首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
This paper presents an assay of clindamycin phosphate injection in human plasma or serum. A 0.5-ml volume of plasma was used with the internal standard, propranolol. The sample was loaded onto a silica extraction column. The column was washed with deionized water and then eluted with methanol. The eluates were evaporated under nitrogen gas. The residue was reconstituted with the mobile phase and injected onto the high-performance liquid chromatographic system: a 5-μm, 25 cm×4.6 mm I.D. ODS2 column was used with acetonitrile, tetrahydrofuran and 0.05 M phosphate buffer as the mobile phase and with ultraviolet detection at 204 nm. A limit of quantitation of 0.05 μg/ml was found, with a coefficient of variation of 11.6% (n=6). The linear range is between 0.05 and 20.00 μg/ml and gives a coefficient of determination (r2) of 0.9992. The method has been successfully applied to the bioavailability study of two commercial preparations of clindamycin phosphate injection (300 mg each) in twelve healthy adult male volunteers.  相似文献   

2.
3.
A simple, selective, sensitive and precise high-performance liquid chromatographic plasma assay for the prokinetic drug cisapride is described. Alkalinised samples of plasma (100 μl) were extracted with 1.0 ml of 10% (v/v) isopropanol in chloroform, dried, redissolved in mobile phase and injected. Chromatography was performed at 20°C by pumping a mobile phase of acetonitrile (370 ml) in pH 5.2, 0.02 M phosphate buffer (630 ml) at 1.0 ml/min through a C8 Symmetry column. Cisapride and the internal standard were detected by fluorescence monitoring at 295 nm (excitation) and 350 nm (emission), and were eluted 5 min and 8 min, respectively, after injection. Calibration plots in bovine serum albumin (3% w/v) were linear (r > 0.999) from 5 to 250 ng/ml. Intra-day and inter-day precision (C.V.) was 9.5%, or less, and the accuracy was within 5.5% of the nominal concentration over the range 8–200 ng/ml. Total assay recovery was above 82%. Endogenous plasma components, major cisapride metabolite (norcisapride), and other durgs used in neonatal pharmacotherapeutics did not interfere.  相似文献   

4.
A novel capillary zone electrophoresis (CZE) assay method was developed to evaluate the systemic disposition of [d-pen2,5]enkephalin (DPDPE) in rats. DPDPE was recovered from serum samples (200 μl) by solid-phase extraction. Complete resolution of DPDPE and the internal standard ([d-ser2]leucine-enkephalin; DSLET) from other serum components was achieved within 15 min on a 50-μm I.D. capillary column with borate buffer (25 mM, pH 8.3). The peak-height ratio (DPDPE to DSLET) was linear through 100 μg/ml, with a detection limit of 250 ng/ml in serum, when absorbance of the column eluent was monitored at 210 nm. Serum samples obtained from rats after a 10 mg/kg intravenous bolus dose of DPDPE were analyzed with the present CZE method. The results suggest that CZE is a useful technique for quantitating therapeutic peptides in biological matrices.  相似文献   

5.
To provide a definite basis for studies on the biological effects of exogenously administered catecholestrogens, the time courses of the concentrations of these estrogens in serum, pituitary and CNS-tissues were studied in male rats after s.c. injection of either 150 μg of 4-hydroxyestradiol or 2-hydroxyestradiol (dissolved in 200 μl sesame oil/ethanol/ascorbic acid; 97.5/2.5/0.1; vol/vol/wt) or equimolar amounts of 4-hydroxyestradiol 3,4-dibenzoate or 2-hydroxyestradiol 2,3-dibenzoate (dissolved in 200 μl sesame oil). The injection of free catecholestrogens resulted in bolus-like elevations of the serum and tissue concentrations of the respective compound (max. values up to 9 ng/ml, half-life below 1 h) whereas the injection of catecholestrogen benzoates gave lower (max. values about 1 ng/ml) but prolonged elevations (half-life approx. 24 h and 32 h for 4-OHE2 and 2-OHE2) of the respective free catecholestrogen.  相似文献   

