首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The effect of histamine (10(-9)-10(-3) M) on horse penile dorsal artery was evaluated. Precontracted vessels showed a biphasic response (relaxation-contraction) to histamine, while at basal tone, histamine only induced a contractile effect. The H1 receptor agonist, 2-pyridylethylamine (PEA) (10(-9)-10(-3) M), induced concentration-dependent relaxation in precontracted rings and provoked vasoconstriction at basal tone. Mepyramine (10(-9)-10(8) M), an H1 receptor antagonist, competitively antagonized the relaxant response to histamine (pA2 = 9.7) and PEA (pA2 = 9.2). At basal tone, mepyramine (10(-10)-10(-8) M) also caused a rightward shift in the histamine contraction curve (pA2 = 10.1). Mepyramine (10(-9)-10(-8) M)/PEA Schild plots for resting vessels yielded a pA2 value of 9.4. A regulatory role for H2 and H3 receptors was precluded since there was no response to their agonists (dimaprit (10(-9)-10(-3) M), (R)-alpha-methylhistamine (10(-10)- 3 x 10(-4) M)), and antagonists (cimetidine (10(-5) M), thioperamide (10(-6) M)) did not affect control curves. Removal of the endothelium abolished the relaxant component causing a leftward shift in the contractile component in precontracted rings, with no effect on maximum contraction. Inhibitors of nitric oxide (NO) synthesis, L-NAME (3 x 10(-4) M) and L-NOARG (3 x 10(-4) M), modified the relaxant response while contraction was unaffected. L-Arginine (3 x 10(-4) M) potentiated maximum relaxation but did not affect contraction in precontracted rings. Effects of a prostanoid and K+ channels were ruled out. The biphasic response of precontracted vessels persisted in the presence of indomethacin (3 x 10(-6) M), tetraethylammonium (10(-3) M) and gliblenclamide (10(-5) M). L-NAME plus indomethacin, or this combination plus TEA or glibenclamide produced similar effects as isolated treatments. In resting vessels, histamine contraction was also unaffected by the lack of endothelium, or L-NAME, L-arginine or indomethacin pretreatment. The biphasic response to histamine is probably mediated by H1 receptors with a partial role for NO in the relaxant response in precontracted vessels. In the absence of tone, the contractile effect may be mediated by direct action on smooth muscle.  相似文献   

3.
The role of nitric oxide (NO) on the vasorelaxant effect of atrial natriuretic peptide (ANP) on the basal tone of rabbit aortic rings conditioned to angiotensin II (Ang II) was studied. ANP aortic relaxation and nitrite release were measured in the presence and absence of endothelium and a NO-synthase inhibitor. Ang II at 10(-8) M triggered a contractile response, conditioning the vessel to a vasorelaxant effect of ANP (10(-8) M). This effect was significantly enhanced by endothelium removal, NG-nitro-L-arginine methyl ester (L-NAME, 10(-4) M), and methylene blue (10(-5) M). ANP decrease of basal tone in Ang-II-sensitized aortic rings was improved when a higher concentration of Ang II was used (l0(-6) M). Basal and Ang-II-stimulated nitrite release were measured in stretched (S) and nonstretched (NS) aortic rings. Nitrite release was significantly increased in S rings (p < 0.001). L-NAME (10(-4) M) partially inhibited nitrite release in both basal and Ang-II-stimulated S aortic rings. In NS aortic rings, the NO inhibitor did not inhibit basal nitrite release but blunted the Ang-II-stimulated nitrite level. A significant negative correlation between nitrite release and the ANP vasorelaxant effect on basal tone was dependent on the Ang-II-sensitizing dose. The present results demonstrate that ANP relaxant effects on aortic basal tone are related to NO levels, which are regulated by S- and Ang-II-concentration-dependent NO generation and quenching.  相似文献   

4.
The vasodilatory effect of Globularia alypum L. (GA) extract was evaluated in rat mesenteric arterial bed pre-contracted by continuous infusion of phenylephrine (2-4 ng/mL). Bolus injections of GA elicited dose-response vasodilation, which was abolished after endothelium removal. Addition of a nitric oxide synthase inhibitor, N(G)-nitro-l-arginine methyl ester (100 μmol/L), alone or in the presence of a cyclooxygenase inhibitor, indomethacin (10 μmol/L), did not significantly affect the vasodilation of the mesenteric arterial bed in response to GA extract. These results suggest that GA-induced vasodilation is endothelium dependent but nitric oxide and prostacyclin independent. In the presence of high K(+) (60 mmol/L), the GA vasodilatory effect was completely abolished, suggesting that the vasodilation effect is mediated by hyperpolarization of the vascular cells. Also, pre-treatment with atropine (a muscarinic receptors antagonist) antagonized the GA-induced vasodilation, suggesting that the vasodilatory effect is mainly mediated by the endothelium-derived hyperpolarizing factor through activation of endothelial muscarinic receptors.  相似文献   

