首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Abstract

Methane is a product of the energy-yielding pathways of the largest and most phylogenetically diverse group in the Archaea. These organisms have evolved three pathways that entail a novel and remarkable biochemistry. All of the pathways have in common a reduction of the methyl group of methyl-coenzyme M (CH3-S-CoM) to CH4. Seminal studies on the CO2-reduction pathway have revealed new cofactors and enzymes that catalyze the reduction of CO2 to the methyl level (CH3-S-CoM) with electrons from H2 or formate. Most of the methane produced in nature originates from the methyl group of acetate. CO dehydrogenase is a key enzyme catalyzing the decarbonylation of acetyl-CoA; the resulting methyl group is transferred to CH3-S-CoM, followed by reduction to methane using electrons derived from oxidation of the carbonyl group to CO2 by the CO dehydrogenase. Some organisms transfer the methyl group of methanol and methylamines to CH3-S-CoM; electrons for reduction of CH3-S-CoM to CH4 are provided by the oxidation of methyl groups to CO2.  相似文献   

2.
14C-tracer techniques were used to examine the metabolism of methanol and methylamines and acetogenesis from hydrogen and carbon dioxide in sediments from the profundal and littoral zones of eutrophic Wintergreen Lake, Michigan. Methanogens were primarily responsible for the metabolism of methanol, monomethylamine, and trimethylamine and maintained the pool size of these substrates below 10 μM in both sediment types. Methanol and methylamines were the precursors for less than 5 and 1%, respectively, of the total methane produced. Methanol and methylamines continued to be metabolized to methane when the sulfate concentration in the sediment was increased to 20 mM. Less than 2% of the total acetate production was derived from carbon dioxide reduction. Hydrogen consumption by hydrogen-oxidizing acetogens was 5% or less of the total hydrogen uptake by acetogens and methanogens. These results, in conjunction with previous studies, emphasize that acetate and hydrogen are the major methane precursors and that methanogens are the predominant hydrogen consumers in the sediments of this eutrophic lake.  相似文献   

3.
The pathway of methanol conversion by a thermophilic anaerobic consortium was elucidated by recording the fate of carbon in the presence and absence of bicarbonate and specific inhibitors. Results indicated that about 50% of methanol was directly converted to methane by the methylotrophic methanogens and 50% via the intermediates H2/CO2 and acetate. The deprivation of inorganic carbon species [(HCO3+CO2)] in a phosphate-buffered system reduced the rate of methanol conversion. This suggests that bicarbonate is required as an electron (H2) sink and as a co-substrate for the efficient and complete removal of the chemical oxygen demand. Nuclear magnetic resonance spectroscopy was used to investigate the route of methanol conversion to acetate in bicarbonate-sufficient and bicarbonate-depleted environments. The proportions of [1,2-13C]acetate, [1-13C]acetate and [2-13C]acetate were determined. Methanol was preferentially incorporated into the methyl group of acetate, whereas HCO3 was the preferred source of the carboxyl group. A small amount of the added H13CO3 was reduced to form the methyl group of acetate and a small amount of the added 13CH3OH was oxidised and found in the carboxyl group of acetate when 13CH3OH was converted. The recovery of [13C]carboxyl groups in acetate from 13CH3OH was enhanced in bicarbonate-deprived medium. The small amount of label incorporated in the carboxyl group of acetate when 13CH3OH was converted in the presence of bromoethanesulfonic acid indicates that methanol can be oxidised to CO2 prior to acetate formation. These results indicate that methanol is converted through a common pathway (acetyl-CoA), being on the one hand reduced to the methyl group of acetate and on the other hand oxidised to CO2, with CO2 being incorporated into the carboxyl group of acetate.  相似文献   

