首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have developed a nanocomposite using a silica nanocomposite polyhedral oligomeric silsesquioxane (POSS) and poly(carbonate-urea)urethane (PCU) for potential use in cardiovascular bypass grafts and the microvascular component of artificial capillary beds. In this study, we sought to compare its antithrombogenicity to that of conventional polymers used in vascular bypass grafts so as to improve upon current patency rates, particularly in the microvascular setting. Using atomic force microscopy (AFM) and transmission electron microscopy (TEM), surface topography and composition were studied, respectively. The ability of the nanocomposite surface to repel both proteins and platelets in vitro was assessed using thromboelastography (TEG), fibrinogen ELISA assays, antifactor Xa assays, scanning electron microscopy (SEM), and platelet adsorption tests. TEG analysis showed a significant decrease in clot strength (one-way ANOVA, p < 0.001) and increase in clot lysis (one-way ANOVA, p < 0.0001) on the nanocomposite when compared to both poly(tetrafluoroethylene) (PTFE) and PCU. ELISA assays indicate lower adsorption of fibrinogen to the nanocomposite compared to PTFE (one-way ANOVA, p < 0.01). Interestingly, increasing the concentration of POSS nanocages within these polymers was shown to proportionately inhibit factor X activity. Platelet adsorption at 120 min was also lower compared to PTFE and PCU (two-way ANOVA, p < 0.05). SEM images showed a "speckled" morphologic pattern with Cooper grades I platelet adsorption morphology on the nanocomposite compared to PTFE with grade IV morphology. On the basis of these results, we concluded that POSS nanocomposites possess greater thromboresistance than PTFE and PCU, making it an ideal material for the construction of both bypass grafts and microvessels.  相似文献   

2.
The 3-amino-1,2,4-triazole-modified silsesquioxane nanoplatforms have been prepared and characterized. The silsesquioxane nanocages readily react with CuX2 in aqueous solution to form copper complex-substituted silsesquioxanes. Adsorption isotherms of CuX2 from aqueous solution were studied at 25 °C. The electronic and ESR spectral parameters indicated that the copper ion is in a distorted-tetragonal symmetry field.  相似文献   

3.
It has been recognized that seeding vascular bypass grafts with endothelial cells is the ideal method of improving their long-term patency rates. The aim of this study was to assess the in vitro cytocompatibility of a novel silica nanocomposite, polyhedral oligomeric silsesquioxane-poly(carbonate-urea)urethane (POSS-PCU) and hence elicit its feasibility at the vascular interface for potential use in cardiovascular devices such as vascular grafts. Using primary human umbilical vein endothelial cells (HUVEC), cell viability and adhesion were studied using AlamarBlue assays, whereas cell proliferation on the polymer was assessed using the PicoGreen dye assay. Cellular confluence and morphology on the nanocomposite were analyzed using light and electron microscopy, respectively. Our results showed that there was no significant difference between cell viability in standard culture media and POSS-PCU. Endothelial cells were capable of adhering to the polymer within 30 min of contact (Student's t-test, p<0.05) with no difference between POSS-PCU and control cell culture plates. POSS-PCU was also capable of sustaining good cell proliferation for up to 14d even from low seeding densities (1.0×103 cells/cm2) and reaching saturation by 21 d. Microscopic analysis showed evidence of optimal endothelial cell adsorption morphology with the absence of impaired motility and morphogenesis. In conclusion, these results support the application of POSS-PCU as a suitable biomaterial scaffold in bio-hybrid vascular prostheses and biomedical devices.  相似文献   

4.
The cellulose hybrids with polyhedral oligomeric silsesquioxane (POSS) are synthesized by cross-linking graft reaction. Dimethylol dihydroxy ethylene urea (DDEU) as cross-linking agent is used in the graft reaction. The chemical and surface morphological structures of the am-POSS grafted cellulose hybrids are characterized with micro-FT-IR spectra, silicon element analysis, X-ray diffraction, SEM, AFM, and DSC. The results show that the am-POSS grafted cellulose hybrids form new macromolecular structures containing POSS nano-silica particles. POSS particles are evenly dispersed at the nanometer scale in the cellulose host matrix, bonding to the cellulose through covalent bonds. The thermal properties of the am-POSS grafted cellulose hybrids are improved.  相似文献   