5.
We have determined that the methanolic extract of L. caulescens (MELc) produced a significant vasodilator effect in a concentration-dependent and endothelium-dependent manner. This relaxation was blocked by N(omega)-nitro-L-arginine methylester (L-NAME), indicating that MELc vasodilator properties are endothelium mediated due to liberation of nitric oxide (NO). In this paper we aimed to corroborate its mode of action. MELc effects on noradrenaline (NA)-induced contraction in isolated rat aortic thoracic rings with endothelium (+E), in the presence of atropine (0.1 microM) and 1-H-[1,2,4]-oxadiazolo-[4,3a]-quinoxalin-1-one (ODQ, 1 microM) were conducted. MELc relaxation curve was significantly shifted to the right in the presence of ODQ and atropine, thus confirming that its mode of action is related with activation of nitric oxide synthase (NOS) and the consequent increment in NO formation. Bio-guided study of MELc allowed the isolation of ursolic acid (UA, 50 mg) and ursolic-oleanolic acids mixture [UA/OA (7:3), 450 mg]. The relaxant effect of UA (0.038-110 microM) was evaluated in functional experiments. UA induced a significant relaxation in a concentration- and endothelium-dependent manner (IC(50)=44.15 microM) and did not produce a vasorelaxant effect on contraction evoked by KCl (80 mM). In addition, NA-induced contraction was significantly displaced to the right by UA (30 microM). In order to determine its mode of action, UA-induced relaxant effect was evaluated in the presence of atropine (0.1 microM), indomethacin (10 microM), L-NAME (100 microM) and ODQ (1 microM). Relaxation was blocked by L-NAME and ODQ. On the other hand, UA (3 microM) provoked a significant displacement to the left in the relaxation curve induced by sodium nitroprusside (SNP, 0.32 nM to 0.1 microM), but it was not significant in the presence of Carbamoyl choline (carbachol, 1 nM to 10 microM). These results indicate that UA-mediated relaxation is endothelium dependent, probably due to NO release, and the consequent activation of vascular smooth muscle soluble guanylate cyclase (sGC), a signal transduction enzyme that forms the second messenger cGMP.  相似文献   

6.
This study was conducted to investigate the subtypes of muscarinic receptors involved in the action of cholinergic agents on prostacyclin synthesis in the rabbit aorta. Prostacyclin production measured as 6-keto-PGF1 alpha was assessed after exposing the aortic rings to different cholinergic agents. Acetylcholine (ACh) (M1 and M2 agonist) (1-10 microM) and arecaidine proparagyl ester (APE) (M2 selective agonist) (1-10 microM) enhanced 6-keto-PGF1 alpha output in a concentration-dependent manner. A selective M1 receptor agonist, McN-A-343, at 1 microM-1 mM did not alter 6-keto-PGF1 alpha output. ACh- and APE induced increases in 6-keto-PGF1 alpha output were attenuated by the M1/M2 antagonist atropine (0.1 microM), M2 alpha antagonist (AF-DX 116), (0.1-1.0 microM), and by selective M2 beta antagonist, hexahydro-sila-difendiol (HHSiD) (0.1-1.0 microM), but not by the M1 antagonist pirenzepine (1.0 microM). 6-Keto-PGF1 alpha output elicited by ACh- or APE was not altered by the adrenergic receptor antagonists phentolamine and propranolol or by the nicotinic receptor blocker hexamethonium. Similarly, the arachidonic acid- or norepinephrine induced 6-keto-PGF1 alpha accumulation was not altered by these muscarinic receptor antagonists. Indomethacin, a cyclooxygenase inhibitor, prevented arachidonic acid, ACh- or APE induced 6-keto-PGF1 alpha output. Removal of the endothelium abolished the production of 6-keto-PGF1 alpha elicited by ACh, APE, bradykinin, and calcium ionophore A 23187, but not that induced by angiotensin II, K+ or norepinephrine. These data suggest that vascular prostaglandin generation elicited by cholinergic agonists is mediated via activation of M2 alpha and M2 beta but not M1 muscarinic receptors, which are most likely located on the endothelium.  相似文献   

