首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inflammation plays an important role in both the initiation of atherosclerosis and development of atherothrombotic events. The adherence of leukocytes/monocytes to the endothelium is an early event in atherogenesis. Phytotherapeutica as garlic and garlic extracts were shown to have beneficial modulating effects in patients with atherosclerotic disease. The aim of this study was to evaluate in vitro the influence of water-soluble garlic (Allium sativum) extract on the cytokine-induced expression of endothelial leukocyte adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1, CD54) and vascular cell adhesion molecule-1 (VCAM-1, CD106). Cytokine-induced expression of cellular adhesion molecules was measured on primary human coronary artery endothelial cell (HCAEC) cultures. HCAEC were cultured in microvascular endothelial cell growth medium and preincubated with garlic extract at various concentrations (0.25-4.0 mg/ml), after which human interleukin-1alpha (IL-1alpha, 10 ng/ml) was added for 1 day. Fluorescein isothiocyanate (FITC)-labeled anti-ICAM-1 and FITC-labeled anti-VCAM-1 were used to analyze the IL-1alpha-induced expression of ICAM-1 and VCAM-1 by flow cytometry. Incubation of HCAEC with garlic extract significantly decreased ICAM-1 and VCAM-1 expression induced by IL-1alpha. In addition, we examined the effects of garlic extract on the adhesion of monocytes to endothelial cells, using the monocytic U937 cell line. The presence of garlic extract significantly inhibited the adhesion of monocytes to IL-1alpha-stimulated endothelial cells. These results indicate that garlic extract modulates the expression of ICAM-1 and VCAM-1, thus potentially contributing to the beneficial effects traditionally attributed to garlic.  相似文献   

2.
We report the characterization of a novel series of human endothelial cell lines (designated SGHEC) regarding the expression and release of adhesion molecules and their binding of lymphocytes. SGHEC expressed significant levels of intercellular adhesion molecule-1 (ICAM-1; CD54) which increased after stimulation with tumor necrosis factor-α (TNFα), interleukin-1β (IL-1β), or interferon-γ (IFN-γ). Vascular cell adhesion molecule-1 (VCAM-1; CD106) and E-selectin (CD62E) were not detectable on unstimulated SGHEC but substantial levels were expressed after stimulation with either TNFα or IL-1β but not with IFN-γ. The increased expression of ICAM-1 and VCAM-1 was evident after 4 h stimulation and was even higher after 24 h; E-selectin was maximal after 4 h and returned almost to basal levels by 24 h. Substantial quantities of immunoreactive ICAM-1 and VCAM-1 also accumulated as soluble material in the supernatants of TNFα-stimulated SGHEC (VCAM-1 was substantially higher than ICAM-1), but E-selectin remained below the limits of detection. Various quantitative data suggest that this is a controlled release regulated by cytokine and provide support for a physiological function for these soluble molecules. Primary human lymphocytes and lymphoblastoid cell lines expressing lymphocyte function-associated antigen-1 (LFA-1) bound to SGHEC; this binding increased substantially after activation of either cell type. The binding was inhibited by monoclonal antibodies against LFA-1 and, to a lesser extent, ICAM-1, thus demonstrating the importance of these molecules in the observed binding; neither anti-VCAM-1 nor anti-E-selectin antibodies affected the binding. From these various data, we conclude that LFA-1/ICAM-1 interactions are partially responsible for the binding of lymphocytes to endothelial cells. The SGHEC lines should prove useful in investigating leukocyte-endothelial interactions and the mechanism of release of soluble adhesion molecules.  相似文献   

3.
Expression of the adhesion molecules, ICAM-1, VCAM-1, NCAM, CD44, CD49d (VLA-4, a chain), and CDlla (LFA-1, a chain) on mouse oocytes, and pre- and peri-implantation stage embryos was examined by quantitative indirect immunofluorescence microscopy. ICAM-1 was most strongly expressed at the oocyte stage, gradually declining almost to undetectable levels by the expanded blastocyst stage. NCAM, also expressed maximally on the oocyte, declined to undetectable levels beyond the morula stage. On the other hand, CD44 declined from highest expression at the oocyte stage to show a second maximum at the compacted 8-cell/morula. This molecule exhibited high expression around contact areas between trophecto-derm and zona pellucida during blastocyst hatching. CD49d was highly expressed in the oocyte, remained significantly expressed throughout and after blastocyst hatching was expressed on the polar trophecto-derm. Like CD44, CD49d declined to undetectable levels at the blastocyst outgrowth stage. Expression of both  相似文献   

