首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
One-pot click chemistry of N(α)-Boc-bromomethylketones, NaN3 and propiolic acid affords N-Boc protected 1,4-disubstituted 1,2,3-β-ketotriazole acids in good to excellent yield. The use of CuI as catalyst and DMSO as solvent leads the click reaction to efficient, practical and column-free preparation of the title compounds. The utility of the resulting unnatural amino acids as building blocks to prepare triazole possessing peptidomimetics is also delineated.  相似文献   

2.
A convenient route is established for the preparation of N α-Fmoc-N ε-(Boc, methyl)-l-lysine and N α-Fmoc-N ε-dimethyl-l-lysine as building blocks to be used for the synthesis of methylated peptides. This methodology is based on the use of malonate derivatives and dibromobutane to produce key intermediates, l-2-amino-6-bromohexanoic acid derivatives, which could be modified to the required group at the ε-position. Fmoc-protection is accessible, so these compounds can be used in solution as well as in solid-phase peptide synthesis. Also the peptides containing these methylated lysines have been proved to resist the action of trypsin and lysyl endopeptidase. Thus, this new method could be considered as an improvement of the synthesis of N ε-methyl-l-lysine derivatives.  相似文献   

3.
Santra S  Perez JM 《Biomacromolecules》2011,12(11):3917-3927
The development of functional amino acid-based polymeric materials is emerging as a platform to create biodegradable and nontoxic nanomaterials for medical and biotechnology applications. In particular, facile synthetic routes for these polymers and their corresponding polymeric nanomaterials would have a positive impact in the development of novel biomaterials and nanoparticles. However, progress has been hampered by the need to use complex protection-deprotection methods and toxic phase transfer catalysts. In this study, we report a facile, single-step approach for the synthesis of an N-alkylated amino acid as an AB-type functional monomer to generate a novel pseudo-poly(amino acid), without using the laborious multistep, protection-deprotection methods. This synthetic strategy is reproducible, easy to scale up, and does not produce toxic byproducts. In addition, the synthesized amino acid-based polymer is different from conventional linear polymers as the butyl pendants enhance its solubility in common organic solvents and facilitate the creation of hydrophobic nanocavities for the effective encapsulation of hydrophobic cargos upon nanoparticle formation. Within the nanoparticles, we have encapsulated a hydrophobic DiI dye and a therapeutic drug, Taxol. In addition, we have conjugated folic acid as a folate receptor-targeting ligand for the targeted delivery of the nanoparticles to cancer cells expressing the folate receptor. Cell cytotoxicity studies confirm the low toxicity of the polymeric nanoparticles, and drug-release experiments with the Taxol-encapsulated nanoparticles only exhibit cytotoxicity upon internalization into cancer cells expressing the folate receptor. Taken together, these results suggested that our synthetic strategy can be useful for the one-step synthesis of amino acid-based small molecules, biopolymers, and theranostic polymeric nanoagents for the targeted detection and treatment of cancer.  相似文献   

4.
5.
A glycosidase from Aspergillus oryzae catalysed the stereospecific formation of various derivatives of the Tn antigen, D-GalNAca1O-L-Ser, employing D-GalNAc-OPhNO - p as glycosyl donor and different N- and C-protected L-Ser derivatives as acceptors. The same glycosidase preparation was also useful for stereospecific preparation of D-GalNAca1O-L-Thr and D-GlcNAc1O-L-Ser derivatives. Yields were in the range 10-50% depending on the type of acceptor. Lipase from porcine pancreas was used for specific hydrolysis, generating a Tn antigen derivative with a free carboxyl group. This facilitates the use of the derivatives in e.g. solid phase synthesis of glycopeptides.  相似文献   

6.
The asymmetric hydroxylation of inactive carbon atoms is still an important reaction in the industrial synthesis of valuable chiral compounds such as pharmaceuticals and fine chemicals. Applications of monooxygenation enzymes, like cytochrome P450 monooxygenases, flavin-containing monooxygenases, and Fe(II)/α-ketoglutarate-dependent dioxygenases (Fe/αKG-DOs), are strongly desired as hydroxylation biocatalysts because they have great advantages in regio- and stereoselectivity of the reactions. Recently, several novel Fe/αKG-DOs have been found to catalyze the asymmetric hydroxylation of aliphatic amino acids. Depending on their amino acid sequences, these Fe/αKG-DOs catalyze different types of regioselective hydroxylations, or C3–, C4–, and C5-hydroxylation. Additionally, most also have stereoselective sulfoxidation activities. Here, we have reviewed the characterization and process development of this novel functioning group of Fe/αKG-DOs.  相似文献   