7.
Yao X  Huang Y 《Life sciences》2000,66(1):PL13-PL19
Quaternary ammonium ions are common pharmacological blockers of K+ channels. This study examined the vasorelaxant effect of tetraoctylammonium ions (TOA+) in rat isolated aortic rings. TOA+ caused a concentration-dependent transient relaxation of endothelium-intact tissues. Pretreatment with NG-nitro-L-arginine methyl ester (L-NAME, 3x10(-5) M) or methylene blue (3 x 10(-6) M) or removal of the endothelium abolished the TOA+-induced relaxation. L-arginine (10(-3) M ) partially antagonized the effect of L-NAME. Glibenclamide (3x10(-6) M), charybdotoxin (CTX, 10(-7) M), indomethacin (10(-5) M), or atropine (3x10(-6) M) had no effect. Both TOA+ (10(-5) M)- and acetylcholine (ACh, 10(-5) M)-induced increase in tissue content of cyclic GMP was significantly attenuated by NG-nitro-L-arginine (L-NNA, 10(-4) M) and abolished in endothelium-denuded arteries. These results indicate that TOA+ induced endothelium-dependent relaxation which is likely mediated through nitric oxide but not other endothelium-derived factors. This relaxant action seems unique for TOA+ since other quaternary ammonium ions did not cause nitric oxide-dependent relaxation.  相似文献   

8.
Li J  Ren Y  Dong X  Zhong G  Wu S  Tang C 《Peptides》2003,24(4):563-568
The effects of proadrenomedullin N-terminal 20 peptide (PAMP) and adrenotensin (ADT) on adrenomedullin (ADM)-induced vasodilation were investigated in aortic rings from rat. ADM (10(-9) to 10(-7)M) relaxed the aorta preconstricted with phenylephrine in a concentration-dependent manner. Denudation of endothelium or pretreatment with nitric oxide synthase (NOS) inhibitor, L-NAME, attenuated the vasodilatory action of ADM. ADM-induced vasorelaxation in the aortic rings with endothelium was converted to contraction by PAMP, but not by ADT. The ADM-induced vasodilation was not affected by PAMP in aorta rings without endothelium or in intact aortic rings pretreated with L-NAME. ADM-stimulated nitrite production and NOS activity of the aortas, which was inhibited by PAMP, ADT or PAMP plus ADT. ADM, PAMP, and ADT increased the cyclic adenosine monophosphate (cAMP) contents in vascular tissue. The combination of ADM with PAMP or ADT caused a smaller increase in cAMP level as compared with that of PAMP or ADT alone. These results show that ADM-induced endothelium-dependent vasodilation could be converted to vasoconstriction in the presence of PAMP, probably through a NO-dependent pathway. There was no indication that cAMP was involved in the converting effect of PAMP on ADM vasodilator action.  相似文献   

9.
Anethole is a naturally occurring aromatic oxidant, present in a variety of medicinal plant extracts, which is commonly used by the food and beverage industry. Despite its widespread occurrence and commercial use, there is currently little information regarding effects of this compound on the vasculature. Therefore the actions of anethole on the contractility of rat isolated aorta were compared with those of eugenol, and their respective isomeric forms, estragole and isoeugenol. In aortic rings precontracted with phenylephrine (PE; 1 microM), anethole (10(-6) M-10(-4) M) induced contraction in preparations possessing an intact endothelium, but not in endothelium-denuded tissues. At higher concentrations (10(-3) M-10(-2) M), anethole-induced concentration-dependent and complete relaxation of all precontracted preparations, irrespective of whether the endothelium was intact or not, an action shared by eugenol, estragole and isoeugenol. The contractile and relaxant effects of anethole in PE-precontracted preparations were not altered by L-NAME (10 microM) or indomethacin (10 microM), indicating that neither nitric oxide nor prostaglandins were involved in these actions. The mixed profile of effects was not confined to PE-mediated contraction, since similar responses were obtained to anethole when tissues were precontracted with 25 mM KCl. Anethole and estragole (10(-6)-10(-4) M), but not eugenol or isoeugenol, increased the basal tonus of endothelium-denuded aortic rings, an action that was abolished by VDCC blockers nifedipine (1 microM) and diltiazem (1 microM), or by withdrawal of extracellular Ca(2+). Our data suggest complex effects of anethole on isolated blood vessels, inducing contraction at lower doses, mediated via opening of voltage-dependent Ca(2+)-channels, and relaxant effects at higher concentrations that are shared by structural analogues.  相似文献   

