首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) functions as an E3 ubiquitin ligase in both plants and animals. In dark-grown Arabidopsis thaliana seedlings, COP1 targets photomorphogenesis-promoting factors for degradation to repress photomorphogenesis. Little is known, however, about how COP1 itself is regulated. Here, we identify COP1 SUPPRESSOR1 (CSU1), a RING-finger E3 ubiquitin ligase, as a regulator of COP1. Genetic evidence demonstrates that csu1 mutations suppress cop1-6 phenotypes completely in the dark. Furthermore, CSU1 colocalizes with COP1 in nuclear speckles and negatively regulates COP1 protein accumulation in darkness. CSU1 can ubiquitinate COP1 in vitro and is essential for COP1 ubiquitination in vivo. Therefore, we conclude that CSU1 plays a major role in maintaining COP1 homeostasis by targeting COP1 for ubiquitination and degradation in dark-grown seedlings.  相似文献   

2.
Shade‐avoider plants typically respond to shade‐light signals by increasing the rate of stem growth. CONSTITTUTIVE PHOTOMORPHOGENESIS 1 (COP1) is an E3 ligase involved in the ubiquitin labelling of proteins targeted for degradation. In dark‐grown seedlings, COP1 accumulates in the nucleus and light exposure causes COP1 migration to the cytosol. Here, we show that in Arabidopsis thaliana, COP1 accumulates in the nucleus under natural or simulated shade, despite the presence of far‐red light. In plants grown under white light, the transfer to shade‐light conditions triggers an unexpectedly rapid re‐accumulation of COP1 in the nucleus. The partial simulation of shade by lowering either blue or red light levels (maintaining far‐red light) caused COP1 nuclear re‐accumulation. Hypocotyl growth of wild‐type seedlings is more sensitive to afternoon shade than to morning shade. A residual response to shade was observed in the cop1 mutant background, but these seedlings showed inverted sensitivity as they responded to morning shade and not to afternoon shade. COP1 overexpression exaggerated the wild‐type pattern by enhancing afternoon sensitivity and making morning shade inhibitory of growth. COP1 nuclear re‐accumulation also responded more strongly to afternoon shade than to morning shade. These results are consistent with a signalling role of COP1 in shade avoidance. We propose a function of COP1 in setting the daily patterns of sensitivity to shade in the fluctuating light environments of plant canopies.  相似文献   

3.
4.
5.
In Arabidopsis thaliana, loss of CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) function leads to constitutive photomorphogenesis in the dark associated with inhibition of endoreduplication in the hypocotyl, and a post‐germination growth arrest. MIDGET (MID), a component of the TOPOISOMERASE VI (TOPOVI) complex, is essential for endoreduplication and genome integrity in A. thaliana. Here we show that MID and COP1 interact in vitro and in vivo through the amino terminus of COP1. We further demonstrate that MID supports sub‐nuclear accumulation of COP1. The MID protein is not degraded in a COP1‐dependent fashion in darkness, and the phenotypes of single and double mutants prove that MID is not a target of COP1 but rather a necessary factor for proper COP1 activity with respect to both, control of COP1‐dependent morphogenesis and regulation of endoreduplication. Our data provide evidence for a functional connection between COP1 and the TOPOVI in plants linking COP1‐dependent development with the regulation of endoreduplication.  相似文献   

6.
7.
8.
Wild-type Arabidopsis seedlings are capable of following two developmental programs: photomorphogenesis in the light and skotomorphogenesis in darkness. Screening of Arabidopsis mutants for constitutive photomorphogenic development in darkness resulted in the identification of three new loci designated COP8, COP10, and COP11. Detailed examination of the temporal morphological and cellular differentiation patterns of wild-type and mutant seedlings revealed that in darkness, seedlings homozygous for recessive mutations in COP8, COP10, and COP11 failed to suppress the photomorphogenic developmental pathway and were unable to initiate skotomorphogenesis. As a consequence, the mutant seedlings grown in the dark had short hypocotyls and open and expanded cotyledons, with characteristic photomorphogenic cellular differentiation patterns and elevated levels of light-inducible gene expression. In addition, plastids of dark-grown mutants were defective in etioplast differentiation. Similar to cop1 and cop9, and in contrast to det1 (deetiolated), these new mutants lacked dark-adaptive change of light-regulated gene expression and retained normal phytochrome control of seed germination. Epistatic analyses with the long hypocotyl hy1, hy2, hy3, hy4, and hy5 mutations suggested that these three loci, similar to COP1 and COP9, act downstream of both phytochromes and a blue light receptor, and probably HY5 as well. Further, cop8-1, cop10-1, and cop11-1 mutants accumulated higher levels of COP1, a feature similar to the cop9-1 mutant. These results suggested that COP8, COP10, and COP11, together with COP1, COP9, and DET1, function to suppress the photomorphogenic developmental program and to promote skotomorphogenesis in darkness. The identical phenotypes resulting from mutations in COP8, COP9, COP10, and COP11 imply that their encoded products function in close proximity, possibly with some of them as a complex, in the same signal transduction pathway.  相似文献   

