首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
The mammalian circadian clock in the suprachiasmatic nucleus (SCN) drives and maintains 24-h physiological rhythms, the phases of which are set by the local environmental light-dark cycle. Gastrin-releasing peptide (GRP) communicates photic phase setting signals in the SCN by increasing neurophysiological activity of SCN neurons. Here, the ionic basis for persistent GRP-induced changes in neuronal activity was investigated in SCN slice cultures from Per1::GFP reporter mice during the early night. Recordings from Per1 -fluorescent neurons in SCN slices several hours after GRP treatment revealed a significantly greater action potential frequency, a significant increase in voltage-activated outward current at depolarized potentials, and a significant increase in 4-aminopyridine-sensitive fast delayed rectifier (fDR) potassium currents when compared to vehicle-treated slices. In addition, the persistent increase in spike rate following early-night GRP application was blocked in SCN neurons from mice deficient in Kv3 channel proteins. Because fDR currents are regulated by the clock and are elevated in amplitude during the day, the present results support the model that GRP delays the phase of the clock during the early night by prolonging day-like membrane properties of SCN cells. Furthermore, these findings implicate fDR currents in the ionic basis for GRP-mediated entrainment of the primary mammalian circadian pacemaker.  相似文献   

2.
3.
4.
The circadian locomotor activity rhythm of the Japanese newt has been thought to be driven by a putative brain oscillator(s) subordinate to the pineal clock. The existence of mutual coupling between the pineal clock and the brain oscillator(s) in vivo was examined. We covered the newt's skull with aluminum foil and simultaneously reversed the light-dark cycle, thereby allowing the pineal organ to be exposed to constant darkness while the rest of the animal was exposed to the reversed light-dark cycle. In control animals, whose heads were covered with transparent plastic, the rhythm of synaptic ribbon number in the pineal photoreceptor cells was entrained to the reversed light-dark cycle. Rhythms from newts whose heads were shielded, however, were similar to those observed in the unoperated newts kept under constant darkness. The locomotor activity rhythms of both head-covered animals and control animals were entrained to the reversed light-dark cycle. These data suggest that extrapineal photoreception can entrain the putative brain oscillator(s), but not the pineal clock. Thus, at least in an aspect of photic entrainment, there seems to be little or no mutual coupling between the pineal clock and the putative brain oscillator(s) in the circadian system of the Japanese newt.Abbreviations LD light-dark - DD constant darkness - SCN suprachiasmatic nucleus - SR synaptic ribbon  相似文献   

5.
6.
A most prominent feature of neurons in the suprachiasmatic nucleus (SCN) is the circadian rhythm in spontaneous firing frequency. To disclose synaptic mechanisms associated with the rhythmic activity, the spontaneous postsynaptic activity was studied using whole-cell, patch clamp recordings in the ventral region of the SCN in slice preparations from rats. The synaptic events were compared between two time intervals corresponding to the highest and lowest electrical activity within the SCN during subjective daytime and nighttime, respectively. The gamma-aminobutyric acid (GABA)-mediated spontaneous inhibitory activity showed no diurnal variations, but the excitatory activity was markedly higher in frequency, without differences in amplitude, during the subjective day compared to the subjective night. Spontaneous and evoked inhibitory synaptic events were blocked by the GABA(A) receptor antagonist bicuculline. The alpha-amino-hydroxy-5-methylisoxazole-4-propionic acid (AMPA/kainate) receptor antagonist 6-cyano-7-nitroquinoxaline-2, 3-dione (CNQX) blocked most of the excitatory activity. In addition, CNQX reduced the spontaneous inhibitory activity. The N-methyl-D-aspartate antagonist D-2-amino-5-phosphonopentanoic acid reduced the inhibitory activity to a lesser degree, and there was no significant difference in amplitude or frequency of synaptic events in control and Mg2+-free solutions, indicating that the AMPA receptor plays an important role in regulating the inhibitory release of GABA within the SCN. Ipsi- and contralateral stimulation of the SCN consistently evoked excitatory synaptic responses. Inhibitory synaptic responses occurred in some neurons upon increasing stimulus strength. In conclusion, this study shows that there is a substantial influence from spontaneous glutamatergic synapses on the ventral part of the SCN and that these exhibit daily variations in activity. Diurnal fluctuations in spontaneous excitatory postsynaptic activity within this network may contribute to the mechanisms for synchronization of rhythms between individual SCN neurons and may underlie the daily variations in the spontaneous firing frequency of SCN neurons.  相似文献   