4.
Lu DP  Tian L  O'Neill C  King NJ 《Cell research》2002,12(5-6):373-383
Expression of the adhesion molecules, ICAM-1, VCAM-1, NCAM, CD44, CD49d (VLA-4, alpha chain), and CD11a (LFA-1, alpha chain) on mouse oocytes, and pre- and peri-implantation stage embryos was examined by quantitative indirect immunofluorescence microscopy. ICAM-1 was most strongly expressed at the oocyte stage, gradually declining almost to undetectable levels by the expanded blastocyst stage. NCAM, also expressed maximally on the oocyte, declined to undetectable levels beyond the morula stage. On the other hand, CD44 declined from highest expression at the oocyte stage to show a second maximum at the compacted 8-cell/morula. This molecule exhibited high expression around contact areas between trophectoderm and zona pellucida during blastocyst hatching. CD49d was highly expressed in the oocyte, remained significantly expressed throughout and after blastocyst hatching was expressed on the polar trophectoderm. Like CD44, CD49d declined to undetectable levels at the blastocyst outgrowth stage. Expression of both VCAM-1 and CD11a was undetectable throughout. The diametrical temporal expression pattern of ICAM-1 and NCAM compared to CD44 and CD49d suggest that dynamic changes in expression of adhesion molecules may be important for interaction of the embryo with the maternal cellular environment as well as for continuing development and survival of the early embryo.  相似文献   

5.
Increased expression of endothelial adhesion molecules, high levels of the monocyte chemoattractant protein-1 (MCP-1) and enhanced VLA4 integrin/VCAM-1 and CCR-2/MCP-1 interactions are initial steps in vascular inflammation. We sought to determine whether relaxin, a potent vasodilatory and anti-fibrotic agent, mitigates these early events compromising endothelial integrity. The effect of relaxin coincubation on the TNF-α-stimulated expression of the adhesion molecules VCAM-1, ICAM-1 and E-selectin; the MCP-1 expression by human umbilical vein endothelial cells (HUVEC) and human aortic smooth muscle cells (HAoSMC); as well as on direct monocyte–endothelium cell adhesion was quantified by ELISA or adhesion assay. CCR-2 and PECAM expression on HUVEC and THP-1 monocytes was investigated by FACS analysis. Relaxin treatment suppressed significantly TNF-α-induced upregulation of VCAM-1 and PECAM, CCR-2, and MCP-1 levels and direct monocyte adhesion to HUVEC. Our findings identify relaxin as a promising inhibitory factor in early vascular inflammation. By attenuating the upregulation of VCAM-1, key adhesion molecule in early vascular inflammation, and of MCP-1, a chemokine pivotal to monocyte recruitment, relaxin decreased initial monocyte–endothelium contact. This may be of relevance for the prevention and treatment of atherosclerosis and of other pro-inflammatory states.  相似文献   

6.
Adherence to endothelium and then to the extracellular matrix is a prerequisite for extravasation of monocytes into injured tissues. There, monocytes differentiate into macrophages and express heparin binding epidermal growth factor-like growth factor (HB-EGF), a key growth factor involved in normal wound healing. We investigated whether the interaction of human monocytic THP-1 cells with the endothelial cell adhesion molecules (vascular CAM-1, VCAM-1; intercellular adhesion molecule-1 ICAM-1 and endothelial-selectin, E-selectin), or the extracellular matrix (ECM) proteins (fibronectin, FN; laminin, LN and fibrinogen, FG) regulate HB-EGF expression. We have shown that adherence of THP-1 cells via VCAM-1, E-selectin or FN, which are all overexpressed at sites of inflammation, potentiates HB-EGF mRNA expression. In contrast, adhesion of THP-1 cells via ICAM-1 or FG, has no significant effect. Since THP-1 cells interact with ICAM-1 and FG through beta2 integrins, and with VCAM-1 and FN via beta1 integrins, regulation of HB-EGF expression appears to be specific to beta1 integrin ligation. In addition, we demonstrate that THP-1 binding to LN, through the beta1 integrin VLA-6, down regulates HB-EGF expression. Thus physiologically, transient destruction of LN and expression of VCAM-1, E-selectin and fibronectin at sites of inflammation, may locally induce HB-EGF overexpression.  相似文献   

