首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
DNA-dependent RNA polymerases of archaebacteria not only resemble the nuclear RNA polymerases of eukaryotes rather than the eubacterial enzymes in their complex component patterns but also show striking immunochemical, i.e., structural, homology with the eukaryotic polymerases at the level of single components. Thus, eukaryotic and archaebacterial RNA polymerases are indeed of the same type, distinct from the eubacterial enzymes, which, however, are also derived from a common ancestral structure.  相似文献   

3.
4.
We describe the purification, cloning, and characterization of the CCA-adding enzyme [ATP(CTP):tRNA nucleotidyl transferase] from the thermophilic archaebacterium, Sulfolobus shibatae. Characterization of an archaeal CCA-adding enzyme provides formal proof that the CCA-adding activity is present in all three contemporary kingdoms. Antibodies raised against recombinant, expressed Sulfolobus CCA-adding enzyme reacted specifically with the 48-kDa protein and fully depleted all CCA-adding activity from S. shibatae crude extract. Thus, the cloned cca gene encodes the only CCA-adding activity in S. shibatae. Remarkably, the archaeal CCA-adding enzyme exhibits no strong homology to either the eubacterial or eukaryotic CCA-adding enzymes. Nonetheless, it does possess the active site signature G[SG][LIVMFY]xR[GQ]x5,6D[LIVM][CLIVMFY]3-5 of the nucleotidyltransferase superfamily identified by Holm and Sander (1995, Trends Biochem Sci 20:345-347) and sequence comparisons show that all known CCA-adding enzymes and poly(A) polymerases are contained within this superfamily. Moreover, we propose that the superfamily can now be divided into two (and possibly three) subfamilies: class I, which contains the archaeal CCA-adding enzyme, eukaryotic poly(A) polymerases, and DNA polymerase beta; class II, which contains eubacterial and eukaryotic CCA-adding enzymes, and eubacterial poly(A) polymerases; and possibly a third class containing eubacterial polynucleotide phosphorylases. One implication of these data is that there may have been intraconversion of CCA-adding and poly(A) polymerase activities early in evolution.  相似文献   

5.
DNA-dependent RNA polymerase from Pseudomonas aeruginosa   总被引:3,自引:0,他引:3  
DNA-dependent RNA polymerase was purified from Pseudomonas aeruginosa. The subunit structure was typical of other eubacterial RNA polymerases in having beta' (157,000), beta (148,000), sigma (87,000), and alpha 2 (45,000) subunits as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme was dependent on Mg2+, displaying optimal activity at 10 mM MgCl2. Ca2+ and Zn2+ could not replace MgCl2 in the assay system, while Mn2+, produced partial activity. KCl at concentrations greater than 10 mM inhibited enzyme activity. Optimal enzyme activity was observed at pH 8.5-9.0. The RNA polymerase was stable in 50% (w/v) glycerol at 4 degrees C for more than 3 months. Enzyme activity was inhibited in vitro by heparin, streptolydigin, streptovaracin, actinomycin D, and rifampicin.  相似文献   

6.
7.
Unrooted phylogenetic dendrograms were calculated by two independent methods, parsimony and distance matrix analysis, from an alignment of the derived amino acid sequences of the A and C subunits of the DNA-dependent RNA polymerases of the archaebacteria Sulfolobus acidocaldarius and Halobacterium halobium with 12 corresponding sequences including a further set of archaebacterial A+C subunits, eukaryotic nuclear RNA polymerases, pol I, pol II, and pol III, eubacterial beta' and chloroplast beta' and beta" subunits. They show the archaebacteria as a coherent group in close neighborhood of and sharing a bifurcation with eukaryotic pol II and (or) pol IIIA components. The most probable trees show pol IA branching off from the tree separately at a bifurcation with the eubacterial beta' lineage. The implications of these results, especially for understanding the possibly chimeric origin of the eukaryotic nuclear genome, are discussed.  相似文献   

8.
A Pich  H Bahl 《Journal of bacteriology》1991,173(6):2120-2124
The DNA-dependent RNA polymerase (EC 2.7.7.6) from Clostridium acetobutylicum DSM 1731 has been purified to homogeneity and characterized. The purified enzyme was composed of four subunits and had a molecular mass of 370,000 Da. Western immunoblot analysis with polyclonal antibodies against the sigma 70 subunit of Escherichia coli RNA polymerase identified the 46,000-Da subunit as an immunologically and probably functionally related protein. The other three subunits of 128,000, 117,000, and 42,000 Da are tentatively analogous to the beta, beta', and alpha subunits, respectively, of other eubacterial RNA polymerases. The RNA polymerase activity was completely dependent on Mg2+, nucleoside triphosphates, and a DNA template. The presence of Mg2+ or Mn2+ in buffers used for purification or storage caused irreversible inactivation of the RNA polymerase.  相似文献   

9.
10.
PolyA polymerase (PAP) adds a polyA tail onto the 3'-end of RNAs without a nucleic acid template, using adenosine-5'-triphosphate (ATP) as a substrate. The mechanism for the substrate selection by eubacterial PAP remains obscure. Structural and biochemical studies of Escherichia coli PAP (EcPAP) revealed that the shape and size of the nucleobase-interacting pocket of EcPAP are maintained by an intra-molecular hydrogen-network, making it suitable for the accommodation of only ATP, using a single amino acid, Arg(197). The pocket structure is sustained by interactions between the catalytic domain and the RNA-binding domain. EcPAP has a flexible basic C-terminal region that contributes to optimal RNA translocation for processive adenosine 5'-monophosphate (AMP) incorporations onto the 3'-end of RNAs. A comparison of the EcPAP structure with those of other template-independent RNA polymerases suggests that structural changes of domain(s) outside the conserved catalytic core domain altered the substrate specificities of the template-independent RNA polymerases.  相似文献   