7.
The circadian clock in the suprachiasmatic nuclei (SCN) is composed of thousands of oscillator neurons, each of which is dependent on the cell-autonomous action of a defined set of circadian clock genes. A major question is still how these individual oscillators are organized into a biological clock producing a coherent output that is able to time all the different daily changes in behavior and physiology. We investigated which anatomical connections and neurotransmitters are used by the biological clock to control the daily release pattern of a number of hormones. The picture that emerged shows projections contacting target neurons in the medial hypothalamus surrounding the SCN. The activity of these pre-autonomic and neuro-endocrine target neurons is controlled by differentially timed waves of, among others, vasopressin, GABA, and glutamate release from SCN terminals. Together our data indicate that, with regard to the timing of their main release period within the light-dark (LD) cycle, at least 4 subpopulations of SCN neurons should be discerned. The different subgroups do not necessarily follow the phenotypic differences among SCN neurons. Thus, different subgroups can be found within neuron populations containing the same neurotransmitter. Remarkably, a similar distinction of 4 differentially timed subpopulations of SCN neurons was recently also discovered in experiments determining the temporal patterns of rhythmicity in individual SCN neurons by way of the electrophysiology or clock gene expression. Moreover, the specialization of the SCN may go as far as a single body structure; i.e., the SCN seems to contain neurons that specifically target the liver, pineal, and adrenal.  相似文献   

8.
Three independent electrophysiological approaches in hypothalamic slices were used to test the hypothesis that gamma-amino butyric acid (GABA)A receptor activation excites suprachiasmatic nucleus (SCN) neurons during the subjective day, consistent with a recent report. First, multiple-unit recordings during either the subjective day or night showed that GABA or muscimol inhibited firing activity of the SCN population in a dose-dependent manner. Second, cell-attached recordings during the subjective day demonstrated an inhibitory effect of bath- or microapplied GABA on action currents of single SCN neurons. Third, gramicidin perforated-patch recordings showed that bicuculline increased the spontaneous firing rate during the subjective day. Therefore, electrophysiological data obtained by three different experimental methods provide evidence that GABA is inhibitory rather than excitatory during the subjective day.  相似文献   

9.
The mammalian circadian clock lying in suprachiasmatic nucleus (SCN) is synchronized to about 24 h by the environmental light-dark cycle (LD). The circadian clock exhibits limits of entrainment above and below 24 h, beyond which it will not entrain. Little is known about the mechanisms regulating the limits of entrainment. In this study, we show that wild-type mice entrain to only an LD 24 h cycle, whereas Clock mutant mice can entrain to an LD 24, 28, and 32 h except for LD 20 h and LD 36 h cycle. Under an LD 28 h cycle, Clock mutant mice showed a clear rhythm in Per2 mRNA expression in the SCN and behavior. Light response was also increased. This is the first report to show that the Clock mutation makes it possible to adapt the circadian oscillator to a long period cycle and indicates that the clock gene may have an important role for the limits of entrainment of the SCN to LD cycle.  相似文献   

10.
Daily patterns of behavior and physiology in animals in temperate zones often differ substantially between summer and winter. In mammals, this may be a direct consequence of seasonal changes of activity of the suprachiasmatic nucleus (SCN). The purpose of this study was to understand such variation on the basis of the interaction between pacemaker neurons. Computer simulation demonstrates that mutual electrical activation between pacemaker cells in the SCN, in combination with cellular electrical activation by light, is sufficient to explain a variety of circadian phenomena including seasonal changes. These phenomena are: self-excitation, that is, spontaneous development of circadian rhythmicity in the absence of a light-dark cycle; persistent rhythmicity in constant darkness, and loss of circadian rhythmicity in pacemaker output in constant light; entrainment to light-dark cycles; aftereffects of zeitgeber cycles with different periods; adjustment of the circadian patterns to day length; generation of realistic phase response curves to light pulses; and relative independence from day-to-day variation in light intensity. In the model, subsets of cells turn out to be active at specific times of day. This is of functional importance for the exploitation of the SCN to tune specific behavior to specific times of day. Thus, a network of on-off oscillators provides a simple and plausible construct that behaves as a clock with readout for time of day and simultaneously as a clock for all seasons.  相似文献   