9.
COP1 (CONSTITUTIVE PHOTOMORPHOGENIC 1), a ubiquitin E3 ligase, is a central negative regulator of photomorphogenesis. However, how COP1 activity is regulated by post-translational modifications remains largely unknown. Here we show that SUMO (small ubiquitin-like modifier) modification enhances COP1 activity. Loss-of-function siz1 mutant seedlings exhibit a weak constitutive photomorphogenic phenotype. SIZ1 physically interacts with COP1 and mediates the sumoylation of COP1. A K193R substitution in COP1 blocks its SUMO modification and reduces COP1 activity in vitro and in planta. Consistently, COP1 activity is reduced in siz1 and the level of HY5, a COP1 target protein, is increased in siz1. Sumoylated COP1 may exhibits higher transubiquitination activity than does non-sumoylated COP1, but SIZ1-mediated SUMO modification does not affect COP1 dimerization, COP1-HY5 interaction, and nuclear accumulation of COP1. Interestingly, prolonged light exposure reduces the sumoylation level of COP1, and COP1 mediates the ubiquitination and degradation of SIZ1. These regulatory mechanisms may maintain the homeostasis of COP1 activity, ensuing proper photomorphogenic development in changing light environment. Our genetic and biochemical studies identify a function for SIZ1 in photomorphogenesis and reveal a novel SUMO-regulated ubiquitin ligase, COP1, in plants.  相似文献   

10.
CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) functions as an E3 ubiquitin ligase and mediates a variety of developmental processes in Arabidopsis by targeting a number of key regulators for ubiquitination and degradation. Here, we identify a novel COP1 interacting protein, COP1 SUPPRESSOR 2 (CSU2). Loss of function mutations in CSU2 suppress the constitutive photomorphogenic phenotype of cop1-6 in darkness. CSU2 directly interacts with COP1 via their coiled-coil domains and is recruited by COP1 into nuclear speckles in living plant cells. Furthermore, CSU2 inhibits COP1 E3 ubiquitin ligase activity in vitro, and represses COP1 mediated turnover of HY5 in cell-free extracts. We propose that in csu2 cop1-6 mutants, the lack of CSU2’s repression of COP1 allows the low level of COP1 to exhibit higher activity that is sufficient to prevent accumulation of HY5 in the dark, thus restoring the etiolated phenotype. In addition, CSU2 is required for primary root development under normal light growth condition.  相似文献   

11.
12.
Using a beta-glucuronidase (GUS) reporter-COP1 fusion transgene, it was shown previously that Arabidopsis COP1 acts within the nucleus as a repressor of seedling photomorphogenic development and that high inactivation of COP1 was accompanied by a reduction of COP1 nuclear abundance (A.G. von Arnim, X.-W. Deng [1994] Cell 79: 1035-1045). Here we report that the GUS-COP1 fusion transgene can completely rescue the defect of cop1 mutations and thus is fully functional during seedling development. The kinetics of GUS-COP1 relocalization in a cop1 null mutant background during dark/light transitions imply that the regulation of the functional nuclear COP1 level plays a role in stably maintaining a committed seedling's developmental fate rather than in causing such a commitment. Analysis of GUS-COP1 cellular localization in mutant hypocotyls of all pleiotropic COP/DET/FUS loci revealed that nuclear localization of GUS-COP1 was diminished under both dark and light conditions in all mutants tested, whereas nuclear localization was not affected in the less pleiotropic cop4 mutant. Using both the brassinosteroid-deficient mutant det2 and brassinosteroid treatment of wild-type seedlings, we have demonstrated that brassinosteroid does not control the hypocotyl cell elongation through regulation nuclear localization of COP1. The growth regulator cytokinin, which also dramatically reduced hypocotyl cell elongation in the absence of light, did not prevent GUS-COP1 nuclear localization in dark-grown seedlings. Our results suggest that all of the previously characterized pleiotropic COP/DET/FUS loci are required for the proper nuclear localization of the COP1 protein in the dark, whereas the less pleiotropic COP/DET loci or plant regulators tested are likely to act either downstream of COP1 or by independent pathways.  相似文献   