4.
Enzymology of one-carbon metabolism in methanogenic pathways   总被引:1,自引:0,他引:1  
Methanoarchaea, the largest and most phylogenetically diverse group in the Archaea domain, have evolved energy-yielding pathways marked by one-carbon biochemistry featuring novel cofactors and enzymes. All of the pathways have in common the two-electron reduction of methyl-coenzyme M to methane catalyzed by methyl-coenzyme M reductase but deviate in the source of the methyl group transferred to coenzyme M. Most of the methane produced in nature derives from acetate in a pathway where the activated substrate is cleaved by CO dehydrogenase/acetyl-CoA synthase and the methyl group is transferred to coenzyme M via methyltetrahydromethanopterin or methyltetrahydrosarcinapterin. Electrons for reductive demethylation of the methyl-coenzyme M originate from oxidation of the carbonyl group of acetate to carbon dioxide by the synthase. In the other major pathway, formate or H2 is oxidized to provide electrons for reduction of carbon dioxide to the methyl level and reduction of methyl-coenzyme to methane. Methane is also produced from the methyl groups of methanol and methylamines. In these pathways specialized methyltransferases transfer the methyl groups to coenzyme M. Electrons for reduction of the methyl-coenzyme M are supplied by oxidation of the methyl groups to carbon dioxide by a reversal of the carbon dioxide reduction pathway. Recent progress on the enzymology of one-carbon reactions in these pathways has raised the level of understanding with regard to the physiology and molecular biology of methanogenesis. These advances have also provided a foundation for future studies on the structure/function of these novel enzymes and exploitation of the recently completed sequences for the genomes from the methanoarchaea Methanobacterium thermoautotrophicum and Methanococcus jannaschii.  相似文献   

5.
Biogas produced from organic wastes contains energetically usable methane and unavoidable amount of carbon dioxide. The exploitation of whole biogas energy is locally limited and utilization of the natural gas transport system requires CO2 removal or its conversion to methane. The biological conversion of CO2 and hydrogen to methane is well known reaction without the demand of high pressure and temperature and is carried out by hydrogenotrophic methanogens. Reducing equivalents to the biotransformation of carbon dioxide from biogas or other resources to biomethane can be supplied by external hydrogen. Discontinuous electricity production from wind and solar energy combined with fluctuating utilization cause serious storage problems that can be solved by power-to-gas strategy representing the production of storable hydrogen via the electrolysis of water. The possibility of subsequent repowering of the energy of hydrogen to the easily utilizable and transportable form is a biological conversion with CO2 to biomethane. Biomethanization of CO2 can take place directly in anaerobic digesters fed with organic substrates or in separate bioreactors. The major bottleneck in the process is gas-liquid mass transfer of H2 and the method of the effective input of hydrogen into the system. There are many studies with different bioreactors arrangements and a way of enrichment of hydrogenotrophic methanogens, but the system still has to be optimized for a higher efficiency. The aim of the paper is to gather and critically assess the state of a research and experience from laboratory, pilot and operational applications of carbon dioxide bioconversion and highlight further perspective fields of research.  相似文献   

6.
Metabolism of homoacetogens   总被引:1,自引:0,他引:1  
Homoacetogenic bacteria are strictly anaerobic microorganisms that catalyze the formation of acetate from C1 units in their energy metabolism. Most of these organisms are able to grow at the expense of hydrogen plus CO2 as the sole energy source. Hydrogen then serves as the electron donor for CO2 reduction to acetate. The methyl group of acetate is formed from CO2 via formate and reduced C1 intermediates bound to tetrahydrofolate. The carboxyl group is derived from carbon monoxide, which is synthesized from CO2 by carbon monoxide dehydrogenase. The latter enzyme also catalyzes the formation of acetyl-CoA from the methyl group plus CO. Acetyl-CoA is then converted either to acetate in the catabolism or to cell carbon in the anabolism of the bacteria. The homoacetogens are very versatile anaerobes, which convert a variety of different substrates to acetate as the major end product.  相似文献   