5.
BackgroundThe physio-chemical properties of blood contacting biomaterials play an important role in determining their hemocompatibility. It is shown in literature that surface roughness and porosity have significant effect on hemocompatibility. In this study, we use a biocompatible, low thrombogenic nanocomposite polymer called POSS-PCU to test this hypothesis: would porosity compromise the hemocompatibility of POSS-PCU. We compared the hemocompatibility of POSS-PCU films of various pore sizes with PTFE, which is a commercially available material used in most blood contacting devices.MethodsSterilized POSS-PCU films with different size pores were prepared as samples and porous PTFE film were selected as control. And all samples were subjected to SEM for topograpgy, mechanical test for characterization and hemocompatibility tests to evaluate contact activation, platelet adhesion and activation, as well as whole blood clotting response to the samples.ResultsWCA significantly increased with the pore size of POSS-PCU film, whereas both tensile stress and strain decreased significantly as the sizes of pores increased. However, when compared to PTFE film with same size pores, POSS-PCU films showed both higher tensile stress and strain. Pore size had little impact over POSS-PCU's surface chemistry groups as tested by FTIR analysis. Contact activation and platelet adhesion essay also showed no significant difference between different POSS-PCU samples. However, in whole blood reactions, POSS-PCU with pores size around 2–5 μm showed higher BCI than plain films and those with pores size around 35–45 μm. POSS-PCU showed lower thrombogencity and higher hemocompatibility comparing with porous PTFE on the aspects of platelet activation, adhesion and whole blood reaction.Summary and conclusionsPOSS-PCU polymer films as a biomaterial in chronic blood contacting implants show significant lower thrombogencity and higher hemocompatibility than porous PTFE film. It is desirable as a coating or covering material in small diameter stents for treating cardiovascular diseases, cerebral vascular diseases and peripheral arterial diseases.  相似文献   

6.
The crystalline structure dependence of enzymatic degradation behavior was investigated for the polymorphic poly(3-hydroxypropionate) (P3HP), which has a basic backbone chemical structure of bacterial poly(3-hydroxyalkanoate)s (P3HAs). The P3HP films consisting of the beta-, gamma-, and/or delta-form crystal were cast or melt-crystallized as reported previously (Macromolecules 2005, 38, 6455; Macromolecules 2006, 39, 194-203) by controlling the molecular weight, crystallization temperature, and/or temperature of the melt. Their thermal properties, crystalline structures, morphologies, and (13)C solid spin-lattice relaxation dynamics were characterized by the differential scanning calorimetry, the wide-angle X-ray diffraction, the small-angle X-ray scattering (SAXS), and the (13)C solid-state NMR spectra (SNMR), respectively. Both the crystallinities and the lamellar thicknesses of P3HP films were found to decrease roughly in the order of beta-form > (or approximately) gamma-form > delta-form. From previous work, which indicates that the P3HA enzymatic degradation depends only on the degree of crystallinity and the lamellar thickness, their enzymatic degradation rates are then expected to increase in the order of beta-form < (or approximately) gamma-form < delta-form. Unexpectedly, their experimental P3HP enzymatic degradation rates in the presence of P3HA depolymerase isolated from Ralstonia pickettii T1 increase in the reverse order, i.e., delta-form < gamma-form < beta-form. The weight loss rate of the delta-form film is almost 1 order of magnitude smaller than that of the fastest degraded beta-form film. It is then strongly indicated that the crystalline structure plays a strikingly decisive role in the enzymatic degradation of P3HP. In particular, only when the conformation of crystalline chain accords with that of the bacterial poly(3-hydroxybutyrate) (P3HB) sample, i.e., the 2 1 helix conformation, is the P3HP sample degraded as slow as the P3HB sample. The inherent reason responsible for the unique P3HP enzymatic degradation behavior has been further clarified by comparing the molecular interaction and dynamics of polymorphic P3HP crystals.  相似文献   