13.
Characterization of exon skipping mutants of the COP1 gene from Arabidopsis   总被引:4,自引:1,他引:3  
The removal of introns from pre-mRNA requires accurate recognition and selection of the intron splice sites. Mutations which alter splice site selection and which lead to skipping of specific exons are indicative of intron/exon recognition mechanisms involving an exon definition process. In this paper, three independent mutants to the COP1 gene in Arabidopsis which show exon skipping were identified and the mutations which alter the normal splicing pattern were characterized. The mutation in cop1–1 was a G→A change 4 nt upstream from the 3′ splice site of intron 5, while the mutation in cop1–2 was a G→A at the first nucleotide of intron 6, abolishing the conserved G within the 5′ splice site consensus. The effect of these mutations was skipping of exon 6. The mutation in cop1–8 was G→A in the final nucleotide of intron 10 abolishing the conserved G within the 3′ splice site consensus and leading to skipping of exon 11. The splicing patterns surrounding exons 6 and 11 of COP1 in these three mutant lines of Arabidopsis provide evidence for exon definition mechanisms operating in plant splicing.  相似文献   

14.
Light responses mediated by the photoreceptors play crucial roles in regulating different aspects of plant growth and development. An E3 ubiquitin ligase complex CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1)1/SUPPRESSOR OF PHYA (SPA), one of the central repressors of photomorphogenesis, is critical for maintaining skotomorphogenesis. It targets several positive regulators of photomorphogenesis for degradation in darkness. Recently, we revealed that basic helix‐loop‐helix factors, HECATEs (HECs), function as positive regulators of photomorphogenesis by directly interacting and antagonizing the activity of another group of repressors called PHYTOCHROME‐INTERACTING FACTORs (PIFs). It was also shown that HECs are partially degraded in the dark through the ubiquitin/26S proteasome pathway. However, the underlying mechanism of HEC degradation in the dark is still unclear. Here, we show that HECs also interact with both COP1 and SPA proteins in darkness, and that HEC2 is directly targeted by COP1 for degradation via the ubiquitin/26S proteasome pathway. Moreover, COP1‐mediated polyubiquitylation and degradation of HEC2 are enhanced by PIF1. Therefore, the ubiquitylation and subsequent degradation of HECs are significantly reduced in both cop1 and pif mutants. Consistent with this, the hec mutants partially suppress photomorphogenic phenotypes of both cop1 and pifQ mutants. Collectively, our work reveals that the COP1/SPA‐mediated ubiquitylation and degradation of HECs contributes to the coordination of skoto/photomorphogenic development in plants.  相似文献   

15.
16.
Arabidopsis seedlings are genetically endowed with the capability to follow two distinct developmental programs: photomorphogenesis in the light and skotomorphogenesis in darkness. The regulatory protein CONSTITUTIVE PHOTO-MORPHOGENIC1 (COP1) has been postulated to act as a repressor of photomorphogenesis in the dark because loss-of-function mutations of COP1 result in dark-grown seedlings phenocopying the light-grown wild-type seedlings. In this study, we tested this working model by overexpressing COP1 in the plant and examining its inhibitory effects on photomorphogenic development. Stable transgenic Arabidopsis lines overexpressing COP1 were generated through Agrobacterium-mediated transformation. Overexpression was achieved using either the strong cauliflower mosaic virus 35S RNA promoter or additional copies of the wild-type gene. Analysis of these transgenic lines demonstrated that higher levels of COP1 can inhibit aspects of photomorphogenic seedling development mediated by either phytochromes or a blue light receptor, and the extent of inhibition correlated quantitatively with the vivo COP1 levels. This result provides direct evidence that COP1 acts as a molecular repressor of photomorphogenic development and that multiple photoreceptors can independently mediate the light inactivation of COP1. It also suggests that a controlled inactivation of COP1 may provide a basis for the ability of plants to respond quantitatively to changing light signals, such as fluence rate and photoperiod.  相似文献   