10.
白细胞介素-2引起离体大鼠主动脉环舒张及其作用机制   总被引:20,自引:2,他引:18  
Cao CM  Ye S  Yu H  Xu QS  Ye ZG  Shen YL  Lu Y  Xia Q 《生理学报》2003,55(1):19-23
本文旨在研究白细胞介素-2(interleukin-2,IL-2)以离体大鼠胸主动脉环收缩张力的作用及其可能机制。采用累积加药法,检测IL-2对去氧肾上腺素(PE)和KCl预收缩的胸主动脉环收缩张力的影响。结果表明,IL-2(1、10、100、1000U/ml)对PE(10μmol/L)预收缩的内皮完整血管环产生浓度依赖性的舒张作用,而对KCl (120mmol/L)预收缩的血管无作用,去除内皮后,IL-2的舒张作用被取消。用一氧化氮合酶抑制剂L-NAME(0.1mmol/L)和鸟苷酸环化酶抑制剂亚甲蓝(10μmol/L)预处理,均可阻断IL-2的舒张血管作用。用环氧合酶抑制剂吲哚美辛(Indo,10μmol/L)预处理可阻断IL-2的血管舒张作用。从上述观察结果推论,IL-2通过NO-鸟苷酸环化酶和环氧合酶途径产生内皮依赖的血管舒张作用。  相似文献   

11.
In the present work the effect of the aqueous fraction of the ethanolic extract of the leaves (AFL) of Cissampelos sympodialis Eichl. was investigated in the rat aorta. In the presence of functional endothelium, AFL produced concentration-dependent contractions (EC50 value of 76.6 +/- 17.8 micrograms/ml). In the absence of functional endothelium, the concentration-response curves to AFL were significantly shifted to the left (EC50 values of 1.3 +/- 0.9 micrograms/ml) without modification of its maximal contractile effect. In the presence of L-NAME (300 microM) and of indomethacin (10 mM), the concentration-response curves produced by AFL were also shifted to the left (EC50 values of 21.8 +/- 6.2 and 24.3 +/- 13.2 micrograms/ml, respectively). The treatment of the aortas with L-NAME (300 microM) plus indomethacin (10 microM) produced a significant shift to the left of the concentration-dependent curves of AFL (EC50 value of 4.9 +/- 2.2 micrograms/ml), similar to that observed in the absence of the vascular endothelium. In addition, AFL-induced contraction was abolished in the presence of prazosin (1 microM), and significantly shifted to the right in the presence of yohimbine (EC50 value of 723.6 +/- 76.4 micrograms/ml). Thus, based on these results, it can be concluded that contractions induced by AFL in the rat aorta were due to activation of alpha-adrenoceptors. Furthermore, these results also showed that the AFL-induced contractions were modulated by the endothelium, via the release of NO and of a cyclooxygenase-derived relaxant product. Finally, it can be concluded that the contractile effects of AFL on vascular smooth muscle may play an important role in the hypertensive effects of this plant in vivo.  相似文献   

12.
Xanthorrhizol, a bisabolene isolated from the medicinal plant Iostephane heterophylla, was assayed on rat thoracic aorta rings to elucidate its effect and likely mechanism of action, by measuring changes of isometric tension. Xanthorrhizol (1, 3, 10, 30 and 100 microg/mL) significantly inhibited precontractions induced by KCI-; (60mM), noradrenaline (10(-6) M) or CaCl2 (1.0 mM). Increasing concentrations of external calcium antagonized the inhibitory effect on KCl-induced contractions. The vasorelaxing effect of xanthorrhizol was not affected by indomethacin (10 microM) or L-NAME (100 microM) in intact rat thoracic aorta rings precontracted by noradrenaline, which suggested that the effect was not mediated through either endothelium-derived prostacyclin (PGI2) or nitric oxide release from endothelial cells. Endothelium removal did not affect the relaxation induced by xanthorrhizol on rat thoracic aorta rings, discarding the participation of any substance released by the endothelium. Xanthorrhizol inhibitory effect was greater on KCI- and CaCl2-induced contractions than on those induced by noradrenaline. Xanthorrhizol inhibitory effect in rat thoracic aorta is likely explained for interference with calcium availability by inhibiting calcium influx through both voltage- and receptor-operated channels.  相似文献   