6.
A new and accurate HPLC method using β‐cyclodextrin chemically bonded to spherical silica particles as chiral stationary phase (CSP) was developed and validated for determination of S‐clopidogrel and its impurities R‐enantiomer and S‐acid as a hydrolytic product. The effects of acetonitrile and methanol content in the mobile phase and temperature on the resolution and retention of enantiomers were investigated. A satisfactory resolution of S‐clopidogrel active form and its impurities was achieved on ChiraDex® column (5 μm, 4 × 250 mm) at a flow rate of 1.0 ml/min and 17°C using acetonitrile, methanol and 0.01 M potassium dihydrogen phosphate solution (15:5:80 v/v/v) as mobile phase. The detection wavelength was set at 220 nm. The method was validated in terms of accuracy, precision, linearity, and robustness. The limit of detection for R‐enantiomer and S‐acid were 0.75 and 0.09 μg/ml, respectively, injection volume being 20 μl. Finally, the molecular modeling of the inclusion complexes between the analytes and β‐cyclodextrin was performed to investigate the mechanism of the enantiorecognition and to study the quantitative structure–retention relationships. Chirality, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

7.
Nelfinavir mesylate, a potent and orally bioavailable inhibitor of HIV-1 protease (Ki=2 nM), has undergone Phase III clinical evaluation in a large population of HIV-positive patients. A high-performance liquid chromatography analytical method was developed to determine the pharmacokinetic parameters of the free base, nelfinavir, in these human subjects. The method involved the extraction of nelfinavir and an internal standard, 6,7-dimethyl-2,3-di-(2-pyridyl)quinoxaline, from 250 μl of human plasma with a mixture of ethyl acetate–acetonitrile (90:10, v/v). The analysis was via ultraviolet detection at 220 nm using a reversed-phase C18 analytical column and a mobile phase consisting of 25 mM monobasic sodium phosphate buffer (adjusted to pH 3.4 with phosphoric acid)–acetonitrile (58:42, v/v) that resolved the drug and internal standard peaks from non-specific substances in human plasma. The method was validated under Good Laboratory Practice (GLP) conditions for specificity, inter- and intra-assay precision and accuracy, absolute recovery and stability. The mean recovery ranged from 92.4 to 83.0% for nelfinavir and was 95.7% for the internal standard. The method was linear over a concentration range of 0.0300 μg/ml to 10 μg/ml, with a minimum quantifiable level of 0.0500 μg/ml for nelfinavir.  相似文献   

8.
A liquid chromatographic–mass spectrometric (LC–MS) assay was developed and validated for the determination of itraconazole (ITZ) in rat heparinized plasma using reversed-phase HPLC combined with positive atmospheric pressure ionization (API) mass spectrometry. After protein precipitation of plasma samples (0.1 ml) with acetonitrile containing nefazodone as an internal standard (I.S.), a 50-μl aliquot of the supernatant was mixed with 100 μl of 10 mM ammonium formate (pH 4.0). An aliquot of 25 μl of the mixture was injected onto a BDS Hypersil C18 column (50×2 mm; 3 μm) at a flow-rate of 0.3 ml/min. The mobile phase comprising of 10 mM ammonium formate (pH 4) and acetonitrile (60:40, v/v) was used in an isocratic condition, and ITZ was detected in single ion monitoring (SIM) mode. Standard curves were linear (r2≥0.994) over the concentration range of 4–1000 ng/ml. The mean predicted concentrations of the quality control (QC) samples deviated by less than 10% from the corresponding nominal values; the intra-assay and inter-assay precision of the assay were within 8% relative standard deviation. Both ITZ and I.S. were stable in the injection solvent at room temperature for at least 24 h. The extraction recovery of ITZ was 96%. The validated assay was applied to a pharmacokinetic study of ITZ in rats following administration of a single dose of itraconazole (15 mg/kg).  相似文献   

9.
We developed a sensitive assay to measure amoxicillin in human plasma and midle ear fluid (MEF) using solid-phase extraction and reversed-phase HPLC. Amoxicillin and cefadroxil, the internal standard, were extracted from 50–200 μl of sample with Bond Elut C18 cartridges. The exact was analyzed on a 15 cm × 2 mm, 5μm Keystone MOS Hypersil-1 (C8) column with UV detection at 210 nm. The mobile phase was 6% acetonitrile in 5 mM phosphate buffer (pH = 6.5) and 5 mM tetrabutylammonium. The average absolute recovery of amoxicillin and cefadroxil were 91.2 ± 16.6% and 91.0 ± 6.8%, respectively. The limit of quantitation was 0.125 μg/ml with 200 μl sample size. The linear range was from 0.125 to 35.0 μg/ml with correlation coefficients greater than 0.999. These analytic conditions produced a highly sensitive amoxicillin assay in human body fluids without derivatization.  相似文献   