7.
Biochemistry of methanogenesis.   总被引:9,自引:0,他引:9  
Methane is a product of the energy-yielding pathways of the largest and most phylogenetically diverse group in the Archaea. These organisms have evolved three pathways that entail a novel and remarkable biochemistry. All of the pathways have in common a reduction of the methyl group of methyl-coenzyme M (CH3-S-CoM) to CH4. Seminal studies on the CO2-reduction pathway have revealed new cofactors and enzymes that catalyze the reduction of CO2 to the methyl level (CH3-S-CoM) with electrons from H2 or formate. Most of the methane produced in nature originates from the methyl group of acetate. CO dehydrogenase is a key enzyme catalyzing the decarbonylation of acetyl-CoA; the resulting methyl group is transferred to CH3-S-CoM, followed by reduction to methane using electrons derived from oxidation of the carbonyl group to CO2 by the CO dehydrogenase. Some organisms transfer the methyl group of methanol and methylamines to CH3-S-CoM; electrons for reduction of CH3-S-CoM to CH4 are provided by the oxidation of methyl groups to CO2.  相似文献   

8.
We examined the unitrophic metabolism of acetate and methanol individually and the mixotrophic utilization of these compounds by using detailed 14C-labeled tracer studies in a strain of Methanosarcina barkeri adapted to grow on acetate as the sole carbon and energy source. The substrate consumption rate and methane production rate were significantly lower on acetate alone than during the unitrophic or mixotrophic metabolism of methanol. Cell yields (in grams per mole of substrate) were identical during exponential growth on acetate and exponential growth on methanol. During unitrophic metabolism of acetate, the methyl moiety accounted for the majority of the CH4 produced, but 14% of the CO2 generated originated from the methyl moiety. This correlated with the concurrent reduction of equivalent amounts of the C-1 of acetate to CH4. 14CH4 was also produced from added 14CO2, although to a lesser extent than from reduction of the C-1 of acetate. During mixotrophic metabolism, methanol and acetate were catabolized simultaneously. The rates of 14CH4 and 14CO2 generation from [2-14C]acetate were logarithmic and higher in mixotrophic than in unitrophic cultures at substrate concentrations of 50 mM. A comparison of the oxidoreductase activities in cell extracts of the acetate-adapted strain grown on acetate and of strain MS grown on methanol or on H2 plus CO2 indicated that the pyruvate, α-ketoglutarate, and isocitrate dehydrogenase activities remained constant, whereas the CO dehydrogenase activity was significantly higher (5,000 nmol/min per mg of protein) in the acetate-adapted strain. These results suggested that a significant intramolecular redox pathway is possible for the generation of CH4 from acetate, that energy metabolism from acetate by M. barkeri is not catabolite repressed by methanol, and that the acetate-adapted strain is a metabolic mutant with derepressed CO dehydrogenase activity.  相似文献   

9.
Methanosarcina barkeri was grown by acetate fermentation in complex medium (N2 gas phase). The molar growth yield was 1.6–1.9 g cells/mol methane formed. Under these conditions 63–82% of the methane produced byMethanosarcina strains was derived from the methyl carbon of acetate, indicating that some methane was derived from other media components. Growth was not demonstrated in complex media lacking acetate or mineral acetate medium containing acetate but lacking H2/CO2, methanol, or trypticase and yeast extract. Acetate metabolism byM. barkeri strain MS was further exmined in mineral acetate medium containing H2/CO2 and/or methanol, but lacking cysteine. Under these conditions, more methane was derived from the methyl carbon of acetate than from the carboxyl carbon. Methanogenesis from the methyl group increased with increasing acetate concentration. The methyl carbon contributed up to 42% of the methane formed with H2/CO2 and up to 5% with methanol. Methanol stimulated the oxidation of the methyl group of acetate to CO2. The average rates of methane formation from acetate were 1.3 nomol/min ·ml/culture (0.04mg2 cell dry weight) in defined media (gas phase H2/CO2) and complex media (gas phase N2). Acetate contributed up to 60% of cell carbon formed under the growth conditions examined. Similar quantities of cell carbon were derived from the methyl and carboxyl carbons of acetate, suggesting incorporation of this compound as a two-carbon unit. Incorporated acetate was not preferentially localized in lipid material, as 70% of the incorporated acetate was found in the wall and protein cell fractions. Acetate catabolism was stimulated by pregrowing of cultures in media containing acetate, while acetate anabolism was not influenced. The results are discussed in terms of the differences between the mechanisms of acetate catabolism and anabolism.Abbreviations CH3-S-CoM methyl coenzyme M - TCA trichloroacetic acid - CoM coenzyme M (2-mercaptoethane sulfonic acid) - Eo standard potential change (pH 7) - F420 Factor 420, a low redox electron carrier - Go standard free energy change (pH 7) - kJ kilojoules (=0.24 kilocalories) - PBBW Weimer's phosphate-buffered basal medium - X unknown C1 carrier  相似文献   