11.
Simultaneous electrophysiological and fluorescent imaging recording methods were used to study the role of changes of membrane potential or current in regulating the intracellular calcium concentration. Changing environmental conditions, such as the light-dark cycle, can modify neuronal and neural network activity and the expression of a family of circadian clock genes within the suprachiasmatic nucleus (SCN), the location of the master circadian clock in the mammalian brain. Excitatory synaptic transmission leads to an increase in the postsynaptic Ca2+ concentration that is believed to activate the signaling pathways that shifts the rhythmic expression of circadian clock genes. Hypothalamic slices containing the SCN were patch clamped using microelectrodes filled with an internal solution containing the calcium indicator bis-fura-2. After a seal was formed between the microelectrode and the SCN neuronal membrane, the membrane was ruptured using gentle suction and the calcium probe diffused into the neuron filling both the soma and dendrites. Quantitative ratiometric measurements of the intracellular calcium concentration were recorded simultaneously with membrane potential or current. Using these methods it is possible to study the role of changes of the intracellular calcium concentration produced by synaptic activity and action potential firing of individual neurons. In this presentation we demonstrate the methods to simultaneously record electrophysiological activity along with intracellular calcium from individual SCN neurons maintained in brain slices.  相似文献   

12.
The principle clock of mammals, named suprachiasmatic nucleus (SCN), coordinates the circadian rhythms of behavioral and physiological activity to the external 24 h light-dark cycle. In the absence of the daily cycle, the SCN acts as an endogenous clock that regulates the ~24h rhythm of activity. Experimental and theoretical studies usually take the light-dark cycle as a main external influence, and often ignore light pollution as an external influence. However, in modern society, the light pollution such as induced by electrical lighting influences the circadian clock. In the present study, we examined the effect of external noise (light pollution) on the collective behavior of coupled circadian oscillators under constant darkness using a Goodwin model. We found that the external noise plays distinct roles in the network behavior of neurons for weak or strong coupling between the neurons. In the case of strong coupling, the noise reduces the synchronization and the period of the SCN network. Interestingly, in the case of weak coupling, the noise induces a circadian rhythm in the SCN network which is absent in noise-free condition. In addition, the noise increases the synchronization and decreases the period of the SCN network. Our findings may shed new light on the impact of the external noise on the collective behavior of SCN neurons.  相似文献   

13.
Presynaptic inhibition of primary afferents can be evoked from at least three sources in the adult animal: 1) by stimulation of several supraspinal structures; 2) by spinal reflex action from sensory inputs; or 3) by the activity of spinal locomotor networks. The depolarisation in the intraspinal afferent terminals which is due, at least partly, to the activation of GABA(A) receptors may be large enough to reach firing threshold and evoke action potentials that are antidromically conducted into peripheral nerves. Little is known about the development of presynaptic inhibition and its supraspinal control during ontogeny. This article, reviewing recent experiments performed on the in vitro brainstem/spinal cord preparation of the neonatal rat, demonstrates that a similar organisation is present, to some extent, in the new-born rat. A spontaneous activity consisting of antidromic discharges can be recorded from lumbar dorsal roots. The discharges are generated by the underlying afferent terminal depolarizations reaching firing threshold. The number of antidromic action potentials increases significantly in saline solution with chloride concentration reduced to 50% of control. Bath application of the GABA(A) receptor antagonist, bicuculline (5-10 microM) blocks the antidromic discharges almost completely. Dorsal root discharges are therefore triggered by chloride-dependent GABA(A) receptor-mediated mechanisms; 1) activation of descending pathways by stimulation delivered to the ventral funiculus (VF) of the spinal cord at the C1 level; 2) activation of sensory inputs by stimulation of a neighbouring dorsal root; or 3) pharmacological activation of the central pattern generators for locomotion evokes antidromic discharges in dorsal roots. VF stimulation also inhibited the response to dorsal root stimulation. The time course of this inhibition overlapped with that of the dorsal root discharge suggesting that part of the inhibition of the monosynaptic reflex may be exerted at a presynaptic level. The existence of GABA(A) receptor-independent mechanisms and the roles of the antidromic discharges in the neonatal rat are discussed.  相似文献   