10.
The aim of this study was to describe a high-performance liquid chromatography (HPLC) assay for the determination of cefepime and cefpirome in human serum without changing chromatographic conditions. The assay consisted to measure cefepime and cefpirome which were unbound to proteins having a molecular mass of 10 000 or more by ultrafiltration followed by HPLC with a Supelcosil ABZ+ column and UV detection at a wavelength of 263 nm. The assay was been found to be linear and has been validated over the concentration range 200 to 0.50 μg/ml for both cefepime and cefpirome, from 200 μl serum, extracted. In future, the assay will support therapeutic drug monitoring for cefepime and cefpirome in neutropenic patients in correlation with microbiological parameters such as MIC90 (minimal inhibitory concentration of antibiotic which kills 90% of the initial bacterial inoculum) and clinical efficacy.  相似文献   

11.
A high-performance liquid chromatographic method is described for the simultaneous determination of methylprednisolone (MP) and methylprednisolone hemisuccinate (MPHS), or hydrocortisone (HC) and hydrocortisone hemisuccinate (HCHS) in human serum. Reversed-phase liquid chromatography was performed on a microparticulate C18 column (Spherisorb, 5 μm) using a mobile phase of 2% glacial acetic acid, 30–35% acetonitrile, 70–65% water with ultraviolet detection (254 nm). The method uses 17α-hydroxyprogesterone as the internal standard for the determination of methylprednisolone and its hemisuccinate ester, or 11-deoxy-17-hydroxycorticosterone as the internal standard for the determination of hydrocortisone and its hemisuccinate ester. The sensitivity is 0.03 μg/ml for HC, 0.07 μg/ml for MP, 0.04 μg/ml for MPHS, and 0.10 μg/ml for HCHS, with a detection limit of 0.02 μg/ml for all four steroids. Calibration curves are linear up to 3 μg/ml for MP or MPHS (as equivalent MP) and up to 4 μg/ml for HC and 7 μg/ml (as equivalent HC) for HCHS. The pooled relative standard deviation for replicate samples for each steroid is < 7%. Plasma concentration—time curves are reported for MP and MPHS or HC and HCHS of two human subjects following intramuscular administration of 125 mg of methylprednisolone sodium succinate for injection, U.S.P., or 250 mg of hydrocortisone sodium succinate for injection, U.S.P.  相似文献   

12.
A reversed-phase, high-performance liquid chromatographic method employing fluorescence detection is described for the rapid quantification of plasma levels of quinidine, dihydroquinidine and 3-hydroxyquinidine. It involves protein precipitation with acetonitrile followed by direct injection of the supernatant into the chromatograph. For the preparation of plasma standards, pure 3-hydroxyquinidine was isolated from human urine by a simplified thin-layer chromatographic procedure. The mobile phase for the chromatography was a mixture of 1.5 mM aqueous phosphoric acid and acetonitrile (90:10) at a flow-rate of 2 ml/min. The intra-assay coefficient of variation for the assay of quinidine and 3-hydroxyquinidine over the concentration range 2.5–20 μmole/l was < 1% for both. Interassay coefficients of variation for quinidine (10 μmole/l) and 3-hydroxyquinidine (5 μmole/l) were 3.5% and 4.0% with detection limits of 50 and 25 μmole/l respectively. The method correlated well (r2 = 0.96) with an independently developed gas—liquid chromatographic—nitrogen detection assay for quinidine which also possessed a high degree of precision. (Intra-assay coefficient of variation 3.6% at 20 μmole/l). As expected, comparison of the high-performance liquid chromatographic assay with a published protein precipitation—fluorescence assay showed poor correlation (r2 = 0.78).  相似文献   