7.
In this study we have compared the adhesion of peripheral blood mononuclear cells (PBMC) to human umbilical vein endothelial cells (HUVEC) in a healthy control group with two groups of allergic asthmatics, not treated or treated with disodium cromoglycate (DSCG). The adhesion and blocking experiments were performed by the flow cytometric adhesion assay. No differences in the adhesion of lymphocytes were observed in any of the groups. The monocytes obtained from DSCG non-treated patients have shown significant (P < 0.05) enhancement of adhesion to HUVEC in comparison to healthy controls. The treatment of asthmatic patients with DSCG downregulated the monocyte adhesion to cultured endothelial cells (ECs) and this was comparable to the group of normal donors. The DSCG may have a therapeutic effect on the regulation of monocyte adhesion in inflammatory and allergic diseases. The binding ability of untreated asthmatic PBMC to cultured ECs was partially inhibited by monoclonal antibody anti-CD54, suggesting that the increased EC adhesiveness for monocytes from allergic asthmatics may be at least partially dependent on the ICAM-1 adhesion pathways. Our results also indicate that the blocking agent anti-CD18 was not essential for monocyte-endothelial interactions in allergic asthma.  相似文献   

8.
Adhesion and migration of leukocytes into the surrounding tissues is a crucial step in inflammation, immunity, and atherogenesis. Expression of cell adhesion molecules by endothelial cells plays a leading role in this process. Butyrate, a natural short-chain fatty acid produced by bacterial fermentation of dietary fiber, has been attributed with anti-inflammatory activity in inflammatory bowel disease. Butyrate in vitro is active in colonocytes and several other cell types. We have studied the effect of butyrate on expression of endothelial leukocyte adhesion molecules by cytokine-stimulated human umbilical vein endothelial cells (HUVEC). Pretreatment of HUVEC with butyrate-inhibited tumor necrosis factor-alpha (TNFalpha)-induced expression of vascular cell adhesion molecule-1 (VCAM-1) and intracellular cell adhesion molecule-1 (ICAM-1) in a time and concentration-dependent manner. Butyrate at 10 mM/L inhibited interleukin-1 (IL-1)-stimulated VCAM-1 and ICAM-1 expression. The effect of butyrate on cytokine-stimulated VCAM-1 expression was more pronounced than in the case of ICAM-1. Butyrate decreased TNFalpha-induced expression of mRNA for VCAM-1 and ICAM-1. Suppressed expression of VCAM-1 and ICAM-1 was associated with reduced adherence of monocytes and lymphocytes to cytokine-stimulated HUVEC. Butyrate inhibited TNFalpha-induced activation of nuclear factor-kappaB (NF-kappaB) in HUVEC. Finally, butyrate enhanced peroxisome proliferator-activated receptor-alpha (PPARalpha) expression in HUVEC. These results demonstrate that butyrate may have anti-inflammatory properties not only in colonocytes but also in endothelial cells. The anti-inflammatory and (perhaps) antiatherogenic properties of butyrate may partly be attributed to an effect on activation of NF-kappaB and PPARalpha and to the associated expression of VCAM-1 and ICAM-1. The present findings support further investigations on the therapeutic benefits of butyrate in several pathological events involving leukocyte recruitment.  相似文献   

9.
10.
To investigate the possible role of mast cells (MC) in regulating leukocyte adhesion to vascular endothelial cells (EC), microvascular and macrovascular EC were exposed to activated MC or MC conditioned medium (MCCM). Expression of intercellular and vascular adhesion molecules (ICAM-1 and VCAM-1) on EC was monitored. Incubation of human dermal microvascular endothelial cells (HDMEC) and human umbilical vein endothelial cells (HUVEC) with activated MC or MCCM markedly increased ICAM-1 and VCAM-1 surface expression, noted as éarly as 4 hr. Maximal levels were observed at 16 hr followed by a general decline over 48 hr. A dose-dependent response was noted using incremental dilutions of MCCM or by varying the number of MC in coculture with EC. At a ratio as low as 1:1,000 of MC:EC, increased ICAM-1 was observed. The ICAM-1 upregulation by MCCM was >90% neutralized by antibody to tumor necrosis factor alpha (TNF-α), suggesting that MC release of this cytokine contributes significantly to inducing EC adhesiveness. VCAM-1 expression enhanced by MCCM was partly neutralized (70%) by antibody to TNF-α; thus other substances released by MC may contribute to VCAM-1 expression. Northern blot analysis demonstrated MCCM upregulated ICAM-1 and VCAM-1 mRNA in both HDMEC and HUVEC. To evaluate the function of MCCM-enhanced EC adhesion molecules, T cells isolated from normal human donors were used in a cell adhesion assay. T-cell binding to EC was increased significantly after exposure of EC to MCCM, and inhibited by antibodies to ICAM-1 or VCAM-1. Intradermal injection of allergen in human atopic volunteers known to develop late-phase allergic reactions led to marked expression of both ICAM-1 and VCAM-1 at 6 hr, as demonstrated by immunohistochemistry. These studies indicate that MC play a critical role in regulating the expression of EC adhesion molecules, ICAM-1 and VCAM-1, and thus augment inflammatory responses by upregulating leukocyte binding. © 1995 Wiley-Liss Inc.  相似文献   