10.
11.
The number of microorganisms of major metabolic groups and the rates of sulfate reduction and methanogenesis processes in the formation waters of the high-temperature horizons of Dagang oil field have been determined. Using cultural methods, it was shown that the microbial community contained aerobic bacteria oxidizing crude oil, anaerobic fermentative bacteria, sulfate-reducing bacteria, and methanogens. Using cultural methods, the possibility of methane production from a mixture of hydrogen and carbon dioxide (H2 + CO2) and from acetate was established, and this result was confirmed by radioisotope methods involving NaH14CO3 and 14CH3COONa. Analysis of enrichment cultures 16S rDNA of methanogens demonstrated that these microorganisms belong to Methanothermobacter sp. (M. thermautotrophicus), which consumes hydrogen and carbon dioxide as basic substrates. The genes of acetate-utilizing bacteria were not revealed. Phylotypes of the representatives of Thermococcus spp. were found among archaeal 16S rDNA. 16S rRNA genes of bacterial clones belong to the orders Thermoanaerobacteriales (Thermoanaerobacter, Thermovenabulum, Thermacetogenium, and Coprothermobacter spp.), Thermotogales, Nitrospirales (Thermodesulfovibrio sp.) and Planctomycetales. 16S rDNA of a bacterium capable of oxidizing acetate in the course of syntrophic growth with H2-utilizing methanogens was found in high-temperature petroleum reservoirs for the first time. These results provide further insight into the composition of microbial communities of high-temperature petroleum reservoirs, indicating that syntrophic processes play an important part in acetate degradation accompanied by methane production.  相似文献   

12.
Trophic links between fermentation and methanogenesis of soil derived from a methane‐emitting, moderately acidic temperate fen (pH 4.5) were investigated. Initial CO2:CH4 production ratios in anoxic microcosms indicated that methanogenesis was concomitant to other terminal anaerobic processes. Methane production in anoxic microcosms at in situ pH was stimulated by supplemental H2–CO2, formate or methanol; supplemental acetate did not stimulate methanogenesis. Supplemental H2–CO2, formate or methanol also stimulated the formation of acetate, indicating that the fen harbours moderately acid‐tolerant acetogens. Supplemental monosaccharides (glucose, N‐acetylglucosamine and xylose) stimulated the production of CO2, H2, acetate and other fermentation products when methanogenesis was inhibited with 2‐bromoethane sulfonate 20 mM. Glucose stimulated methanogenesis in the absence of BES. Upper soil depths yielded higher anaerobic activities and also higher numbers of cells. Detected archaeal 16S rRNA genes were indicative of H2–CO2‐ and formate‐consuming methanogens (Methanomicrobiaceae), obligate acetoclastic methanogens (Methanosaetaceae) and crenarchaeotes (groups I.1a, I.1c and I.3). Molecular analyses of partial sequences of 16S rRNA genes revealed the presence of Acidobacteria, Nitrospirales, Clamydiales, Clostridiales, Alpha‐, Gamma‐, Deltaproteobacteria and Cyanobacteria. These collective results suggest that this moderately acidic fen harbours phylogenetically diverse, moderately acid tolerant fermenters (both facultative aerobes and obligate anaerobes) that are trophically linked to methanogenesis.  相似文献   