13.
A specific and sensitive analytical method for the determination of sparfloxacin in serum and urine is described. Serum proteins are removed by precipitation with acetonitrile after the addition of ofloxacin as an internal standard. The supernatant solvent is evaporated in a vacuum concentrator and the dry residue is redissolved in the mobile phase. Separation is performed on a cation-exchange column (Nucleosil 100 5SA, 125 × 4.0 mm I.D., 5 μm particle size) protected by a guard column (Perisorb RP-18, 30 × 4.0 mm I.D., 30–40 μm particle diameter). The mobile phase consisted of 750 ml of acetonitrile and 250 ml of 100 mmol/l phosphoric acid (v/v) to which sodium hydroxide had been added. The final concentration of sodium was 23 mmol/l and the pH was 3.82. Sparfloxacin and ofloxacin were determined by spectrofluorimetry (excitation wavelength 295 nm; emission wavelength 525 nm). The flow-rate was 1.5 ml/min and the retention times were 4.7 (sparfloxacin) and 8.0 (ofloxacin) min. Validation of the method yielded the following results for serum: detection limit 0.05 mg/l; precision between series 10.4-3.6%; recovery 99.5–100.0%; comparison with a microbiological assay c(bioassay) = 1.035c(HPLC) − 0.06. The test organism was Bacillus subtilis ATCC 6633. For urine the results were: detection limit 0.5 mg/l; precision between series 7.8-5.0%; recovery 97.0–97.8%; method comparison c(bioassay) = 1.092c(HPLC) − 1.09. No interferences were observed in human volunteers. The method can also be applied to stool samples.  相似文献   

14.
An optimized method for the determination of flecainide in serum is presented. Extraction using a solid-phase C18 column and chromatography on a stabilized fluorocarbon-bonded silica gel column effectively separate flecainide from an internal standard (a positional isomer of flecainide). The HPLC apparatus and conditions were as follows: analytical column, Fluofix 120N; sample solvent, 20 μl; column temperature, 40°C; detector, Shimadzu RF-5000 fluorescence spectrophotometer (excitation wavelength=300 nm, emission wavelength=370 nm); mobile phase, 0.06% phosphoric acid containing 0.1% tetra-n-butyl ammonium bromide–acetonitrile (75:25, v/v); flow-rate, 1.0 ml/min. The standard curves for flecainide were linear in the concentration range examined (10–2000 ng/ml). The regression equation was y=0.08+0.0078x (r=0.9998). The minimum detectable amount of flecainide was approximately 5 ng/ml. In the within-day study, the precision coefficients of variation were 2.66, 2.18, 2.54, 2.72, 2.88, 2.24, and 3.29% for the 10, 50, 100, 200, 500, 1000, and 1500 ng/ml standards, respectively. The absolute recovery rates of flecainide at each concentrations were 94–100%. The method described provides analytical sensitivity, specificity and reproducibility suitable for both biomedical research and therapeutic drug monitoring.  相似文献   

15.
A fully automated narrowbore high-performance liquid chromatography method with column switching was developed for the simultaneous determination of sildenafil and its active metabolite UK-103,320 in human plasma samples without pre-purification. Diluted plasma sample (100 μl) was directly introduced onto a Capcell Pak MF Ph-1 column (20×4 mm I.D.) where primary separation occurred to remove proteins and concentrate target substances using 15% acetonitrile in 20 mM phosphate solution (pH 7). The drug molecules eluted from the MF Ph-1 column were focused in an intermediate column (35×2 mm I.D.) by a valve switching step. The substances enriched in the intermediate column were eluted and separated on a phenyl-hexyl column (100×2 mm I.D.) using 36% acetonitrile in 10 mM phosphate solution (pH 4.5) when the valve status was switched back. The method showed excellent sensitivity (detection limit of 10 ng/ml), good precision (RSD≤2.3%) and accuracy (bias: ±2.0%) and speed (total analysis time 17 min). The response was linear (r2≥0.999) over the concentration range 10–1000 ng/ml.  相似文献   

16.
A simple, quick and economical liquid chromatographic/tandem mass spectrometry (LC-MS/MS) method for the quantitative determination of amoxicillin in bovine muscle was developed and validated. The sample preparation procedure involved a liquid extraction with water, followed by a protein precipitation step with acetonitrile. The extract was purified by a liquid-liquid partition with dichloromethane and the upper aqueous layer was directly injected into the LC-MS/MS system. Chromatographic separation was achieved on a reversed phase column, using a mixture of acetonitrile, water and 0.005% formic acid in water as mobile phase. Gradient elution was performed at a flow rate of 0.2 mL min?1. Amoxicillin was detected using positive electrospray ionization in selected reaction monitoring (SRM) mode and was quantified using terbutaline as internal standard. The responses for standards prepared in solvent and in matrix were equivalent and additionally the absence of signal suppression was confirmed by the post column infusion technique. Amoxicillin stability in standard solution and in matrix was investigated at different times and storage conditions. Amoxicillin standards prepared in water were stable on storage up to 20 days at -20°C. Amoxicillin stability in matrix (spiked bovine muscle samples) was assessed up to 15 days at -20°C. The method was validated according to the parameters requested by European Commission Decision 2002/657/EC in terms of specificity, linearity, trueness, precision, decision limit (CCα) and detection capability (CCβ). All the trueness values fell within a range between 14.5% and 6.3%. Precision values for all levels of concentration tested were lower than the relative limit calculated by the Horwitz equation. The amoxicillin MRL is set at 50 μg kg?1 and the CCα and CCβ of the method were 61.2 μg kg?1 and 72.4 μg kg?1, respectively.  相似文献   

