首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human male germ cell-associated kinase (hMAK) is an androgen-inducible gene in prostate epithelial cells, and it acts as a coactivator of androgen receptor signaling in prostate cancer. The 3D structure of the hMAK kinase was modeled based on the crystal structure of CDK2 kinase using comparative modeling methods, and the ATP-binding site was characterized. We have collected five inhibitors of hMAK from the literature and docked into the ATP-binding site of the kinase domain. Solvated interaction energies (SIE) of inhibitor binding are calculated from the molecular dynamics simulations trajectories of protein–inhibitor complexes. The contribution from each active site residue in hMAK toward inhibitor binding revealed the nature and extent of interactions between inhibitors and individual residues. The main chain atoms of Met79 invariably form hydrogen bonds with all five inhibitors. The amino acids Leu7, Val15, and Leu129 stabilize the inhibitors via CH–pi interactions. The Asp140 in the active site and Glu77 in hinge region show characteristic hydrogen bonding interactions with inhibitors. From SIE, the residue-wise interactions revealed the nature of non-bonding contacts and modifications required to increase the inhibitor activity. Our work provides 3D model structure of hMAK and molecular basis for the mechanisms of hMAK inhibition at atomic level that aid in designing new potent inhibitors.  相似文献   

2.
Nitric oxide is a key signaling molecule in many biological processes, making regulation of nitric oxide levels highly desirable for human medicine and for advancing our understanding of basic physiology. Designing inhibitors to specifically target one of the three nitric oxide synthase (NOS) isozymes that form nitric oxide from the L-Arg substrate poses a significant challenge due to the overwhelmingly conserved active sites. We report here 10 new X-ray crystallographic structures of inducible and endothelial NOS oxygenase domains cocrystallized with chlorzoxazone and four nitroindazoles: 5-nitroindazole, 6-nitroindazole, 7-nitroindazole, and 3-bromo-7-nitroindazole. Each of these bicyclic aromatic inhibitors has only one hydrogen bond donor and therefore cannot form the bidentate hydrogen bonds that the L-Arg substrate makes with Glu371. Instead, all of these inhibitors induce a conformational change in Glu371, creating an active site with altered molecular recognition properties. The cost of this conformational change is approximately 1-2 kcal, based on our measured constants for inhibitor binding to the wild-type and E371A mutant proteins. These inhibitors derive affinity by pi-stacking above the heme and replacing both intramolecular (Glu371-Met368) and intermolecular (substrate-Trp366) hydrogen bonds to the beta-sheet architecture underlying the active site. When bound to NOS, high-affinity inhibitors in this class are planar, whereas weaker inhibitors are nonplanar. Isozyme differences were observed in the pterin cofactor site, the heme propionate, and inhibitor positions. Computational docking predictions match the crystallographic results, including the Glu371 conformational change and inhibitor-binding orientations, and support a combined crystallographic and computational approach to isozyme-specific NOS inhibitor analysis and design.  相似文献   

3.
Nitric oxide produced by nitric-oxide synthase (NOS) is not only involved in a wide range of physiological functions but also in a variety of pathological conditions. Isoform-selective NOS inhibitors are highly desirable to regulate the NO production of one isoform beneficial to normal physiological functions from the uncontrolled NO production of another isoform that accompanies certain pathological states. Crystal structures of the heme domain of the three NOS isoforms have revealed a very high degree of similarity in the immediate vicinity of the heme active site illustrating the challenge of isoform-selective inhibitor design. Isothioureas are potent NOS inhibitors, and the structures of the endothelial NOS heme domain complexed with isothioureas bearing small S-alkyl substituents have been determined (Li, H., Raman, C.S., Martásek, P., Král, V., Masters, B.S.S., and Poulos, T.L. (2000) J. Inorg. Biochem. 81, 133--139). In the present communication, the binding mode of larger bisisothioureas complexed to the endothelial NOS heme domain has been determined. These structures afford a structural rationale for the known inhibitory activities. In addition, these structures provide clues on how to exploit the longer inhibitor substituents that extend out of the active site pocket for isoform-selective inhibitor design.  相似文献   