13.
Methane production has been observed in a number of hypersaline environments, and it is generally thought that this methane is produced through the use of noncompetitive substrates, such as the methylamines, dimethylsulfide and methanol. Stable isotope measurements of the produced methane have also suggested that the methanogens are operating under conditions of substrate limitation. Here, substrate limitation in gypsum-hosted endoevaporite and soft-mat hypersaline environments was investigated by the addition of trimethylamine, a noncompetitive substrate for methanogenesis, and dried microbial mat, a source of natural organic matter. The δ13C values of the methane produced after amendments were compared to those in unamended control vials. At all hypersaline sites investigated, the δ13C values of the methane produced in the amended vials were statistically lower (by 10 to 71‰) than the unamended controls, supporting the hypothesis of substrate limitation at these sites. When substrates were added to the incubation vials, the methanogens within the vials fractionated carbon isotopes to a greater degree, resulting in the production of more 13C-depleted methane. Trimethylamine-amended samples produced lower methane δ13C values than the mat-amended samples. This difference in the δ13C values between the two types of amendments could be due to differences in isotope fractionation associated with the dominant methane production pathway (or substrate used) within the vials, with trimethylamine being the main substrate used in the trimethylamine-amended vials. It is hypothesized that increased natural organic matter in the mat-amended vials would increase fermentation rates, leading to higher H2 concentrations and increased CO2/H2 methanogenesis.  相似文献   

14.
In natural environments methane is usually produced by aceticlastic and hydrogenotrophic methanogenic archaea. However, some methanogens can use C1 compounds such as methanol as the substrate. To determine the contributions of individual substrates to methane production, the stable-isotope values of the substrates and the released methane are often used. Additional information can be obtained by using selective inhibitors (e.g., methyl fluoride, a selective inhibitor of acetoclastic methanogenesis). We studied stable carbon isotope fractionation during the conversion of methanol to methane in Methanosarcina acetivorans, Methanosarcina barkeri, and Methanolobus zinderi and generally found large fractionation factors (−83‰ to −72‰). We further tested whether methyl fluoride impairs methylotrophic methanogenesis. Our experiments showed that even though a slight inhibition occurred, the carbon isotope fractionation was not affected. Therefore, the production of isotopically light methane observed in the presence of methyl fluoride may be due to the strong fractionation by methylotrophic methanogens and not only by hydrogenotrophic methanogens as previously assumed.  相似文献   

15.
CO2 reduction to acetate in anaerobic bacteria   总被引:1,自引:0,他引:1  
Abstract The reduction of 2 CO2 to acetate is catalyzed in the energy metabolism of homoacetogenic bacteria, which couple acetate formation to the synthesis of ATP. The carboxyl group of acetate is formed from CO2 via reduction to a bound carbonyl ([CO]), a redution that requires the input of methaolic energy when hydrogen is used as the electron donor. The methyl group of acetate is formed via formate and tetrahydrofolate bound C1 intermediates including methyl tetrahydrofolate as the intermediates. The methyl group is the 'condensed' with the carbonyl and CoA to acetyl-CoA, which is converted to acetate in the energy metabolism or to cell carbon in the anabolism of the bacteria. The mechanism of ATP synthesis coupled to CO2 reduction to acetate is still unclear. The only reaction sufficiently exergonic is the reduction of methylene tetrahydrofolate to methyl tetrahydrofolate. Indirect evidence was presented that this reaction in homoacetogens might be coupled to the electrogenic transport of sodium across the cytoplasmic membrane. The sodium gradient formed via methylene-THF reduction could be transformed into a proton gradient via a sodium/proton antiporter. ATP would then be synthesized by a proton translocating ATP synthase.  相似文献   