13.
The rapid non-genomic stimulatory action of progesterone (Pg) and estradiol (E2) on nitric oxide synthase (NOS) activity of endothelium intact aortic rings and its effect on platelet aggregation was investigated. First we measured the effect of the hormones on platelet aggregation when added to rat aortic strips (RAS) incubated in a PRP. RAS induced an antiaggregatory activity, which was enhanced by the presence of the hormones. The inhibitory action induced by the hormones was evoked in a dose dependent manner (10 pM-100 nM). These effects are specific for progesterone and 17-beta-estradiol, since either testosterone and 17-alpha-estradiol were devoid of activity. The hormones induced rapid responses, producing significant inhibition within 1 to 5 minutes of hormonal exposure. The addition of 10(-5) M L-NAME suppressed the antiaggregatory effect of 1 nM E2 or 10 nM Pg. Furthermore, we specifically quantified the NO generation by the 3H-citrulline technique. 10(-8) M E2 induced 2-fold increase of RAS citrulline production, while the increment induced by 10(-7) M Pg was 55% over control. Preincubation with 10(-5) M L-NAME completely suppressed the stimulatory action of 10(-9) M E2 or 10(-8) M Pg, confirming that the antiaggregatory factor released from the aortic tissue was NO. Preincubation with cycloheximide did not block the increment in NO induced by the hormones. In conclusion the present study provides for the first time evidence of acute, non-genomic effects of Pg on rat aorta NOS activity and platelet aggregation in coincidence with the results obtained with estradiol treatment.  相似文献   

14.
Muscarinic agonists elicit contraction through M3 receptors in most isolated preparations of gastrointestinal smooth muscle, and not surprisingly, several investigators have identified M3 receptors in smooth muscle using biochemical, immunological and molecular biological methods. However, these studies have also shown that the M2 receptor outnumbers the M3 by a factor of about four in most instances. In smooth muscle, M3 receptors mediate phosphoinositide hydrolysis and Ca2+ mobilization, whereas M2 receptors mediate an inhibition of cAMP accumulation. The inhibitory effect of the M2 receptor on cAMP levels suggests an indirect role for this receptor; namely, an inhibition of the relaxant action of cAMP-stimulating agents. Such a function has been rigorously demonstrated in an experimental paradigm where gastrointestinal smooth muscle is first incubated with 4-DAMP mustard to inactivate M3 receptors during a Treatment Phase, and subsequently, the contractile activity of muscarinic agonists is characterized during a Test Phase in the presence of histamine and a relaxant agent. When present together, histamine and the relaxant agent (e.g., isoproterenol or forskolin) have no net contractile effect because their actions oppose one another. However, under these conditions, muscarinic agonists elicit a highly potent contractile response through the M2 receptor, presumably by inhibiting the relaxant action of isoproterenol or forskolin on histamine-induced contractions. This contractile response is pertussis toxin-sensitive, unlike the standard contractile response to muscarinic agonists, which is pertussis toxin-insensitive. When measured under standard conditions (i.e., in the absence of histamine and without 4-DAMP mustard-treatment), the contractile response to muscarinic agonists is moderately sensitive to pertussis toxin if isoproterenol or forskolin is present. Also, pertussis toxin-treatment enhances the relaxant action of isoproterenol in the field-stimulated guinea pig ileum. These results demonstrate that endogenous acetylcholine can activate M2 receptors to inhibit the relaxant effects of beta-adrenoceptor activation on M3 receptor-mediated contractions. An operational model for the interaction between M2 and M3 receptors shows that competitive antagonism of the interactive response resembles an M3 profile under most conditions, making it difficult to detect the contribution of the M2 receptor.  相似文献   