14.
The suprachiasmatic nucleus (SCN) of the anterior hypothalamus contains a major circadian pacemaker that imposes or entrains rhythmicity on other structures by generating a circadian pattern in electrical activity. The identification of "clock genes" within the SCN and the ability to dynamically measure their rhythmicity by using transgenic animals open up new opportunities to study the relationship between molecular rhythmicity and other well-documented rhythms within the SCN. We investigated SCN circadian rhythms in Per1-luc bioluminescence, electrical activity in vitro and in vivo, as well as the behavioral activity of rats exposed to a 6-hr advance in the light-dark cycle followed by constant darkness. The data indicate large and persisting phase advances in Per1-luc bioluminescence rhythmicity, transient phase advances in SCN electrical activity in vitro, and an absence of phase advances in SCN behavioral or electrical activity measured in vivo. Surprisingly, the in vitro phase-advanced electrical rhythm returns to the phase measured in vivo when the SCN remains in situ. Our study indicates that hierarchical levels of organization within the circadian timing system influence SCN output and suggests a strong and unforeseen role of extra-SCN areas in regulating pacemaker function.  相似文献   

15.
The suprachiasmatic nuclei (SCN) coordinate the daily sleep-wake cycle by generating a circadian rhythm in electrical impulse frequency. While period and phase of the SCN rhythm have been considered as major output parameters, we propose that the waveform of the rhythm of the SCN also has significance. Using implanted micro-electrodes, we recorded SCN impulse frequency in freely moving mice and manipulated its circadian waveform by exposing mice to light-dark (LD) cycle durations ranging from 22 hours (LD 11∶11) to 26 hours (LD 13∶13). Adaptation to long T-cycles (>24 h) resulted in a trough in electrical activity at the beginning of the night while in short T-cycles (<24 h), SCN activity reached a trough at the end of night. In all T-cycle durations, the intensity of behavioral activity was maximal during the trough of SCN electrical activity and correlated negatively with increasing levels of SCN activity. Interestingly, small changes in T-cycle duration could induce large changes in waveform and in the time of trough (about 3.5 h), and accordingly in the timing of behavioral activity. At a smaller timescale (minutes to hours), we observed a negative correlation between SCN activity and behavioral activity, and acute silencing of SCN neurons by tetrodotoxin (TTX) during the inactive phase of the animal triggered behavioral activity. Thus, the SCN electrical activity levels appear crucially involved in determining the temporal profile of behavioral activity and controls behavior beyond the circadian time domain.  相似文献   

16.
In mammals, the central clock (the suprachiasmatic nuclei, SCN) is entrained mainly by the light-dark cycle, whereas peripheral clocks in the peripheral tissues are entrained/synchronized by multiple factors, including feeding patterns and endocrine hormones such as glucocorticoids. Clock-mutant mice (Clock/Clock), which have a mutation in a core clock gene, show potent phase resetting in response to light pulses compared with wild-type (WT) mice, owing to the damped and flexible oscillator in the SCN. However, the phase resetting of the peripheral clocks in Clock/Clock mice has not been elucidated. Here, we characterized the peripheral clock gene synchronization in Clock/Clock mice by daily injections of a synthetic glucocorticoid (dexamethasone, DEX) by monitoring in vivo PER2::LUCIFERASE bioluminescence. Compared with WT mice, the Clock/Clock mice showed significantly decreased bioluminescence and peripheral clock rhythms with decreased amplitudes and delayed phases. In addition, the DEX injections increased the amplitudes and advanced the phases. In order to examine the robustness of the internal oscillator, T-cycle experiments involving DEX stimulations with 24- or 30-h intervals were performed. The Clock/Clock mice synchronized to the 30-h T-cycle stimulation, which suggested that the peripheral clocks in the Clock/Clock mice had increased synchronizing ability upon DEX stimulation, to that of circadian and hour-glass type oscillations, because of weak internal clock oscillators.  相似文献   

17.
The suprachiasmatic nucleus (SCN) is known to be the master biological clock in mammals. Despite the periodic mean firing rate, interspike interval (ISI) patterns of SCN neurons are quite complex and irregular. The aim of the present study was to investigate the existence of nonlinear determinism in the complex ISI patterns of SCN neurons. ISI sequences were recorded from 173 neurons in rat hypothalamic slice preparations using a cell-attached patch recording technique. Their correlation dimensions (D2) were estimated, and were then compared with those of the randomly-shuffled surrogate data. We found that only 16 neurons (16/173) exhibited deterministic ISI patterns of spikes. In addition, clustering analysis revealed that SCN neurons could be divided into two subgroups of neurons each having distinct values of coefficient of variation (CV) and skewness (SK). Interestingly, most deterministic SCN neurons (14/16) belonged to the group of irregularly spiking neurons having large CV and SK values. To see if the neuronal coupling mediated by the γ-aminobutyric acid (GABA), the major neurotransmitter in the SCN, contributed to the deterministic nature, we examined the effect of the GABAA receptor antagonist bicuculline on D2 values of 56 SCN neurons. 8 SCN neurons which were originally stochastic became to exhibit deterministic characteristics after the bicuculline application. This result suggests that the deterministic nature of the SCN neurons arises not from GABAergic synaptic interactions, but likely from properties inherent to neurons themselves.Action Editor: Barry J. Richmond  相似文献   