4.
Nitric oxide synthase (NOS) enzymes synthesize nitric oxide, a signal for vasodilatation and neurotransmission at low concentrations and a defensive cytotoxin at higher concentrations. The high active site conservation among all three NOS isozymes hinders the design of selective NOS inhibitors to treat inflammation, arthritis, stroke, septic shock and cancer. Our crystal structures and mutagenesis results identified an isozyme-specific induced-fit binding mode linking a cascade of conformational changes to a new specificity pocket. Plasticity of an isozyme-specific triad of distant second- and third-shell residues modulates conformational changes of invariant first-shell residues to determine inhibitor selectivity. To design potent and selective NOS inhibitors, we developed the anchored plasticity approach: anchor an inhibitor core in a conserved binding pocket, then extend rigid bulky substituents toward remote specificity pockets, which become accessible upon conformational changes of flexible residues. This approach exemplifies general principles for the design of selective enzyme inhibitors that overcome strong active site conservation.  相似文献   

5.
Li D  Ji B  Hwang KC  Huang Y 《PloS one》2011,6(4):e19268
To understand the underlying mechanisms of significant differences in dissociation rate constant among different inhibitors for HIV-1 protease, we performed steered molecular dynamics (SMD) simulations to analyze the entire dissociation processes of inhibitors from the binding pocket of protease at atomistic details. We found that the strength of hydrogen bond network between inhibitor and the protease takes crucial roles in the dissociation process. We showed that the hydrogen bond network in the cyclic urea inhibitors AHA001/XK263 is less stable than that of the approved inhibitor ABT538 because of their large differences in the structures of the networks. In the cyclic urea inhibitor bound complex, the hydrogen bonds often distribute at the flap tips and the active site. In contrast, there are additional accessorial hydrogen bonds formed at the lateral sides of the flaps and the active site in the ABT538 bound complex, which take crucial roles in stabilizing the hydrogen bond network. In addition, the water molecule W301 also plays important roles in stabilizing the hydrogen bond network through its flexible movement by acting as a collision buffer and helping the rebinding of hydrogen bonds at the flap tips. Because of its high stability, the hydrogen bond network of ABT538 complex can work together with the hydrophobic clusters to resist the dissociation, resulting in much lower dissociation rate constant than those of cyclic urea inhibitor complexes. This study may provide useful guidelines for design of novel potent inhibitors with optimized interactions.  相似文献   

6.
The high level of amino acid conservation and structural similarity in the immediate vicinity of the substrate binding sites of the oxygenase domains of the nitric-oxide synthase (NOS) isoforms (eNOSoxy, iNOSoxy, and nNOSoxy) make the interpretation of the structural basis of inhibitor isoform specificity a challenge and provide few clues for the design of new selective compounds. Crystal structures of iNOSoxy and nNOSoxy complexed with the inhibitors W1400 and Nomega-propyl-l-arginine provide a rationale for their isoform specificity. It involves differences outside the immediate active site as well as a conformational flexibility in the active site that allows the adoption of distinct conformations in response to interactions with the inhibitors. This flexibility is determined by isoform-specific residues outside the active site.  相似文献   

7.
The X-ray crystal structure for the adduct of human carbonic anhydrase (hCA) II with 4-methyl-5-perfluorophenylcarboximido-δ2-1,3,4-thiadiazoline-2-sulfonamide (PFMZ), a topically acting antiglaucoma sulfonamide, has been resolved at a resolution of 1.8?Å. This compound is almost 10 times more effective as a hCA II inhibitor (KI of 1.5?nM) compared to the lead molecule, methazolamide, a clinically used drug (KI of 14?nM). Its binding to the enzyme active site is similar to that of other sulfonamide inhibitors, considering the interactions of the sulfonamide zinc anchoring group and thiadiazoline ring contacts, but differs considerably when the perfluorobenzoylimino fragment of the molecule is analyzed. Indeed, several unprecedented strong hydrogen bonds involving the imino nitrogen, carbonyl oxygen, a fluorine atom in the ortho position of the inhibitor, and two water molecules, as well as Gln 92 of the enzyme active site were seen. A stacking interaction of the perfluorophenyl ring of the inhibitor and the aromatic ring of Phe 131 was also observed for the first time in a CA–sulfonamide adduct. All these findings prove that more potent CA inhibitors incorporating perfluoroaryl/alkyl tails may be designed, with potentially improved antiglaucoma properties, in view of the new types of interactions seen here between the enzyme and the perfluorobenzoylated analogue of methazolamide.  相似文献   

