首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Naloxone, the analyte and the internal standard, sumatriptan, are extracted from plasma using solid-phase extraction columns. Chromatography and detection are performed using isocratic reversed-phase high-performance liquid chromatography (HPLC) with coulometric end-point detection. The standard curve was linear over the range 0–50 ng/ml of naloxone in plasma. The reproducibility, the coefficient of variation (C.V.) of the method over the range of the standard curve was 6.2–11.2%. The recovery averaged 90.4±8.9%. A plasma profile following i.v. administration of naloxone in one normal healthy volunteer is presented.  相似文献   

2.
A rapid and sensitive high performance liquid chromatography (HPLC) method with fluorescence detection has been developed for the determination of sumatriptan in human plasma. The procedure involved a liquid-liquid extraction of sumatriptan and terazosin (internal standard) from human plasma with ethyl acetate. Chromatography was performed by isocratic reverse phase separation on a C18 column. Fluorescence detection was achieved with an excitation wavelength of 225 nm and an emission wavelength of 350 nm. The standard curve was linear over a working range of 1-100 ng/ml and gave an average correlation coefficient of 0.9997 during validation. The limit of quantitation (LOQ) of this method was 1 ng/ml. The absolute recovery was 92.6% for sumatriptan and 95.6% for the internal standard. The inter-day and intra-day precision and accuracy were between 0.8-3.3 and 1.1-6.3%, respectively. This method is simple, sensitive and suitable for pharmacokinetics or bioequivalence studies.  相似文献   

3.
4.
This paper describes a sensitive HPLC-electrochemical detection analytical method for determining the concentration of the intravenous anesthetic, propofol, in human or rat plasma or serum and a variety of rat tissues. Internal standard and drug are extracted from serum or plasma and other tissues with pentane. 2,6-tert.-Butylmethylphenol is used as internal standard. It includes a novel steam distillation procedure for separating the highly lipophilic propofol from skin and fat. The plasma/serum assay has a precision of 1–4% (C.V.) in the range 10 ng/ml to 1 μg/ml and permits the assay of 5 ng/ml from 0.1 ml of plasma/serum. The tissue procedure allows the estimation of 50 ng/g in 0.1 g of tissue for most of the major organs with less than 2% (C.V.) precision. This assay was used to measure propofol concentrations in plasma/serum and tissue samples in support of a project to develop a physiological pharmacokinetic model for propofol in the rat.  相似文献   

5.
Venlafaxine, oxydesmethylvenlafaxine and an internal standard (paroxetine) were extracted from plasma by a solid-phase extraction technique. Chromatography was performed using isocratic reversed-phase high-performance liquid chromatography (HPLC) with coulometric endpoint detection. The standard curves were linear over the range 0–200 ng/ml for both venlafaxine and oxydesmethylvenlafaxine in plasma. The mean inter- and intra-assay coefficients of variation over the range of the standard curves were less than 10%. The absolute recovery averaged 74% for venlafaxine and 67% for oxydesmethylvenlafaxine. The sensitivity was 0.5 ng for both the analytes. Plasma profiles of the analytes following oral administration of venlafaxine, are presented.  相似文献   

6.
A high-performance liquid chromatographic method using an electrochemical detector (HPLC–ED) was developed for the determination of nemonapride and its active metabolite, desmethylnemonapride in human plasma. Nemonapride, desmethylnemonapride and moperone chloride, which was used as the internal standard (I.S.) in plasma, were extracted by a rapid and simple procedure based on C18 bonded-phase extraction, and were separated by C8 reversed-phase HPLC column. Nemonapride and desmethylnemonapride were detected by high conversion efficiency amperometric detection at +0.84 V. Determination of both nemonapride and desmethylnemonapride were possible in the concentration range at 0.25–5.0 ng/ml, and the limit of detection for each was 0.1 ng/ml. The recoveries of nemonapride and desmethylnemonapride added to plasma were 97.0–98.2% and 96.7–98.8%, respectively, with coefficients of variation of less than 7.2% and 10.3%, respectively. This method is applicable to drug level monitoring in the plasma of schizophrenia patients treated with nemonapride and to the study of pharmacokinetics.  相似文献   

7.
A rapid and sensitive LC-MS-MS method for the determination of huperzine A in dog plasma using huperzine B as internal standard has been developed and validated. The analyte and internal standard were extracted from plasma using n-hexane-dichloromethane-2-propanol (300:150:15, v/v/v), chromatographed on a C(18) column (5 microm, 50 mm x 4.6 mm i.d.) with a mobile phase consisting of acetonitrile-methanol-10mM ammonium acetate (35:40:25, v/v/v), and detected using a tandem mass spectrometer with a TurboIonSpray ionization interface. The run time was only 2 min. The assay was linear over the concentration range 0.05-20 ng/ml and intra- and inter-day precision over this range were <5.3% with good accuracy. The limit of detection in plasma was 0.01 ng/ml. The method was successfully applied to define plasma concentration-time curves of huperzine A in dogs after the last dose of an intramuscular injection (10 microg/kg per day for 15 days) of a sustained-release formulation of huperzine A.  相似文献   