7.
8.
9.
Low-specificity l-threonine aldolase, catalyzing the reversible cleavage/condensation reaction between l-threonine/l-allo-threonine and glycine plus acetaldehyde, was purified to homogeneity from Pseudomonas sp. NCIMB 10558. The enzyme has an apparent molecular mass of approximately 145 kDa and consists of four identical subunits with a molecular mass of 38 kDa. The enzyme, requiring pyridoxal- 5′-phosphate as a coenzyme, is strictly l-specific at the α position, whereas it can not distinguish between threo and erythro forms at the β position. Besides the reversible cleavage/condensation of threonine, the enzyme also catalyzes the reversible interconversion between glycine plus various aldehydes and l-β-hydroxy-α-amino acids, including l-β-(3,4-dihydroxyphenyl)serine, l-β-(3,4-met‐hylenedioxyphenyl)serine and l-β-phenylserine, providing a new route for the industrial production of these important amino acids. Received: 10 November 1997 / Received revision: 7 January 1998 / Accepted 30 January 1998  相似文献   

10.
Vinblastine (VLB) is an antineoplastic agent contained in leaves of Catharanthus roseus. One-pot synthesis of VLB from vindoline and catharanthine, biosynthetic precursors in the plant, was achieved under biomimetic conditions. FMN-mediated coupling of vindoline and catharanthine under irradiation with near-ultraviolet light was followed by NAD(P)H-mediated direct conversion of the coupling product to VLB in the dark. The yield of VLB was governed by the level of NAD(P)H added, and the highest yield was obtained by incubation with 10 mM NAD(P)H for 5 h. It is postulated, as one concept of VLB biosynthesis, that similar non-enzymic VLB synthesis may occur in the plant leaves.  相似文献   

11.
12.
13.
A rapid and versatile synthesis of 2-monosubstituted monosuccinates and their bimolecular anhydrides is described. The reaction of these anhydrides with N-Fmoc-protected dipeptides under the modified Dakin–West reaction affords mainly the corresponding 5-succinyloxyoxazoles.  相似文献   

14.
Hydrolysis of 5,5-di-substituted hydantoins with linear and cyclic side chains, to produce the corresponding ,-dialkylated amino acids and 1-aminocycloalkane-1-carboxylic acids, using an enzyme preparation from lentil (Lens esculenta) seeds is reported for the first time. This method could be developed on a large scale and should be of interest to the chemical and pharmaceutical industries.R. Rai and V. Taneja are with the Department of Biochemistry, Faculty of Science, Banaras Hindu University, Varanasi-221 005, India; R. Balaji Rao is with the Department of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi-221 005, India.  相似文献   

15.
To clarify the phylogenetic position of Vestimentifera (tube worms), 346-bp fragments of the elongation factor-l (EF-l) gene (939–1286 according to the numbering of the human gene) of a vestimentiferan, Lamellibrachia sp., a sternaspid polychaete, Sternaspis scutata, an earthworm, Pheretima sp., and a gastropod, Alviniconcha hessleri, were sequenced. From the amino acid sequences of these EF-l, and those of two other vertebrates and two arthropods, phylogenetic relationships were deduced by the maximum likelihood (ML) method, by which the phylogenetic tree can be inferred without assuming constancy of the molecular evolutionary rate. For the ML tree and all of seven alternative trees, whose log-likelihoods could not be discriminated from that of the ML tree by the criterion of the standard error, the vestimentiferan, the polychaete, and the oligochaete formed a clade, excluding the arthropods and the gastropod as outgroups. This result is convincing evidence that Vestimentifera are protostomes that are closely related to Annelida. The ML tree suggests that Vestimentifera are more closely related to Polychaeta than to Oligochaeta, though the data were not sufficient to discriminate these three groups at a significant level. From recent evidence such as morphological characteristics and molecular information, it may safely be said that vestimentiferans should be included in the Annelida provided this phylum contains polychaetes and oligochaetes.Correspondence to: S. Kojima  相似文献   

16.
The molecule of type I collagen from skin consists of two alpha1(I)-chains and one alpha2-chain. The sequence of the entire alpha1-chain comprising 1052 residues is summarily presented and discussed. Apart from the 279 residues of alpha1(I)-CB8 whose sequence has been established for rat skin collagen, all sequences have been determined for calf skin collagen. In order to facilitate sequence analysis, the alpha1-chain was cleaved into defined fragments by cyanogen bromide or hydroxylamine or limited collagenase digestion. Most of the sequence was established by automated stepwise Edman degradation. The alpha1-chain contains two basically different types of sequences: the triple helical region of 1011 amino acid residues in which every third position is occupied by glycine and the N- and C-terminal regions not displaying this type of regularity. Both of these non-triple helical regions carry oxidizable lysine or hydroxylysine residues as functional sites for the intermolecular crosslink formation. Implications of the amino acid sequence for the stability of the triple helix and the fibril as well as for formation of crosslinks are discussed. Evaluation of the sequence in connection with electron microscopical investigations yielded the parameters of the axial arrangement of the molecules within the fibrils. Axial stagger of the molecules by a distance D = 670 angstrom = 233 amino acid residues results in maximal interaction of polar sequence regions of adjacent molecules and similarly of regions of hydrophobic residues. Ordered aggregation of molecules into fibrils is, therefore, regulated by electrostatic and electrophobic forces. Possible loci of intermolecular crosslinks between the alpha1-chains of adjacent molecules may be deduced from the dimensions of the axial aggregation of molecules.  相似文献   