15.
The petroleum ether soluble fraction (SIPE) of the root extract of S. indicum was evaluated for the vasorelaxant activity using isolated rat aorta. SIPE up to 180 microg/ml concentration significantly inhibited phenylephrine- and KCl-induced contraction to the extent of 98.13 +/- 6.37 and 70.19 +/- 3.43% respectively in isolated rat aorta in a concentration dependent manner. The vasorelaxant activity was not blocked by propranolol (10 microM), atropine (1 microM) indomethacin (10 microM) and glibenclamide (10 microM). Influence of SIPE on phenylephrine-induced contractions in aortic preparations in absence of functional endothelium and on pre-incubating the tissue with L-NAME (300 microM) or methylene blue (10 microM) was also studied. SIPE at 180 microg/ml concentration could elicit partial relaxation in presence of L-NAME or methylene blue to the extent of 34.26 +/- 6.13 and 25.66 +/- 10.95% respectively. However, in absence of functional endothelium, SIPE exhibited little relaxation to the extent of 6.70 +/- 4.87%. These studies revealed that the vasorelaxant activity of SIPE was chiefly mediated through endothelium-dependent pathway.  相似文献   

16.
The vasodilator effect of the ethanolic extract of leaves from Hancornia speciosa Gomes (HSE) was evaluated in superior mesenteric artery rings. HSE produced a concentration-dependent vasodilation (IC50 = 10.8 +/- 4.0 microg/mL) in arterial rings pre-contracted with phenylephrine, which was completely abolished in endothelium-denuded vessels. Endothelium-dependent vasodilation induced by HSE was strongly reduced by L-NAME (100 microM), a nitric oxide (NO) synthase inhibitor, but neither by atropine, a muscarinic receptor antagonist (1 microM), nor by indomethacin (10 microM), a cyclooxygenase inhibitor. In rings pre-contracted with 80 mM KCl, the vasodilator effect of HSE was shifted to the right and was completely abolished in the presence of L-NAME (100 microM). Similar effects were obtained in mesenteric rings pre-contracted with phenylephrine in the presence of KCl 25 mM alone or in addition to 100 microM L-NAME. In addition, BaCl2 (1 mM) dramatically reduced the vasodilation induced by HSE. Together, these findings led us to conclude that HSE induces an endothelium-dependent vasodilation in rat mesenteric artery, by a mechanism dependent on NO, on the activation of potassium channels and endothelium-derived hyperpolarizing factor release. Rutin, identified as a major peak in the HPLC fingerprint obtained for HSE, might contribute for the observed vasodilator effect, since it was able to induce an endothelium-dependent vasodilation in rat superior mesenteric arteries.  相似文献   

17.
We found that the inhibitors of the serotonin (5HT) transporter fluoxetine and clomipramine significantly inhibit 5HT-induced constriction of isolated rings of the aorta. The most prominent inhibitory effect was observed for clomipramine, which at a concentration of 2 μM, prevented aorta constriction in response to low and moderate doses of 5HT and multiply attenuated it in response to high doses (10 μM). The inhibitors of the 5HT-transporter attenuated the strength of norepinephrine-induced aorta constriction by 40–60% and eliminated long-term tonic constriction. Application of clomipramine or fluoxetine on the vessels preliminarily constricted by norepinephrine resulted in 100% relaxation, which was maintained in the presence of the NO-synthase inhibitor L-NAME. The inhibitors of the 5HT-transporter decreased but did not prevent 5HT-induced [Ca2+]cyt increase in smooth muscle cells (SMCs) of the aorta even at high concentrations. Clomipramine and fluoxetine did not affect the vasopressin-induced [Ca2+]cyt increase in SMCs and the strength of constriction of isolated aorta rings. We found that the sensitivity of the rat aorta to the vasoconstrictor effect of 5HT and the role of the 5HT-transporter in regulation of the vascular tone increased with aging.  相似文献   