7.
Polyurethane (PUR) is a polymer derived from the condensation of polyisocyanate and polyol and it is widely used as a base material in various industries. PUR, in particular, polyester PUR, is known to be vulnerable to microbial attack. Recently, environmental pollution by plastic wastes has become a serious issue and polyester PUR had attracted attention because of its biodegradability. There are many reports on the degradation of polyester PUR by microorganisms, especially by fungi. Microbial degradation of polyester PUR is thought to be mainly due to the hydrolysis of ester bonds by esterases. Recently, polyester-PUR-degrading enzymes have been purified and their characteristics reported. Among them, a solid-polyester-PUR-degrading enzyme (PUR esterase) derived from Comamonas acidovorans TB-35 had unique characteristics. This enzyme has a hydrophobic PUR-surface-binding domain and a catalytic domain, and the surface-binding domain was considered as being essential for PUR degradation. This hydrophobic surface-binding domain is also observed in other solid-polyester-degrading enzymes such as poly(hydroxyalkanoate) (PHA) depolymerases. There was no significant homology between the amino acid sequence of PUR esterase and that of PHA depolymerases, except in the hydrophobic surface-binding region. Thus, PUR esterase and PHA depolymerase are probably different in terms of their evolutionary origin and it is possible that PUR esterases come to be classified as a new solid-polyester-degrading enzyme family. Received: 20 July 1998 / Received revision: 9 October 1998 / Accepted: 11 October 1998  相似文献   

8.
9.
Poly(L-lactide) (PLLA) thin film with 100 nm thickness was crystallized at 160 degreesC for 20 min from the melt obtained at 220 degreesC. Hexagonal crystals with three types of growth (derivative growth lamellae, overgrowth multistacked lamellae, and undergrowth multistacked lamellae) were simultaneously observed by atomic force microscopy (AFM). These phenomena are due to the differences of the formative points of secondary crystal nuclei against the basal lamella. Enzymatic degradation of PLLA thin film revealed two types of amorphous regions. These regions were identified as the free amorphous region around the crystals and the restricted amorphous region between the crystal and glass substrate. In situ observation of thermal behavior of lamellar crystals was performed to understand the correlation between the chain folding and stability of the crystal by using temperature-controlled AFM. The morphology of the sectors with [100] growth plane had changed to a comblike morphology despite the fact that the [110] growth plane remained unchanged, suggesting that the stability of the chain folding and the chain-packing state affected the thermal behavior.  相似文献   

10.
塑料的大量生产和无节制的使用已造成严重的环境污染。为了减少塑料废物对环境的影响,近年来塑料酶法降解已成为国内外研究者关注的热点。例如,通过蛋白质工程策略提高塑料降解酶催化活性和热稳定性,进一步提高酶法降解的效率。另外,通过融合酶策略将塑料结合模块与塑料降解酶融合,也可以促进塑料降解。近期发表在期刊Chem Catalysis的一项研究表明,采用碳水化合物结合模块融合策略可以在低浓度(<10 wt%)的底物聚对苯二甲酸乙二醇酯[poly(ethylene terephthalate),PET]中提高塑料降解酶的活性。但是在高浓度底物(10 wt%−20 wt%)中,该策略无法提高PET的酶法降解。该项研究对于采用塑料结合模块促进酶法降解塑料具有重要的指导意义。  相似文献   