8.
A reversed-phase high-performance liquid chromatographic method for the determination of benflumetol in human plasma is described. Benflumetol in plasma samples was extracted with a glacial acetic acid-ethyl acetate (1:100, v/v) mixture at pH 4.0. Chromatography was performed on a Spherisorb C18 column using a methanol-water-glacial acetic acid-diethyl amine (93:6:1:0.03, v/v) mixture as the mobile phase and UV-VIS detection at 335 nm. The identity and purity of the benflumetol peak were carefully examined, and the internal standard method was applied for its quantitation. The absolute recovery of benflumetol in spiked plasma samples was 92.91% over the concentration range 5–4000 ng/ml. The recovery of internal standard “8212” at a concentration of 300 ng/ml in spiked plasma was 84.85%. The detection limit of benflumetol was 11.8 ng/ml. Plasma concentration-time profiles in healthy volunteer adults were measured after a single-dose oral administration of 500 mg of benflumetol. The assay procedures were within the quality control limits.  相似文献   

9.
Zolmitriptan, N-desmethylzolmitriptan, zolmitriptan N-oxide and an internal standard (an analogue of zolmitriptan) were extracted from plasma by a solid-phase extraction (SPE). Chromatography was performed using isocratic reversed-phase high-performance liquid chromatography (HPLC) with coulometric end-point detection. The standard curves were linear over the range 2-20 ng/ml for zolmitriptan and its metabolites in plasma. The mean inter- and intra-assay coefficients of variation over the range of the standard curves were less than 11%. The absolute recovery averaged 87, 58 and 77% for zolmitriptan. N-desmethylzolmitriptan and zolmitriptan N-oxide, respectively. The assay sensitivity was 0.5 ng for each analyte.  相似文献   

10.
A simple high-performance liquid chromatographic method using fluorescence detection was developed for the determination of ketoconazole in human plasma. The method entailed direct injection of the plasma sample after deproteinization using acetonitrile. The mobile phase comprised 0.05 M disodium hydrogen orthophosphate and acetonitrile (50:50, v/v) adjusted to pH 6. Analysis was run at a flow-rate of 1.5 ml/min with the detector operating at an excitation wavelength of 260 nm and an emission wavelength of 375 nm. The method is specific and sensitive with a quantification limit of approximately 60 ng/ml and a detection limit of 40 ng/ml at a signal-to-noise ratio of 3:1. Mean absolute recovery value was about 105%, while the within-day and between-day coefficient of variation and percent error values of the assay method were all less than 14%. The calibration curve was linear over a concentration range of 62.5–8000 ng/ml.  相似文献   

11.
Here we report a sensitive liquid chromatographic-tandem mass spectrometric (LC-MS-MS) method capable of quantifying nicotine down to 1 ng/ml and cotinine to 10 ng/ml from 1.0 ml of human plasma. The method was validated over linear ranges of 1.0–50.0 ng/ml for nicotine and 10.0–500.0 ng/ml for cotinine, using deuterated internal standards. Compounds were simply extracted from alkalinized human heparinized plasma with methylene chloride, reconstituted into a solution of acetonitrile, methanol and 10 mM ammonium acetate (53:32:15, v/v) after the organic phase was dried down, and analyzed on the LC-MS-MS, which is a PE Sciex API III system equipped with a Keystone BDS Hypersil C18 column and atmospheric pressure chemical ionization (APCI) interface. The between-run precision and accuracy of the calibration standards were ≤6.42% relative standard deviation (R.S.D.) and ≤11.8%n relative error (R.E.) for both nicotine and cotinine. The between-run and within-run precision and accuracy of quality controls. (2.5, 15.0, 37.5 ng/ml for nicotine and 25.0, 150.0, 375.0 ng/ml for cotinine), were ≤6.34% R.S.D. and ≤7.62% R.E. for both analytes. Sample stabilities in chromatography, in processing and in biological matrix were also investigated. This method has been applied to pharmacokinetic analysis of nicotine and cotinine in human plasma.  相似文献   