11.
12.
13.
Rat liver nuclear RNA polymerases exist in two functional states, one of which is active towards the endogenous chromatin template (engaged enzyme), while the other is inactive (free enzyme) (Yu, F.L. (1974) Nature 251, 344-346). This paper reports the direct separation of these two populations of RNA polymerases from isolated rat liver nuclei by a simple extraction procedure. It is estimated that as much as 50% of the total nuclear RNA polymerase activity in normal rat liver may exist in the form of the free enzyme. Evidence is also presented to indicate that the free enzyme activity is easily lost when the nuclear isolation procedure involves the use of an isotonic buffer medium, or when the isolated nuclei are subjected to sonication as is required for the solubilization of the nuclear RNA polymerases by the conventional method. Based on these new findings, it is proposed that nuclei be isolated directly in hypertonic sucrose and that the free enzyme be extracted before the nuclei are subjected to sonication to solubilize the engaged enzyme. This method circumvents the loss of the free RNA polymerase population and, as a result, the total yield of the nuclear RNA polymerases is greatly increased. The possible functional role of the free RNA polymerase in gene expression is discussed.  相似文献   

14.
ATP(CTP):tRNA nucleotidyl transferases, tRNA maturing enzymes found in all organisms, and eubacterial poly(A) polymerases, enzymes involved in mRNA degradation, are so similar that until now their biochemical functions could not be distinguished by their amino acid sequence. BLAST searches and analysis with the program "Sequence Space" for the prediction of functional residues revealed sequence motifs which define these two protein families. One of the poly(A) polymerase defining motifs specifies a structure that we propose to function in binding the 3' terminus of the RNA substrate. Similar motifs are found in other homopolyribonucleotidyl transferases. Phylogenetic classification of nucleotidyl tranferases from sequenced genomes reveals that eubacterial poly(A) polymerases have evolved relatively recently and are found only in a small group of bacteria and surprisingly also in plants, where they may function in organelles.  相似文献   

15.
The effect of rifampin on five mollicutes (Spiroplasma citri, Spiroplasma melliferum, Spiroplasma apis, Acholeplasma laidlawii, and Mycoplasma mycoides) was compared with that on Escherichia coli. We found that, in contrast to wild-type E. coli, mollicutes were insensitive to rifampin. DNA-dependent RNA polymerases from S. melliferum and S. apis were purified to the stage where the enzymes were dependent on the addition of exogenous templates for activity. The enzymes were then tested for their sensitivity to rifampin. Spiroplasmal enzymes were at least 1,000 times less sensitive to rifampin than the corresponding E. coli enzyme. This result provides a molecular basis for the resistance of mollicutes to rifampin. The RNA polymerase of S. melliferum was further purified and its subunit composition was investigated. The RNA polymerase has one small and two large subunits. The structure of S. melliferum RNA polymerase therefore resembles that of the eubacterial enzymes in spite of its insensitivity to rifampin.  相似文献   

16.
The 3'-terminal CCA sequence of tRNA is faithfully constructed and repaired by the CCA-adding enzyme (ATP(CTP):tRNA nucleotidyltransferase) using CTP and ATP as substrates but no nucleic acid template. Until recently, all CCA-adding enzymes from all three kingdoms appeared to be composed of a single kind of polypeptide with dual specificity for adding both CTP and ATP; however, we recently found that in Aquifex aeolicus, which lies near the deepest root of the eubacterial 16 S rRNA-based phylogenetic tree, CCA addition represents a collaboration between closely related CC-adding and A-adding enzymes (Tomita, K. and Weiner, A. M. (2001) Science 294, 1334-1336). Here we show that in Synechocystis sp. and Deinococcus radiodurans, as in A. aeolicus, CCA is added by homologous CC- and A-adding enzymes. We also find that the eubacterial CCA-, CC-, and A-adding enzymes, as well as the related eubacterial poly(A) polymerases, each fall into phylogenetically distinct groups derived from a common ancestor. Intriguingly, the Thermatoga maritima CCA-adding enzyme groups with the A-adding enzymes, suggesting that these distinct tRNA nucleotidyltransferase activities can intraconvert over evolutionary time.  相似文献   

17.
18.
DNA primase synthesizes short RNA primers that replicative polymerases further elongate in order to initiate the synthesis of all new DNA strands. Thus, primase owes its existence to the inability of DNA polymerases to initiate DNA synthesis starting with 2 dNTPs. Here, we discuss the evolutionary relationships between the different families of primases (viral, eubacterial, archael, and eukaryotic) and the catalytic mechanisms of these enzymes. This includes how they choose an initiation site, elongate the growing primer, and then only synthesize primers of defined length via an inherent ability to count. Finally, the low fidelity of primases along with the development of primase inhibitors is described.  相似文献   

19.
20.
The essential role of DNA-dependent RNA polymerases in gene expression and the fact that the multimeric species are highly conserved throughout nature makes these enzymes a particular fascinating area of study. Here we shall review the conservation of structures and their relationship to function, especially in the multimeric eubacterial RNA polymerases, paying particular attention to the core subunit and to recent studies of -factors of both the 70 and 54 families. We shall conclude with a brief consideration of phage-encoded RNA polymerases and phage-mediated modification of the host enzyme, and of the evolution of RNA-synthesising enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号