11.
Dimethoate-degrading enzymatic activity in Bacillus licheniformis, Pseudomonas aeruginosa, Aeromonas hydrophila, Proteus mirabilis and Bacillus pumilus was found to be 6.4, 1.760, 4.09, 1.196 and 0.505 units/mg protein, respectively. The Escherichia coli C600 transconjugants of the isolated bacterial strains also exhibited dimethoate-degrading enzymatic activities. The cured derivatives did not show any decrease in the amount of dimethoate substrate and did not harbour plasmid as found in the original and transconjugant strains. Thus, the ability of enzymatic degradation of dimethoate was plasmid-mediated in B. licheniformis, Ps. aeruginosa, A. hydrophila, P. mirabilis and B. pumilus.  相似文献   

12.
13.
The antioxidant activity of catechin was amplified by conjugation with amine-terminated polyhedral oligomeric silsesquioxane (POSS) using horseradish peroxidase as catalyst. Compared to intact catechin, the scavenging activity of the POSS-catechin conjugate against superoxide anion was greatly improved. In addition, the conjugate strongly inhibited xanthine oxidase activity.  相似文献   

14.
A series of poly(butylene-co-propylene succinate) (PBPSu) random copolyesters were synthesized and characterized using 1HNMR spectroscopy and viscometry. Tensile properties decreased with increasing propylene succinate (PSu) content. Cocrystallization and multiple melting behaviors were investigated. The copolymers showed a eutectic behavior. The minimum melting point corresponded to 75 mol % PSu. Wide-angle X-ray diffraction (WAXD) patterns showed that the copolymers with up to 60 mol % PSu units formed poly(butylene succinate) crystals. The interplanar spacings slightly differentiated. The copolymer with 11.5 mol % poly(propylene succinate) (PPSu) units formed PPSu crystals. The results indicated isodimorphic cocrystallization. The cocrystallization was thermodynamically analyzed using the Wendling-Suter model. The defect free energy decreased for copolymers with high PPSu content. The banded spherulites of the copolyesters were studied, and growth rates were analyzed using the Lauritzen-Hoffman theory. Enzymatic hydrolysis study, using Rhizopus delemar and Pseudomonas cepacia lipases, showed that degradation was faster for copolymers with high PSu content, compared even to the fast-degrading PPSu.  相似文献   

15.
Kinetics of enzymatic degradation of cyanide   总被引:1,自引:0,他引:1  
CYANIDASE(@) is a new enzyme preparation capable of degrading cyanide in industrial wastewaters to ammonia and formate in an apparently one-step reaction, down to very low concentrations. This enzyme has both a high selectivity and affinity toward cyanide. A granular form of the biocatalyst was used in a recirculation fixed bed reactor in order to characterize the new biocatalyst with respect to pH, ionic strength, common ions normally present in wastewaters, mass transfer effects, and temperature. Long term stability was investigated. The kinetics of the enzymatic degradation of cyanide were studied in a batch reactor using the powdered immobilized enzyme preparation and modeled using a simple Michaelis-Menten equation.  相似文献   

16.
Gangliotriaosylceramide 3'-sulfate (GgOse3Cer-II3-sulfate) contains the sugar sequence similar to that of GM2 ganglioside except that the NeuAc in GM2 is replaced by a sulfate group. Due to this structural similarity, we have studied the in vitro synthesis of GgOse3Cer-II3-sulfate using the system for GM2. Our results showed that GgOse3Cer-II3-sulfate could be synthesized from lactosylceramide 3'-sulfate and UDP-GalNAc catalyzed by N-acetylgalactosaminyltransferase prepared from rat brain (Dicesare, J. L., and Dain, J. A. (1971) Biochim. Biophys. Acta 231, 385-393). As in the case of GM2, the GgOse3Cer-II3-sulfate biosynthesized in vitro or isolated from rat kidney could also be cleaved by human beta-hexosaminidase A in the presence of GM2-activator (Li, S.-C., Hirabayashi, Y., and Li, Y.-T. (1981) J. Biol. Chem. 256, 6234-6240). The fact that the GM2-activator could stimulate beta-hexosaminidase A to hydrolyze both GM2 and Gg-Ose3Cer-II3-sulfate indicates that these two glycolipids may be catabolyzed by the same mechanism.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号