8.
Structural basis for the activity of drugs that inhibit phosphodiesterases   总被引:2,自引:0,他引:2  
Phosphodiesterases (PDEs) comprise a large family of enzymes that catalyze the hydrolysis of cAMP or cGMP and are implicated in various diseases. We describe the high-resolution crystal structures of the catalytic domains of PDE4B, PDE4D, and PDE5A with ten different inhibitors, including the drug candidates cilomilast and roflumilast, for respiratory diseases. These cocrystal structures reveal a common scheme of inhibitor binding to the PDEs: (i) a hydrophobic clamp formed by highly conserved hydrophobic residues that sandwich the inhibitor in the active site; (ii) hydrogen bonding to an invariant glutamine that controls the orientation of inhibitor binding. A scaffold can be readily identified for any given inhibitor based on the formation of these two types of conserved interactions. These structural insights will enable the design of isoform-selective inhibitors with improved binding affinity and should facilitate the discovery of more potent and selective PDE inhibitors for the treatment of a variety of diseases.  相似文献   

9.
The X-ray crystal structure for the adduct of human carbonic anhydrase (hCA) II with 4-methyl-5-perfluorophenylcarboximido-delta2-1,3,4-thiadiazoline-2-sulfonamide (PFMZ), a topically acting antiglaucoma sulfonamide, has been resolved at a resolution of 1.8 A. This compound is almost 10 times more effective as a hCA II inhibitor (KI of 1.5 nM) compared to the lead molecule, methazolamide, a clinically used drug (KI of 14 nM). Its binding to the enzyme active site is similar to that of other sulfonamide inhibitors, considering the interactions of the sulfonamide zinc anchoring group and thiadiazoline ring contacts, but differs considerably when the perfluorobenzoylimino fragment of the molecule is analyzed. Indeed, several unprecedented strong hydrogen bonds involving the imino nitrogen, carbonyl oxygen, a fluorine atom in the ortho position of the inhibitor, and two water molecules, as well as Gln 92 of the enzyme active site were seen. A stacking interaction of the perfluorophenyl ring of the inhibitor and the aromatic ring of Phe 131 was also observed for the first time in a CA-sulfonamide adduct. All these findings prove that more potent CA inhibitors incorporating perfluoroaryl/alkyl tails may be designed, with potentially improved antiglaucoma properties, in view of the new types of interactions seen here between the enzyme and the perfluorobenzoylated analogue of methazolamide.  相似文献   

10.
In a continuing effort to unravel the structural basis for isoform-selective inhibition of nitric oxide synthase (NOS) by various inhibitors, we have determined the crystal structures of the nNOS and eNOS heme domain bound with two D-nitroarginine-containing dipeptide inhibitors, D-Lys-D-Arg(NO)2-NH(2) and D-Phe-D-Arg(NO)2-NH(2). These two dipeptide inhibitors exhibit similar binding modes in the two constitutive NOS isozymes, which is consistent with the similar binding affinities for the two isoforms as determined by K(i) measurements. The D-nitroarginine-containing dipeptide inhibitors are not distinguished by the amino acid difference between nNOS and eNOS (Asp 597 and Asn 368, respectively) which is key in controlling isoform selection for nNOS over eNOS observed for the L-nitroarginine-containing dipeptide inhibitors reported previously [Flinspach, M., et al. (2004) Nat. Struct. Mol. Biol. 11, 54-59]. The lack of a free alpha-amino group on the D-nitroarginine moiety makes the dipeptide inhibitor steer away from the amino acid binding pocket near the active site. This allows the inhibitor to extend into the solvent-accessible channel farther away from the active site, which enables the inhibitors to explore new isoform-specific enzyme-inhibitor interactions. This might be the structural basis for why these D-nitroarginine-containing inhibitors are selective for nNOS (or eNOS) over iNOS.  相似文献   