11.
12.
Tuberculosis is characterized by the presence of activated mononuclear cells both in the peripheral circulation and in pleural fluid. Expression and up-regulation of adhesion molecules is the basis of cell-cell adhesion in granuloma formation and in leukocyte migration to the inflammatory site. Soluble isoforms of adhesion molecules have been described, and their expression at high levels indicated an activated state. The purpose of this study was to evaluate levels of soluble adhesion molecules in serum and pleural fluid from patients with tuberculous pleural effusions, compared with non-tuberculous pleural effusions. We analysed levels of soluble vascular cell adhesion molecule-1 (s.VCAM-1), soluble intercellular adhesion molecule-1 (s.ICAM-1), and soluble E-selectin (sE-selectin) in serum and pleural fluid from patients with tuberculous pleuritis, by sandwich ELISA. Serum levels of s.ICAM-1 and s.VCAM-1 in patients with tuberculosis were higher than those in healthy controls (p < 0.001). Levels of sE-selectin levels were in the normal range compared with control groups. In pleural fluid, levels of s.VCAM-1 and s.ICAM-1 were increased in pleural effusions. Patients with tuberculous pleural effusion exhibited high levels of s.ICAM-1 compared with patients with neoplastic pleural involvement. Up-regulation of s.VCAM-1 and s.ICAM-1 in serum, along with increased levels of sE-selectin in pleural effusions from tuberculous patients, may result in transmigration of activated inflammatory cells inducing pleural damage, which may contribute to the pathological processes involved.  相似文献   

13.
14.
We investigated the effect of a specific neurokinin-1 receptor (NK1R) antagonist, CP-96,345, on the regulation of the expression of adhesion molecules ICAM-1, VCAM-1, E-selectin, and P-selectin as well as leukocyte recruitment during acute pancreatitis (AP). AP was induced in male Balb/C mice by 10 consecutive hourly intraperitoneal injections of caerulein. In the treatment groups, CP-96,345 was administered at 2.5 mg/kg ip either 30 min before or 1 h after the first caerulein injection. Animals were killed, and the lungs and pancreas were isolated for RNA extraction and RT-PCR or for immunohistochemical staining. mRNA expression of the four adhesion molecules was upregulated in the pancreas during AP. Treatment with CP-96,345 effectively reduced the mRNA expression of P-selectin and E-selectin but not ICAM-1 and VCAM-1. In the lung, ICAM-1, E-selectin, and P-selectin mRNA expression increased during AP. Antagonist treatment suppressed this elevation. Similar expression patterns were seen in the immunohistochemical stainings. Intravital microscopy of the pancreatic microcirculation revealed the effect of CP-96,345 on leukocyte recruitment. The present study provides important information on the relationship between NK1R activation and the regulation of adhesion molecules. Also, this study points to the differential regulation of inflammation in the pancreas and lung with AP.  相似文献   