12.
A rapid, sensitive and specific high-performance liquid chromatography (HPLC) procedure for the quantification of indinavir, a potent human immunodeficiency virus (HIV) protease inhibitor, in human plasma is described. Following C18 solid-phase extraction, indinavir was chromatographed on a reversed-phase C8 column using a simple binary mobile phase of phosphate buffer–acetonitrile (60:40, v/v). UV detection at 210 nm led to an adequate sensitivity without interference from endogenous matrix components. The limit of quantification was 25 ng/ml with a 0.1 ml plasma sample. The standard curve was linear across the range from 25 to 2500 ng/ml with an average recovery of 91.4%. The mean relative standard deviations for concentrations within the standard curve ranged between 1.4 and 9.7%. Quality control standards gave satisfactory intra- and inter-assay precision (R.S.D. from 3.5 to 15.8%) and accuracy within 15% of the nominal concentration. Sample handling experiments, including HIV heat inactivation, demonstrated analyte stability under expected handling processes. The assay is suitable for the analysis of samples from adult and pediatric patients infected with HIV.  相似文献   

13.
A simple and sensitive HPLC method was established and validated for the determination of docetaxel (DTX) in rabbit plasma. Biosamples were spiked with paclitaxel (PCX) as an internal standard (I.S.) and pre-treated by solid-phase extraction (SPE). The SPE procedure followed a simple protein digestion was based on nylon6 electrospun nanofibers mats as sorbents. Under optimized conditions, target analytes in 500 μL of plasma sample can be completely extracted by only 2.5 mg nylon6 nanofibers mat and eluted by 100 μL solvent. The HPLC separation was obtained on C18 column and UV detector was used to quantify the target analytes. The extraction recovery was more than 85%; the standard curve was linear over the validated concentrations range of 10–5000 ng/mL and the limit of detection was 2 ng/mL. The inter-day coefficient of variation (CV%) of the calibration standards was below 5.0% and the mean accuracy was in the range of 92.8–113.4%. Moreover, analysing quality control plasma samples in 3 days, the results showed that the method was precise and accurate, for the intra- and inter-day CV% within 10% and the accuracy from 96.0% to 114.0%. The developed and validated method was successfully applied to relative bioavailability study for the preclinical evaluation of a new injectable DTX–sulfobutyl ether beta-cyclodextrin (DTX–SBE-β-CD) inclusion complex freeze-dried powder (test preparation), compared with the reference preparation (DTX injection, Taxotere®) in healthy rabbits. On the basis of the mean AUC(0–t) and AUC(0–infinity), the relative bioavailability of the test preparation was found to be 113.1%.  相似文献   

14.
High-performance anion-exchange chromatography with pulsed amperometric detection (HPAE–PAD) was evaluated for the quantitation of polyglucose metabolites (DP2–DP7) in human plasma. The method was investigated for accuracy, precision, specificity, linearity, range and analyte stability. Samples were prepared by dilution into the standard range (0.1–10 μg/ml) followed by deproteinization using a 30?000 molecular mass cut-off filtration device. The limit of detection was 0.05 μg/ml for all metabolites. Method precision for DP2–DP7 varied from approximately 2% R.S.D. in the upper range to approximately 15% R.S.D. at the limit of quantitation. Samples were stable following one or two freeze–thaw cycles and, after preparation, they could be refrigerated for up to 72 h. Application of this method to clinical plasma samples from continuous ambulatory peritoneal dialysis (CAPD) patients administered one daily night-time intraperitoneal exchange of 2 l of 7.5% polyglucose solution for four weeks indicated that plasma levels of DP2, DP3 and DP4 increased from baseline levels of <0.01 g/l to steady-state levels of 1.2±0.3, 1.2±0.3 and 0.4±0.1 g/l (mean±S.D.), respectively. These steady state plasma levels for DP2 and DP3 are comparable to previously reported levels in patients administered daily overnight 7.5% polyglucose dialysis solution.  相似文献   

15.
Hyperforin is a constituent of Hypericum perforatum extracts (St. John’s wort, H. perforatum), which have antidepressant action. Hyperforin was extracted from plasma utilising a solid-phase extraction procedure. Chromatography was performed by isocratic reversed-phase high-performance liquid chromatography with UV end-point detection. The calibration curve was linear over the range 0.15–3 μg per ml of plasma. The sensitivity for hyperforin was 4.5 ng on-column. Mean inter- and intra-assay relative standard deviations over the range of the standard curve were less than 5%. The absolute recovery for hyperforin averaged 97.8%.  相似文献   