11.
FR258900 has been discovered as a novel inhibitor of human liver glycogen phosphorylase a and proved to suppress hepatic glycogen breakdown and reduce plasma glucose concentrations in diabetic mice models. To elucidate the mechanism of inhibition, we have determined the crystal structure of the cocrystallized rabbit muscle glycogen phosphorylase b-FR258900 complex and refined it to 2.2 A resolution. The structure demonstrates that the inhibitor binds at the allosteric activator site, where the physiological activator AMP binds. The contacts from FR258900 to glycogen phosphorylase are dominated by nonpolar van der Waals interactions with Gln71, Gln72, Phe196, and Val45' (from the symmetry-related subunit), and also by ionic interactions from the carboxylate groups to the three arginine residues (Arg242, Arg309, and Arg310) that form the allosteric phosphate-recognition subsite. The binding of FR258900 to the protein promotes conformational changes that stabilize an inactive T-state quaternary conformation of the enzyme. The ligand-binding mode is different from those of the potent phenoxy-phthalate and acyl urea inhibitors, previously described, illustrating the broad specificity of the allosteric site.  相似文献   

12.
With an aim toward glycogenolysis control in Type 2 diabetes, we have investigated via kinetic experiments and computation the potential of indirubin (IC?? > 50 μM), indirubin-3'-oxime (IC?? = 144 nM), KT5720 (K(i) = 18.4 nM) and staurosporine (K(i) = 0.37 nM) as phosphorylase kinase (PhKγtrnc) ATP-binding site inhibitors, with the latter two revealed as potent inhibitors in the low nM range. Because of lack of structural information, we have exploited information from homologous kinase complexes to direct in silico calculations (docking, molecular dynamics, and MMGBSA) to predict the binding characteristics of the four ligands. All inhibitors are predicted to bind in the same active site area as the ATP adenine ring, with binding dominated by hinge region hydrogen bonds to Asp104:O and Met106:O (all four ligands) and also Met106:NH (for the indirubins). The PhKγtrnc-staurosporine complex has the greatest number of receptor-ligand hydrogen bonds, while for the indirubin-3'-oxime and KT5720 complexes there is an important network of interchanging water molecules bridging inhibitor-enzyme contacts. The MM-GBSA results revealed the source of staurosporine's low nM potency to be favorable electrostatic interactions, while KT5720 has strong van der Waals contributions. KT5720 interacts with the greatest number of protein residues either by direct or 1-water bridged hydrogen bond interactions, and the potential for more selective PhK inhibition based on a KT5720 analogue has been established. Including receptor flexibility in Schr?dinger induced-fit docking calculations in most cases correctly predicted the binding modes as compared with the molecular dynamics structures; the algorithm was less effective when there were key structural waters bridging receptor-ligand contacts.  相似文献   

13.
More than 100 years of research on Alzheimer’s disease didn’t yield a potential cure for this dreadful disease. Poor Blood Brain Barrier (BBB) permeability and P-glycoprotein binding of BACE1 inhibitors are the major causes for the failure of these molecules during clinical trials. The design of BACE1 inhibitors with a balance of sufficient affinity to the binding site and little or no interaction with P-glycoproteins is indispensable. Identification and understanding of protein–ligand interactions are essential for ligand optimization process. Structure-based drug design (SBDD) efforts led to a steady accumulation of BACE1-ligand crystal complexes in the PDB. This study focuses on analyses of 153 BACE1-ligand complexes for the direct contacts (hydrogen bonds and weak interactions) observed between protein and ligand and indirect contacts (water-mediated hydrogen bonds), observed in BACE1-ligand complex crystal structures. Intraligand hydrogen bonds were analyzed, with focus on ligand P-glycoprotein efflux. The interactions are dissected specific to subsites in the active site and discussed. The observed protein-ligand and intraligand interactions were used to develop the linear discriminant model for the identification of BACE1 inhibitors with less or no P-glycoprotein binding property. Excellent statistical results and model’s ability to correctly predict a new data-set with an accuracy of 92% is achieved. The results are retrospectively analyzed to give input for the design of potential BACE1 inhibitors.  相似文献   