17.
A sensitive and selective method was developed for the simultaneous determination of chloroquine (CQ) and its desethylated metabolites monodesethylchloroquine (DCQ) and bisdesethylchloroquine (BDCQ) in human liver microsomes. Analytes were separated on a C1 column using methanol-water (70:30, v/v) and triethylamine (0.1% v/v) as the mobile phase. The fluorescence detector was set at 250 (excitation) and 380 nm (emission). Following protein precipitation with ice-cold acetonitrile, microsomal incubation supernatants were directly injected into the HPLC system. Typically, 200 μl of incubate were diluted with 200 μl of acetonitrile and 15 μl were injected. The limit of quantitation was 78 nM of CQ or metabolite. Intra-day variability averaged 2.9% for CQ, 1.5% for DCQ and 2.5% for BDCQ. Inter-day variability was 3.1% for CQ, 3.5% for DCQ and 3.7% for BDCQ. Mean accuracies were 100% for CQ and BDCQ and 102% for DCQ.  相似文献   

18.
A method is given for the determination of carminomycin (CMM) and a major metabolite carminomycinol (CMMOH) in serum from cancer patients after intravenous administration of carminomycin as the free drug.CMM and CMMOH are extracted from serum with chloroform, the extract evaporated and the residue dissolved in methanol. High-performance liquid chromatography analysis utilized a C18 μBondapak reversed-phase column eluted with 0.1 mol/l acetate buffer (pH 4) — acetonitrile (60:40, v/v) with fluorescence detection. The assay is linear, reproducible, and precise with a limit of detection of 2 ng/ml. Representative serum levels of CMM and CMMOH in a cancer patient are presented.  相似文献   

19.
The reversed-phase HPLC methods were developed to determinate the covalently bound protein adducts of the novel anti-cancer drug 5,6-dimethylxanthenone-4-acetic acid (DMXAA) via its glucuronides after releasing aglycone by alkaline hydrolysis in human plasma and human serum albumin (HSA). An aliquot of 75 μl of the mixture was injected onto a Spherex C18 column (150×4.6 mm; 5 μm) at a flow-rate of 2.5 ml/min. The mobile phase comprising of acetonitrile:10 mM ammonium acetate buffer (24:76, v/v, pH 5.8) was used in an isocratic condition, and DMXAA was detected by fluorescence. The method was validated with respect to recovery, selectivity, linearity, precision, and accuracy. Calibration curves for DMXAA were constructed in the concentration range of 0.5–40 μM in washed blank human plasma or HSA prior to alkaline hydrolysis. The difference between the theoretical and calculated concentration and the relative standard deviation were less than 10% at all quality control (QC) concentrations. The limit of detection for the covalent adduct in human plasma or HSA is 0.20 μM. The methods presented good accuracy, precision and sensitivity for use in the preclinical and clinical studies.  相似文献   

20.
For the determination of cisapride from serum samples, an automated microbore high-performance liquid chromatographic method with column switching has been developed. After serum samples (100 μl) were directly injected onto a Capcell Pak MF Ph-1 pre-column (10×4 mm I.D.), the deproteinization and concentration were carried out by acetonitrile–phosphate buffer (20 mM, pH 7.0) (2:8, v/v) at valve position A. At 2.6 min, the valve was switched to position B and the concentrated analytes were transferred from MF Ph-1 pre-column to a C18 intermediate column (35×2 mm I.D.) using washing solvent. By valve switching to position A at 4.3 min, the analytes were separated on a Capcell Pak C18 UG 120 column (250×1.5 mm I.D.) with acetonitrile–phosphate buffer (20 mM, pH 7.0) (5:5, v/v) at a flow-rate of 0.1 ml/min. Total analysis time per sample was 18 min. The linearity of response was good (r=0.999) over the concentration range of 5–200 ng/ml. The within-day and day-to-day precision (CV) and inaccuracy were less than 3.7% and 3.8%, respectively. The mean recovery was 96.5±2.4% with the detection limit of 2 ng/ml.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号