15.
Adhesion and transendothelial migration of leukocytes into the vascular wall is a crucial step in atherogenesis. Expression of cell adhesion molecules by endothelial cells plays a leading role in this process. We investigated the effect of simvastatin, an inhibitor of HMG-CoA reductase administered to reduce plasma levels of LDL-cholesterol, on the expression of vascular cell adhesion molecule-1 (VCAM-1) and intracellular cell adhesion molecule-1 (ICAM-1) by human umbilical vein endothelial cells (HUVEC) stimulated with tumor necrosis factor alpha (TNFalpha). We found the expression to be significantly inhibited by the drug in a time and concentration-dependent manner and to a greater extent in the case of VCAM-1 as compared with ICAM-1. In TNFalpha-stimulated HUVEC, simvastatin decreased VCAM-1 and ICAM-1 mRNA levels, inhibited TNFalpha-induced activation of nuclear factor kappaB (NF-kappaB) and enhanced expression of peroxisome proliferator-activated receptor alpha (PPARalpha). These effects were associated with reduction of adherence of monocytes and lymphocytes to HUVEC. The present findings suggest that the benefits of statins in vascular disease may include the inhibition of expression of VCAM-1 and ICAM-1 through effects on NF-kappaB.  相似文献   

16.
Human cytomegalovirus (HCMV) infection of endothelial cells resulted in increased adhesion of the cells to peripheral blood leukocytes. It was demonstrated by flow cytometry that increased adhesiveness parallels the increased expression of cell surface adhesion molecules (ELAM-1, ICAM-1, VCAM-1). The increased adhesion of PMN and T-lymphocytes was due to upregulation in the expression of ELAM-1 and ICAM-1. The upregulation of VCAM-1 resulted in the increased adhesiveness of monocytes and T-lymphocytes to HCMV-infected HUVEC. The increased adhesiveness to leukocytes was caused by HCMV replication since endothelial cells exposed to HCMV-free supernatants and UV-inactivated HCMV did not show any increase in adhesiveness to any of the leukocytes tested.  相似文献   

17.
《Phytomedicine》2014,21(3):207-216
Tanshinone IIA is one of the major diterpenes in Salvia miltiorrhiza. The inhibitory effect of Tanshinone IIA on atherosclerosis has been reported, but the underlying mechanism is not fully understood. The present study aimed to study the anti-atherosclerosis effect of Tanshinone IIA on the adhesion of monocytes to vascular endothelial cells and related mechanism. Results showed that Tanshinone IIA, at the concentrations without cytotoxic effect, dose-dependently inhibited the adhesion of THP-1 monocytes to the TNF-α-stimulated human vascular endothelial cells. The expressions of cell adhesion molecules including VCAM-1, ICAM-1 and E-selectin were induced by TNF-α in HUVECs at both the mRNA and protein levels. The mRNA and protein expressions of VCAM-1 and ICAM-1, but not E-selectin, were both significantly suppressed by Tanshinone IIA in a dose dependent manner. In addition, the TNF-α-induced mRNA expression of fractalkine/CX3CL1 and the level of soluble fractalkine were both reduced by Tanshinone IIA. We also found that Tanshinone IIA significantly inhibited TNF-α-induced nuclear translocation of NF-κB which was resulted from the inhibitory effect of Tanshinone IIA on the TNF-α-activated phosphorylation of IKKα, IKKβ, IκB and NF-κB. As one of the major components of Salvia miltiorrhiza, Tanshinone IIA alone exerted more potent effect on inhibiting the adhesion of monocytes to vascular endothelial cells when compared with Salvia miltiorrhiza. All together, these results demonstrate a novel underlying mechanism for the anti-inflammatory effect of Tanshinone IIA by modulating TNF-α-induced expression of VCAM-1, ICAM-1 and fractalkine through inhibition of TNF-α-induced activation of IKK/NF-κB signaling pathway in human vascular endothelial cells.  相似文献   