14.
The crystal structures of two new thrombin inhibitors, P498 and P500, complexed with human alpha-thrombin have been determined at 2.0 A resolution and refined to crystallographic R-factors of 0.170 and 0.169, respectively. These compounds, with picomolar binding constants, belong to a family of potent bifunctional inhibitors that bind thrombin at two remote sites: the active site and the fibrinogen recognition exosite (FRE). The inhibitors incorporate a nonsubstrate type active site binding fragment: Dansyl-Arg-(D)Pipecolic acid (Dns-Arg-(D)Pip), reminiscent of the active-site directed inhibitors MD-805 and MQPA, rendering them resistant to thrombin-induced hydrolysis. The FRE binding fragment of these inhibitors corresponds to the hirudin55-65 sequence. They differ in the chemical nature of the nonpeptidyl linker bridging these two functional activities. In both cases, the active site binding fragment is well defined in the electron density. The DnsH1, ArgH2, and (D)PipH3 groups occupy the S3, S1, and S2 subsites of thrombin, respectively, in a way similar to that observed in the thrombin-MQPA complexes. Binding in the active site of thrombin is characterized by numerous van der Waals contacts and ring-ring system interactions. Unlike in the substrate-like inhibitors, ArgH2 enters the S1 specificity pocket from the P2 position and adopts a bent conformation to make an hydrogen bond to the carboxylate of Asp189. In this noncanonical position, its carbonyl points away from the oxyanion hole, which is now occupied by well-ordered solvent molecules. The linkers fit in the groove extending from the active site to the FRE. The C-terminal fragments of both inhibitors bind in the same way as analogous FRE binding elements in previously described complexes.  相似文献   

15.
An extensive structural manifold of short hydrogen bond-mediated, active site-directed, serine protease inhibition motifs is revealed in a set of over 300 crystal structures involving a large suite of small molecule inhibitors (2-(2-phenol)-indoles and 2-(2-phenol)-benzimidazoles) determined over a wide range of pH (3.5-11.4). The active site hydrogen-bonding mode was found to vary markedly with pH, with the steric and electronic properties of the inhibitor, and with the type of protease (trypsin, thrombin or urokinase type plasminogen activator (uPA)). The pH dependence of the active site hydrogen-bonding motif is often intricate, constituting a distinct fingerprint of each complex. Isosteric replacements or minor substitutions within the inhibitor that modulate the pK(a) of the phenol hydroxyl involved in short hydrogen bonding, or that affect steric interactions distal to the active site, can significantly shift the pH-dependent structural profile characteristic of the parent scaffold, or produce active site-binding motifs unique to the bound analog.Ionization equilibria at the active site associated with inhibitor binding are probed in a series of the protease-inhibitor complexes through analysis of the pH dependence of the structure and environment of the active site-binding groups involved in short hydrogen bond arrays. Structures determined at high pH (>11), suggest that the pK(a) of His57 is dramatically elevated, to a value as high as approximately 11 in certain complexes. K(i) values involving uPA and trypsin determined as a function of pH for a set of inhibitors show pronounced parabolic pH dependence, the pH for optimal inhibition governed by the pK(a) of the inhibitor phenol involved in short hydrogen bonds. Comparison of structures of trypsin, thrombin and uPA, each bound by the same inhibitor, highlights important structural variations in the S1 and active sites accessible for engineering notable selectivity into remarkably small molecules with low nanomolar K(i) values.  相似文献   

16.
The design, synthesis, and biological evaluation of a series of six HIV-1 protease inhibitors incorporating isosorbide moiety as novel P2 ligands are described. All the compounds are very potent HIV-1 protease inhibitors with IC50 values in the nanomolar or picomolar ranges (0.05–0.43 nM). Molecular docking studies revealed the formation of an extensive hydrogen-bonding network between the inhibitor and the active site. Particularly, the isosorbide-derived P2 ligand is involved in strong hydrogen bonding interactions with the backbone atoms.  相似文献   