18.
The molecular clockwork underlying the generation of circadian rhythmicity within the suprachiasmatic nucleus (SCN) develops gradually during ontogenesis. The authors' previous work has shown that rhythms in clock gene expression in the rat SCN are not detectable at embryonic day (E) 19, start to form at E20 and develop further via increasing amplitude until postnatal day (P) 10. The aim of the present work was to elucidate whether and how swiftly the immature fetal and neonatal molecular SCN clocks can be reset by maternal cues. Pregnant rats maintained under a light-dark (LD) regimen with 12 h of light and 12 h of darkness were exposed to a 6-h delay of the dark period and released into constant darkness at different stages of the fetal SCN development. Adult rats maintained under the same LD regimen were exposed to an identical shifting procedure. Daily rhythms in spontaneous c-fos, Avp, Per1, and Per2 expression were examined within the adult and newborn SCN by in situ hybridization. Exposure of adult rats to the shifting procedure induced a significant phase delay of locomotor activity within 3 days after the phase shift as well as a delay in the rhythms of c-fos and Avp expression within 3 days and Per1 and Per2 expression within 5 days. Exposure of pregnant rats to the shifting procedure at E18, but not at E20, delayed the rhythm in c-fos and Avp expression in the SCN of newborn pups at P0-1. The shifting procedure at E20 did, however, induce a phase delay of Per1 and Per2 expression rhythms at P3 and P6. Hence, 5 days were necessary for phase-shifting the pups' SCN clock by maternal cues, be it the interval between E18 and P0-1 or the interval between E20 and P3, while only 3 days were necessary for phase-shifting the maternal SCN by photic cues. These results demonstrate that the SCN clock is capable of significant phase shifts at fetal developmental stages when no or very faint molecular oscillations can be detected.  相似文献   

19.
The suprachiasmatic nucleus (SCN) is an endogenous circadian pacemaker, and SCN neurons exhibit circadian rhythms of electrophysiological activity in vitro. In vivo, the functional state of the pacemaker depends on changes in day length (photoperiod), but it is not known if this property persists in SCN tissue isolated in vitro. To address this issue, we prepared brain slices from hamsters previously entrained to light-dark (LD) cycles of different photoperiods and analyzed rhythms of SCN multiunit neuronal activity using single electrodes. Rhythms in SCN slices from hamsters entrained to 8:16-, 12:12-, and 14:10-h LD cycles were characterized by peak discharge rates relatively higher during subjective day than subjective night. The mean duration of high neuronal activity was photoperiod dependent, compressed in slices from the short (8:16 and 12:12 LD) photoperiods, and decompressed (approximately doubled) in slices from the long (14:10 LD) photoperiod. In slices from all photoperiods, the mean phase of onset of high neuronal activity appeared to be anchored to subjective dawn. Our results show that the electrophysiological activity of the SCN pacemaker depends on day length, extending previous in vivo data, and demonstrate that this capacity is sustained in vitro.  相似文献   

20.
Individual neurons in the suprachiasmatic nucleus (SCN), the master biological clock in mammals, autonomously produce highly complex patterns of spikes. We have shown that most (~90%) SCN neurons exhibit truly stochastic interspike interval (ISI) patterns. The aim of this study was to understand the stochastic nature of the firing patterns in SCN neurons by analyzing the ISI sequences of 150 SCN neurons in hypothalamic slices. Fractal analysis, using the periodogram, Fano factor, and Allan factor, revealed the presence of a 1/f-type power-law (fractal) behavior in the ISI sequences. This fractal nature was persistent after the application of the GABAA receptor antagonist bicuculline, suggesting that the fractal stochastic activity is an intrinsic property of individual SCN neurons. Based on these physiological findings, we developed a computational model for the stochastic SCN neurons to find that their stochastic spiking activity was best described by a gamma point process whose mean firing rate was modulated by a fractal binomial noise. Taken together, we suggest that SCN neurons generate temporal spiking patterns using the fractal stochastic point process.Action Editor: Carson C. Chow  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号