18.
In vitro extracellular Mg(2+) concentration ([Mg(2+)](0)) produces endothelium-dependent and endothelium-independent relaxations in rat aorta in a concentration-dependent manner. These relaxant effects of Mg(2+) on intact rat aortic rings, but not denuded rat aortic rings, were suppressed by either N(G)-monomethyl-L-arginine (L-NMMA), N(omega)-nitro-L-arginine methyl ester (L-NAME), or methylene blue. The inhibitory effects of L-NMMA and L-NAME could be reversed partly by L-arginine. [Mg(2+)](0)-induced dilatation in vivo in rat mesenteric arterioles and venules was almost completely inhibited by N(G)-nitro-L-arginine and L-NMMA. Removal of extracellular Ca(2+) concentration ([Ca(2+)](0)) or buffering intracellular Ca(2+) concentration in endothelial cells, with 10 microM 1, 2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-AM, markedly attenuated the relaxant effects of Mg(2+). Mg(2+) produced nitric oxide (NO) release from the intact aortic rings in a concentration-dependent manner. Removal of [Ca(2+)](0) diminished the increased NO release induced by elevated levels of [Mg(2+)](0). In vivo infusion of increasing doses (1-30 microM/min) of MgSO(4), directly into the femoral veins of anesthetized rats, elicited significant concentration-dependent sustained increases in serum total Mg and concomitant decreases in arterial blood pressure. Before and after employment of various doses of MgSO(4), intravenous administration of either L-NMMA (10 mg/kg) or L-NAME (10 mg/kg) increased (i.e., reversed) the MgSO(4)-lowered blood pressure markedly, and intravenous injection of L-arginine restored partially the increased blood pressure effects of both L-NMMA and L-NAME. Our results suggest that 1) small blood vessels are very dependent on NO release for Mg(2+) dilatations and 2) the endothelium-dependent relaxation induced by extracellular Mg(2+) is mediated by release of endothelium-derived relaxing factor-NO from the endothelium, and requires Ca(2+) and formation of guanosine 3',5'-cyclic monophosphate.  相似文献   

19.
A Folta  I G Joshua  R C Webb 《Life sciences》1989,45(26):2627-2635
Endothelin has been characterized as a potent constricting factor. The purpose of this study was to investigate possible dilator effects of this peptide and to examine whether dilator responses occur through an endothelium-mediated mechanism in guinea pig coronary resistance vessels and isolated aortic rings. Changes in perfusion pressure after bolus injections of endothelin were measured using a constant-flow modified Langendorff preparation with a transducer between the flow pump and the heart. An immediate fall in perfusion pressure, averaging 6 mmHg, was observed after injection of endothelin (10(-14)-10(-12) moles). This effect was maximal at 1 minute and tended to return toward baseline levels within 4 minutes. In response to endothelin (10(-9) M), isolated aortic rings relaxed 35% after being contracted with prostaglandin F2 alpha (10(-7) M). In both preparations, dilation was converted to constriction after endothelium damage by oxygen radicals or endothelium removal (mechanical rubbing). Dilator responses to endothelin were blocked by pretreatment for 30 minutes with indomethacin (14 microM) in the presence of an intact endothelium in coronary resistance vessels, whereas in the abdominal aorta they were not. We conclude that endothelin has significant dilator properties and that this effect is opposed by its constrictor action at higher doses. In addition, dilator responses to endothelin require an intact endothelium in both coronary vessels and abdominal aorta. Finally, endothelin-induced dilation in coronary resistance vessels appears to occur through a cyclooxygenase product-mediated mechanism.  相似文献   

20.
Muscarinic facilitation of 14C-ACh release from post-ganglionic parasympathetic nerve terminals was studied in bladder strips prepared from spinal intact (SI) and spinal cord transected (SCT) rats. The spinal cord was transected at the lower thoracic spinal segments 3 weeks prior to the experiments. Using non-facilitatory stimulation (2 Hz) the release of ACh in spinal intact rats did not change in the presence of a non-specific muscarinic antagonist, atropine (100 nM), an M(1) specific antagonist (pirenzepine, 50 nM) or an M(1)-M(3) specific antagonist (4-DAMP, 5 nM). However, during a facilitatory stimulation paradigm (10 Hz or 40 Hz, 100 shocks) atropine and pirenzepine, but not 4-DAMP inhibited the release of ACh in bladders from spinal intact rats, indicating an M(1) receptor-mediated facilitation. In spinal cord transected rats, 2 Hz stimulation-induced release was significantly inhibited by atropine or 4-DAMP but not by pirenzepine indicating that a pre-junctional facilitatory mechanism mediated via M(3) muscarinic receptors could be induced by a non-facilitatory stimulation paradigm after spinal injury. In bladders of spinal cord transected rats, 10 Hz stimulation-evoked release of ACh was also inhibited by atropine and 4-DAMP (5 nM) but not by pirenzepine (50 nM). These results indicate that pre-junctional muscarinic receptors at cholinergic nerve endings in the bladder change after chronic spinal cord injury. It appears that low affinity M(1) muscarinic receptors are replaced by high affinity M(3) receptors. This change in modulation of ACh release may partly explain the bladder hyperactivity after chronic spinal cord injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号