16.
A method for the quantitative analysis of cudratricusxanthone B (CXB) in rat plasma by high performance liquid chromatography–electrospray ionization-tandem mass spectrometry (HPLC–ESI-MS/MS) has been developed and validated. The method involved liquid–liquid extraction from plasma, simple chromatographic conditions on a Venusil XBP-PH C18 column with the mobile phase of 0.5% formic acid in methanol, and mass spectrometric detection using an API-3000 instrument. Multiple reaction monitoring (MRM) mode was used to monitor precursor/product ion transitions of m/z 397.1/285.0 for CXB and m/z 381.6/269.2 for the internal standard (I.S.) cudraxanthone H. The standard curves were linear over the concentration range of 1–500 ng/mL for CXB in rat plasma. The intra- and inter-batch accuracy for CXB at four concentrations was 89.4–99.5% and 89.4–100.8%, respectively. The RSDs were less than 7.92%. The lower limit of quantification for CXB was 1.0 ng/mL using 100 μL of plasma. The average extraction recoveries of CXB ranged from 80.1 to 95.4% at the concentrations of 2, 50 and 500 ng/mL, respectively. This method was successfully applied to the pharmacokinetic study after an intravenous administration of CXB in male Sprague–Dawley (SD) rats.  相似文献   

17.
A high-performance liquid chromatographic (HPLC) procedure has been developed for the quantification of L-365,260 (I), a cholecystokinin and gastrin receptor antagonist, in dog and rat plasma. The method involves liquid—liquid extraction and HPLC with ultraviolet detection. Standard curves were linear over the range 7.5–2000 ng/ml for rat and dog plasma. The method is reproducible and reliable with a detection limit of 7.5 ng/ml in biological fluids. The mean coefficients of variation for concentrations within the range of the standard curve range were 3.84 and 2.56%, respectively, for intra-day analysis and 4.48 and 4.26%, respectively, for inter-day analysis. Application of the development was successfully demonstrated by quantifying the concentration of I in both dog and rat plasma samples following an intravenous or oral dose of 5 mg/kg I.  相似文献   

18.
A simple, accurate and sensitive high-performance liquid chromatographic method was developed for the determination of propofol, an intravenous anaesthetic agent, in rat whole blood or plasma samples. The method is based on precipitation of the protein in the biological fluid sample and direct injection of the supernatant into an HPLC system involving a C18 reversed-phase column using a methanol-water (70:30) mobile phase delivered at 1 ml/min. Propofol and the internal standard (4-tert.-octylphenol) were quantified using a fluorescence detector set at 276 nm (excitation) and 310 nm (emission). The analyte and internal standard had retention times of 6.3 and 10.5 min, respectively. The limit of quantification for propofol was 50 ng/ml using 100 μl of whole blood or plasma sample. Calibration curves were linear (r2=0.99) over a 1–10 μg/ml concentration range and intra- and inter-day precision were between 4–11%. The assay was applied to the determination of propofol whole blood pharmacokinetics and propofol whole blood to plasma distribution ratios in rats.  相似文献   

19.
A simple and precise high-performance liquid chromatographic (HPLC) assay was developed and validated for the determination of a novel angiotensin II antagonist, 1-[5-(2-cyclopropyl-5,7-dimethyl-imidazo[4,5-b]pyridin-3-ylmethyl)thiopen-2-yl)cyclopent-3-enecarboxylic acid (CP-191,166, I), in dog and rat plasma. The internal standard (II, a saturated derivative of I) and analyte were extracted by liquid-liquid extraction using methyl tert.-butyl ether. Samples were analyzed by reversed-phase HPLC using a Zorbax C8 narrow-bore column with ultraviolet detection at 289 nm. The quantitation limit of I was 10 ng/ml and the calibration curve was linear over the range of 0.01–10.0 μg/ml (r2>0.99). In dog and rat plasma, intra- and inter-assay precision ranged from 0.00 to 3.36% and 0.00 to 4.95%, respectively. The average recoveries were similar (73%) for both I and II and the upper limit of quantification of I can be as high as 500 μg/ml. The method described has been successfully applied to the quantification of I in about 2000 dog and rat plasma samples over a nine-month period.  相似文献   

20.
A method is described for the determination of the two enantiomers of mirtazapine in human blood plasma by high-performance liquid chromatography. Measurements were performed on drug free plasma spiked with mirtazapine and used to prepare and validate standard curves. Levels of enantiomers of mirtazapine were also measured in patients being treated for depression with racemic mirtazapine. Mirtazapine was separated from plasma by solid-phase extraction using CERTIFY columns. Chromatographic separation was achieved using a Chiralpak AD column and pre-column and compounds were detected by their absorption at 290 nm. Imipramine was used as an internal standard. The assay was validated for each analyte in the concentration range 10–100 ng/ml. The coefficient of variance was 16% and 5.5% for(+)-mirtazapine for 10 and 100 ng/ml control specimens respectively and 15% and 7.3% for mirtazapine for 10 and 100 ng/ml control specimens respectively. This assay is appropriate for use in the clinical range. The range of plasma mirtazapine concentrations from eleven patients taking daily doses of 30–45 mg of racemate was <5 to 69 ng/ml for (+)-mirtazapine and 13–88 ng/ml for (−)-mirtazapine for blood specimens collected 10–17.5 h after taking the dose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号