to LDH,k 1, so that interspecific differences ink cat, combined with identical values fork 1 among different LDH reactions, make the magnitude of theK m of NADH a function of substrate turnover number. The temperature dependence of theK m of NADH for a single LDH homologue is the net result of temperature dependence of bothk cat andk 1 (Figs. 3 and 4). Temperature independentK m values can result from simultaneous, and algebraically offsetting, increases ink cat andk 1 with rising temperature. Salt-induced changes in theK m of NADH also may be due to simultaneous perturbation of bothk cat andk 1 (Table 3). These findings are discussed from the standpoint of the evolution of LDH kinetic properties, particularly the interspecific conservation of catalytic and regulatory functions, in differently-adapted species.  相似文献   

16.
Conditions promoting maximal in vitro activity of the particulate NADH:fumarate reductase from Fibrobacter succinogenes were determined. This system showed a pH optimum of 6.0 in K+ MES buffer only when salt (NaCl or KCl) was present. Salt stimulated the activity eightfold at the optimal concentration of 150m M. This effect was due to stimulation of fumarate reductase activity as salt had little effect on NADH: decylubiquinone oxidoreductase (NADH dehydrogenase). The stimulation of fumarate reductase by salt at pH 6.0 was not due to removal of oxaloacetate from the enzyme. Kinetic parameters for several inhibitors were also measured. NADH dehydrogenase was inhibited by rotenone at a single site with a K i of 1 M. 2-Heptyl-4-hydroxyquinonline-N-oxide (HOQNO) inhibited NADH: fumarate reductase with a K i of 0.006 M, but NADH dehydrogenase exhibited two HOQNO inhibition constants of approximately 1 M and 24 M. Capsaicin and laurylgallate each inhibited NADH dehydrogenase by only 20% at 100 M. NADH dehydrogenase gave K m values of 1 M for NADH and 4 M for reduced hypoxanthine adenine dinucleotide.Published with the approval of the Director of the Agricultural Experiment Station, North Dakota State University, as journal article no. 2201  相似文献   

17.
A simple, rapid and sensitive reversed-phase ion-pair high-performance liquid chromatographic method for the determination of N-acetylneuraminic acid and 2-deoxy-2,3-dehydro-N-acetylneuraminic acid in biological fluids is described. Determination of N-acetylneuraminic acid released by acidic hydrolysis, in serum, urine and saliva, and 2-deoxy-2,3-dehydro-N-acetylneuraminic acid in urine, without hydrolysis, was accomplished by injecting the sample without derivatization, into the chromatograph. Measurements were carried out isocratically within 6 min using a C18 column and a mobile phase of aqueous solution of triisopropanolamine, as ion-pair reagent, 60 mM, pH 3.5 at room temperature with UV absorbance detection. The present method is reported for the first time for the determination of sialic acids in biological fluids. Recoveries in serum, urine and saliva ranged from 90 to 102% and the limits of detection were 60 nM and 20 nM for the two sialic acids, respectively. The method has been applied to normal and pathological sera from patients with breast, stomach, colon, ovarian and cervix cancers, to normal urine and urine from patient with sialuria and to normal saliva.  相似文献   

18.
A rapid and simple purification method was used to separate and purify nitrate reductases (NR) from Williams soybean leaves. Blue Sepharose columns were sequentially eluted with 50 millimolar NADPH and 50 millimolar NADH, thus separating NAD(P)H:NR from NADH:NRs. Subsequent purification of the collected peaks on a fast protein liquid chromatography-Mono Q column enabled separation of two NADH:NRs. Sodium dodecyl sulfate polyacrylamide gel electrophoresis revealed that the subunit relative molecular mass for all three NR forms (constitutive NAD(P)H:NR [pH 6.5], EC 1.6.6.2; constitutive NADH:NR [pH 6.5], EC not assigned; and inducible NADH:NR [pH 7.5], EC 1.6.6.1) was approximately 107 to 109 kilodaltons. All three NRs showed similar spectra with absorption maxima at 413 and 273 nanometers in the oxidized state, and with the characteristics of a cytochrome b type heme upon reduction with NADH (absorption maxima at 556, 527, and 424 nanometers). The technique developed provides an improved separation of the three NR forms from soybean leaves. The similarity of the NRs with regard to their cytochrome b556 type heme content and in relative molecular mass indicated that other differences must exist to account for the different kinetic and physical properties previously reported.  相似文献   

19.
Summary The tetrazolium salt procedure of van Gelder (1965) for the demonstration of GABA transaminase (GABAT; the most important GABA degrading enzyme) was adapted for microphotometric measurements of GABAT activities in brain sections using the hippocampus of rats as selected brain region. The final incubation medium consisted of 50 mM GABA, 5 mM α-ketoglutarate, 7 mM NAD, 10 mM sodium azide, 6 mM nitroblue tetrazolium chloride, 20 mM malonate and 15% polyvinyl alcohol in 0.05 M Hepes buffer; the final pH was 8.0. There was a linear relationship between GABAT activity and section thickness up to 14 μm and between GABAT activity and reaction time at least up to 20 min (kinetic and end-point measurements). Phenazine methosulfate as an exogenous electron carrier and pyridoxal-5-phosphate as coenzyme of GABAT did not enhance the demonstrable GABAT activities, whereas sodium azide as a blocker of the respiratory chain resulted in an increase of demonstrable enzyme activities. A coreaction of succinate dehydrogenase was excluded by the use of malonate (competitive inhibitor). Using the incubation medium described GABAT activities were demonstrated via the endogenous enzymes succinic semialdehyde dehydrogenase and NADH tetrazolium reductase which were shown to be not rate limiting and seems to be similarly localized as GABAT. Supported by the Deutsche Forschungsgemeinschaft (Ku 541/2-2)  相似文献   

20.
Summary In order to determine the effects of concentration on plant growth, aluminium (Al) was extracted (10–3 M CaCl2) from 4 acid brown hill soils which had been treated with superphosphate at rates equivalent to 0 to 300 kg P ha–1. The soils ranged in pH (CaCl2) from 3.5 to 4.9, and Al concentration from 0 to 0.6 mM. The effects of Al on ryegrass growth in the 4 soils in a glasshouse was compared with its effect on radicle elongation of seeds germinated in contact with CaCl2 extracts from the same soils.Ryegrass root growth in the glasshouse, and radicle elongation in the bioassay test were both unaffected by Al concentrations below 0.1 mM. Root growth was substantially reduced when Al concentration exceeded 0.1 mM and above 0.2 mM growth was almost completely inhibited. Radicle elongation rate was also reduced when the concentration of Al was greater than 0.2 mM agreeing well with the observation from the pot experiment.It is concluded that because of its speed and convenience the bioassay method offers a useful method of establishing critical levels of Al for crop plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号