18.
The present studies were performed to explore potentially selective mechanisms of leukocyte adhesion in an attempt to understand how preferential recruitment of eosinophils and basophils might occur during allergic and other inflammatory reactions. Stimulation of human vascular endothelial cells for 24 h with IL-4 (30 to 1,000 U/ml) induced adhesion for eosinophils (up to approximately four-fold of control) and basophils (up to approximately twofold of control) but not neutrophils (less than 125% of control). Analysis of endothelial expression of adhesion molecules by flow cytometry revealed that IL-4 treatment induced vascular cell adhesion molecule-1 (VCAM-1) expression without significantly affecting the expression of other adhesion molecules, namely endothelial-leukocyte adhesion molecule-1 (ELAM-1) or intercellular adhesion molecule-1 (ICAM-1). The concentration-response curve for IL-4-induced VCAM-1 expression paralleled that for adhesion. Endothelial cells stimulated with IL-4 expressed adhesive properties for eosinophils by 3 h; the response increased steadily during a 24-h time course study. Eosinophils and basophils adhered to plates coated with a recombinant form of VCAM-1. This adhesion was blocked with antibodies to VCAM-1 but not ELAM-1. mAb directed against either VCAM-1 or VLA-4 inhibited (by approximately 75%) the binding of eosinophils and basophils to IL-4-stimulated endothelial cells. Because VLA-4 and VCAM-1 have been demonstrated to bind to each other in other adhesion systems, these results suggest that IL-4 stimulates eosinophil and basophil adhesion by inducing endothelial cell expression of VCAM-1 which binds to eosinophil and basophil VLA-4. The lack of expression of VLA-4 on neutrophils and the failure of IL-4 to stimulate neutrophil adherence support this conclusion. It is proposed that local release of IL-4 in vivo in allergic diseases or after experimental allergen challenge may partly explain the enrichment of eosinophils and basophils (vs neutrophils) observed in these situations.  相似文献   

19.
The expression of the following cell adhesion molecules, their β1 and β2 integrin ligands and the cytokine tumour necrosis factor-α (TNF-α) was investigated by light and electron microscope immunohistochemistry in the liver tissue in 20 patients with colorectal and gastric cancer also presenting with liver metastases: intercellular adhesion molecule-1 (ICAM-1), vascular endothelial adhesion molecule-1 (VCAM-1), E-selectin, leucocyte function-associated antigen-1 (LFA-1), macrophage antigen-1 (Mac-1), and very late antigen-4 (VLA-4). We have found a parallel enhancement of the adhesion molecules and of TNF-α in liver sinusoids surrounding metastases. The expression of ICAM-1 was enhanced on sinusoidal cells in all zones of the acinus. VCAM-1 immune reactivity was diffuse but less intensive in the lobule. E-selectin expression was observed in sinusoidal cells attached to metastases. In tumour metastases the expression of ICAM-1, VCAM-1, and E-selectin was visible on the tumour vascular endothelium. Tumour infiltrating host cells sowing positive immunoreactivity for ICAM-1, VCAM-1, LFA-1, Mac-1, and VLA-4 were located mainly at the boundary between liver parenchyma and the metastasis. At the ultrastructural level, ICAM-1-positive immune deposits were observed on the cellular membrane and in some transport vesicles of gastric metastatic cells. Further, the expression of all adhesion molecules was confirmed to sinusoidal endothelial cells and tumour vessels. It is concluded that the enhanced expression of adhesion molecules in liver sinusoids could be a marker for the assessment of the ability of sinusoidal endothelial cells to control the recruitment of leukocytes and monocytes to the metastatic site. They could also direct the adhesion of new circulating tumour cells to sinusoidal endothelium.  相似文献   

20.
Upregulation of adhesion proteins plays an important role in mediating inflammation. The induction of adhesive molecules has been well studied, but the reversibility of their expression has not been well characterized. A neutralizing anti-TNF monoclonal antibody (cA2) was used to study the down regulation of TNF-induced E-selectin, vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) on cultured human umbilical vein endothelial cells (HUVECs). Addition of cA2 following TNF stimulation of HUVECs enhanced the rate of E-selectin and VCAM-1 down-regulation from the cell surface and also reduced steady state E-selectin and VCAM-1 mRNA levels. The cA2-mediated disappearance of E-selectin, but not VCAM-1 protein was microtubule and not microfilament dependent. Neutralization of TNF only slightly reduced ICAM-1 cell surface levels following initial TNF stimulation, suggesting a slower turnover of ICAM-1 compared to E-selectin and VCAM-1. Microtubule inhibition during TNF stimulation partially inhibited E-selectin, VCAM-1 and ICAM-1 mRNA upregulation. VCAM-1 and ICAM-1 cell surface expression were similarly partially inhibited, however, E-selectin levels were unaffected, presumably due to the dual, opposing effect of inhibiting protein expression and inhibiting internalization. Microfilament inhibition during protein induction specifically inhibited the maximal expression of VCAM-1 protein and mRNA, without affecting E-selectin or ICAM-1. These data support the notion that E-selectin, VCAM-1, and ICAM-1 expression are differentially regulated on HUVECs and suggest that TNF neutralizing therapies may be effective because of their ability to reduce the levels of pre-existing adhesion proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号