17.
Summary Fmoc-O,O-(dimethylphospho)-l-tyrosine was converted into stable Fmoc-O,O-(dimethylphospho)-L-tyrosine fluoride by means of (diethylamino) sulfur trifluoride or cyanuric fluoride. This building block was used for efficient coupling of phosphotyrosine to the adjacent sterically hindered amino acid Aib or Ac6c in, model peptide sequences as well as for the synthesis of the ‘difficult’ phosphotyrosine peptide Stat91695–708. The phosphate methyl groups were cleaved on solid phase after peptide assembly by means of trimethylsilyl iodide in MeCN. Aib, α-aminoisobutyric acid Ac6c, 1-amino-cyclohexyl-l-carboxylic acid; BOP, benzotriazol-l-yl-oxy-tris(dimethylamino) phosphonium hexafluorophosphate, CIP, 2-chloro-l, 3-dimethylimidazolidium hexafluorophosphate, DAST, (diethylamino)sulfur trifluoride; DBU 1,8-diazabicyclo[5.4.0]undec-7-ene; DCM, dichloromethane; DIEA, drisopropylethylamine; DMA dimethylacetamide; Fmoc, 9-fluorenylmethoxycarbonyl; HATU,O-(7-azabenzotriazol-l-yl)-1.1,3,3-tetramethyluronium hexafluorophosphate; HOAt, I-hydroxy-7-azabenzotriazole; HOBt,N-hydroxybenzotriazole; HPLC, high-performance liquid chromatography; MBHA, 4-methylbenzhydrylamine; MeCN, acetonitrile; NMP,N-methyl-2-pyrrolidinone; NMR, nuerear magnetic resonance; PS, polystyrene; PyBroP, bromotris(pyrrolidino)phosphonium hexafluorophosphate; Rink amide MBHA-PS, 4-(2′,4′-dimethoxyphenyl-Fmoc-aminophenyl)-phenoxyacetamido-norleucyl-MBHA-PS; TFA, trifluoroacetic acid; TMSI, trimethylsilyl iodide; TPTU, 2-(2-pyridon-l-yl)-1,1,3,3-tetramethyluroniumfluoroborate; tR, retention time; UNCA, arethane-protected amino acidN-carboxy anhydride Abbreviations for amino acids and nomenclature of, peptide structures follow the recommendations of the IUPAC-IUB Commission on Biochemical Nomenclature [Eur. J. Biochem., 138 (1984) 9].  相似文献   

18.
19.
N(α)-Acetyltransferases (NATs) cause the N(α)-acetylation of the majority of eukaryotic proteins during their translation, although the functions of this modification have been largely unexplored. In yeast (Saccharomyces cerevisiae), four NATs have been identified: NatA, NatB, NatC, and NatD. In this study, the N(α)-acetylation status of ribosomal protein was analyzed using NAT mutants combined with two-dimensional difference gel electrophoresis (2D-DIGE) and mass spectrometry (MS). A total of 60 ribosomal proteins were identified, of which 17 were N(α)-acetylated by NatA, and two by NatB. The N(α)-acetylation of two of these, S17 and L23, by NatA was not previously observed. Furthermore, we tested the effect of ribosomal protein N(α)-acetylation on protein synthesis using the purified ribosomes from each NAT mutant. It was found that the protein synthesis activities of ribosomes from NatA and NatB mutants were decreased by 27% and 23%, respectively, as compared to that of the normal strain. Furthermore, we have shown that ribosomal protein N(α)-acetylation by NatA influences translational fidelity in the presence of paromomycin. These results suggest that ribosomal protein N(α)-acetylation is necessary to maintain the ribosome's protein synthesis function.  相似文献   

20.
GAT-1 mediates transport of GABA together with sodium and chloride in an electrogenic process enabling efficient GABAergic transmission. Biochemical and modeling studies based on the structure of the bacterial homologue LeuT are consistent with a mechanism whereby the binding pocket is alternately accessible to either side of the membrane and which predicts that the extracellular part of transmembrane domain 10 (TM10) exhibits aqueous accessibility in the outward-facing conformation only. In this study we have engineered cysteine residues in the extracellular half of TM10 of GAT-1 and probed their state-dependent accessibility to sulfhydryl reagents. In three out of four of the accessible cysteine mutants, the inhibition of transport by a membrane impermeant sulfhydryl reagent was diminished under conditions expected to increase the proportion of inward-facing transporters, such as the presence of GABA together with the cotransported ions. A conserved TM10 aspartate residue, whose LeuT counterpart participates in a "thin" extracellular gate, was found to be essential for transport and only the D451E mutant exhibited residual transport activity. D451E exhibited robust sodium-dependent transient currents with a voltage-dependence indicative of an increased apparent affinity for sodium. Moreover the accessibility of an endogenous cysteine to a membrane impermeant sulfhydryl reagent was enhanced by the D451E mutation, suggesting that sodium binding promotes an outward-facing conformation of the transporter. Our results support the idea that TM10 of GAT-1 lines an accessibility pathway from the extracellular space into the binding pocket and plays a role in the opening and closing of the extracellular transporter gate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号