17.
UV-B photon reception by the Arabidopsis thaliana homodimeric UV RESISTANCE LOCUS8 (UVR8) photoreceptor leads to its monomerization and a crucial interaction with CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1). Relay of the subsequent signal regulates UV-B-induced photomorphogenesis and stress acclimation. Here, we report that two separate domains of UVR8 interact with COP1: the β-propeller domain of UVR8 mediates UV-B-dependent interaction with the WD40 repeats-based predicted β-propeller domain of COP1, whereas COP1 activity is regulated by interaction through the UVR8 C-terminal C27 domain. We show not only that the C27 domain is required for UVR8 activity but also that chemically induced expression of the C27 domain is sufficient to mimic UV-B signaling. We further show, in contrast with COP1, that the WD40 repeat proteins REPRESSOR OF UV-B PHOTOMORPHOGENESIS1 (RUP1) and RUP2 interact only with the UVR8 C27 domain. This coincides with their facilitation of UVR8 reversion to the ground state by redimerization and their potential to interact with UVR8 in a UV-B-independent manner. Collectively, our results provide insight into a key mechanism of photoreceptor-mediated signaling and its negative feedback regulation.  相似文献   

18.
19.
Previously, we identified the regions of chromosomes 10q12–q31 and 15p16–q21 harbor quantitative trait loci (QTLs) for lumbar volumetric bone mineral density (vBMD) in female F2 rats derived from Fischer 344 (F344) × Lewis (LEW) and Copenhagen 2331 (COP) × Dark Agouti (DA) crosses. The purpose of this study is to identify the candidate genes within these QTL regions contributing to the variation in lumbar vBMD. RNA was extracted from bone tissue of F344, LEW, COP, and DA rats. Microarray analysis was performed using Affymetrix Rat Genome 230 2.0 Arrays. Genes differentially expressed among the rat strains were then ranked based on the strength of the correlation with lumbar vBMD in F2 animals derived from these rats. Quantitative PCR (qPCR) analysis was performed to confirm the prioritized candidate genes. A total of 285 genes were differentially expressed among all strains of rats with a false discovery rate less than 10%. Among these genes, 18 candidate genes were prioritized based on their strong correlation (r 2 > 0.90) with lumbar vBMD. Of these, 14 genes (Akap1, Asgr2, Esd, Fam101b, Irf1, Lcp1, Ltc4s, Mdp-1, Pdhb, Plxdc1, Rabep1, Rhot1, Slc2a4, Xpo4) were confirmed by qPCR. We identified several novel candidate genes influencing spinal vBMD in rats.  相似文献   

20.
In the dark, etiolated seedlings display a long hypocotyl, the growth of which is rapidly inhibited when the seedlings are exposed to light. In contrast, the phytohormone ethylene prevents hypocotyl elongation in the dark but enhances its growth in the light. However, the mechanism by which light and ethylene signalling oppositely affect this process at the protein level is unclear. Here, we report that ethylene enhances the movement of CONSTITUTIVE PHOTOMORPHOGENESIS 1 (COP1) to the nucleus where it mediates the degradation of LONG HYPOCOTYL 5 (HY5), contributing to hypocotyl growth in the light. Our results indicate that HY5 is required for ethylene-promoted hypocotyl growth in the light, but not in the dark. Using genetic and biochemical analyses, we found that HY5 functions downstream of ETHYLENE INSENSITIVE 3 (EIN3) for ethylene-promoted hypocotyl growth. Furthermore, the upstream regulation of HY5 stability by ethylene is COP1-dependent, and COP1 is genetically located downstream of EIN3, indicating that the COP1-HY5 complex integrates light and ethylene signalling downstream of EIN3. Importantly, the ethylene precursor 1-aminocyclopropane-1-carboxylate (ACC) enriched the nuclear localisation of COP1; however, this effect was dependent on EIN3 only in the presence of light, strongly suggesting that ethylene promotes the effects of light on the movement of COP1 from the cytoplasm to the nucleus. Thus, our investigation demonstrates that the COP1-HY5 complex is a novel integrator that plays an essential role in ethylene-promoted hypocotyl growth in the light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号