17.
Two cyclopropanecarbonyl derivatives were independently found to be 15 and 14 times more potent than the corresponding isopropylcarbonyl analogues as inhibitors of 4-hydroxyphenylpyruvate dioxygenase and dihydroorotate dehydrogenase, respectively. A thorough examination of the co-crystal structures of available enzyme inhibitor complexes and the conformation of X-ray crystal structures of several synthesized cyclopropanecarbonyl derivatives revealed that this enhancement by one order of magnitude of inhibition potency exhibited by cyclopropanecarbonyl derivatives in both enzymes is probably caused by respective metal chelating and hydrogen bonding interactions at the ligand-receptor binding site. These specific interactions subsequently cause the cyclopropyl group of the molecules to adopt a fixed bisected conformation, which is unavailable for isopropylcarbonyl derivatives.  相似文献   

18.
Nitric-oxide synthase (NOS) catalyzes the oxidation of L-arginine to nitric oxide and L-citrulline. Because overproduction of nitric oxide causes tissue damage in neurological, inflammatory, and autoimmune disorders, design of NOS inhibitors has received much attention. Most inhibitors described to date include a guanidine-like structural motif and interact with the guanidinium region of the L-arginine-binding site. We report here studies with L-arginine analogs having one or both terminal guanidinium nitrogens replaced by functionalities that preserve some, but not all, of the molecular interactions possible for the -NH(2), =NH, or =NH(2)(+) groups of L-arginine. Replacement groups include -NH-alkyl, -alkyl, =O, and =S. Binding of L-canavanine, an analog unable to form hydrogen bonds involving a N(5)-proton, was also examined. From our results and previous work, we infer the orientation of these compounds in the L-arginine-binding site and use IC(50) or K(i) values and optical difference spectra to quantitate their affinity relative to L-arginine. We find that the non-reactive guanidinium nitrogen of L-arginine binds in a pocket that is relatively intolerant of changes in the size or hydrogen bonding properties of the group bound. The individual H-bonds involved are, however, weaker than expected (<2 versus 3-6 kcal). These findings elucidate substrate binding forces in the NOS active site and identify an important constraint on NOS inhibitor design.  相似文献   

19.
Phipps KR  Li H 《Proteins》2007,67(1):121-127
The crystal packing surfaces comprising protein-RNA interactions were analyzed for 50 RNA-protein crystal structures in the Protein Data Bank database. Protein-RNA crystal contacts, which represent nonspecific protein-RNA interfaces, were investigated for their amino acid propensities, hydrogen bond patterns, and backbone and side chain interactions. When compared to biologically relevant interactions, the protein-RNA crystal contacts exhibit similarities as well as differences with respect to the principles of protein-RNA interactions. Similar to what was observed at cognate protein-RNA interfaces, positively charged amino acids have high propensities at noncognate protein-RNA interfaces and preferentially form hydrogen bonds with RNA phosphate groups. In contrast, nonpolar residues are less frequently associated with noncognate interactions. These results highlight the important roles of both electrostatic and hydrogen bonding interactions, facilitated by positively charged amino acids, in mediating both specific and nonspecific protein-RNA interactions.  相似文献   

20.
The cancer drug Ruxolitinib is a potent janus kinase inhibitor approved for the treatment of the myeloproliferative neoplasms. In addition, Ruxolitinib has weak inhibitory activity against a panel of other kinases, including Src kinase. There is no structural information of Ruxolitinib binding to any kinase. In this paper, we determined the crystal structure of c-Src kinase domain in complex of Ruxolitinib at a resolution of 2.26 Å. C-Src kinase domain adopts the DFG-in active conformation upon Ruxolitinib binding, indicating Ruxolitinib is a type I inhibitor for c-Src. Ruxolitinib forms two hydrogen bonds with Met341, a water-mediated hydrogen bond with Thr338, and a number of van der Waals contacts with c-Src. Ruxolitinib was then docked into the ligand-binding pocket of a previously solved JAK1 structure. From the docking result, Ruxolitinib also binds JAK1 as a type I inhibitor, with more interactions and a higher shape complementarity with the ligand-binding pocket of JAK1 compared to that of c-Src. Since Ruxolitinib is a relatively small inhibitor and there is sizeable cavity between Ruxolitinib and c-Src ligand-binding pocket, we propose to modify Ruxolitinib to develop more potent inhibitors to c-Src.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号