16.
The anaerobic pathway of chitin decomposition by chitinoclastic bacteria was examined with an emphasis on end product coupling to other salt marsh bacteria. Actively growing chitinoclastic bacterial isolates produced primarily acetate, H2, and CO2 in broth culture. No sulfate-reducing or methanogenic isolates grew on chitin as sole carbon source or produced any measurable degradation products. Mixed cultures of chitin degraders with sulfate reducers resulted in positive sulfide production. Mixed cultures of chitin-degrading isolates with methanogens resulted in the production of CH4 with reductions in headspace CO2 and H2. The combination of all three metabolic types resulted in the simultaneous production of methane and sulfide, with more methane being produced in mixed cultures containing CO2-reducing methanogens and acetoclastic sulfate reducers because of less interspecific H2 competition.  相似文献   

17.
Methanosarcina barkeri was cultured on methanol, H2-CO2, and acetate, and the 13C/12C ratios of the substrates and the methane produced from them were determined. The discrimination against 13C in methane relative to substrate decreased in the order methanol > CO2 > acetate. The isotopic fractionation for methane derived from acetate was only one-third of that observed with methanol as the substrate. The data presented indicate that the last enzyme of methanogenesis, methylreductase, is not the primary site of isotopic discrimination during methanogenesis from methanol or CO2. These results also support biogeochemical interpretations that gas produced in environments in which acetate is the primary methane precursor will have higher 13C/12C ratios than those from environments where other substrates predominate.  相似文献   

18.
The deep dichotomy of archaea and bacteria is evident in many basic traits including ribosomal protein composition, membrane lipid synthesis, cell wall constituents, and flagellar composition. Here we explore that deep dichotomy further by examining the distribution of genes for the synthesis of the central carriers of one carbon units, tetrahydrofolate (H4F) and tetrahydromethanopterin (H4MPT), in bacteria and archaea. The enzymes underlying those distinct biosynthetic routes are broadly unrelated across the bacterial–archaeal divide, indicating that the corresponding pathways arose independently. That deep divergence in one carbon metabolism is mirrored in the structurally unrelated enzymes and different organic cofactors that methanogens (archaea) and acetogens (bacteria) use to perform methyl synthesis in their H4F- and H4MPT-dependent versions, respectively, of the acetyl-CoA pathway. By contrast, acetyl synthesis in the acetyl-CoA pathway — from a methyl group, CO2 and reduced ferredoxin — is simpler, uniform and conserved across acetogens and methanogens, and involves only transition metals as catalysts. The data suggest that the acetyl-CoA pathway, while being the most ancient of known CO2 assimilation pathways, reflects two phases in early evolution: an ancient phase in a geochemically confined and non-free-living universal common ancestor, in which acetyl thioester synthesis proceeded spontaneously with the help of geochemically supplied methyl groups, and a later phase that reflects the primordial divergence of the bacterial and archaeal stem groups, which independently invented genetically-encoded means to synthesize methyl groups via enzymatic reactions. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.  相似文献   

19.
Summary The effects of pCO2 and pCH4 in the interval 0–1 bar on rates of acetate degradation and methane formation by methanogens as well as methane yields were studied in enrichment cultures in batch and continuous fermentations.In batch fermentations the rate of acetate utilization by methanogens was 1,000–1,500 mg/l · d at low levels of pCO2. CO2 was inhibitory and degradation rates were around 350 mg/l · d in 1 bar CO2. The degradation of acetate was almost linear. In continuous culture maximum rates of acetate utilization around 2,500 mg/l · d were obtained and the acetate concentration in the substrate was reduced by 98–99%.The yields of methane on acetate substrates were close to the theoretical value (1 mole CH4 per mole HAc) in the interval pCO2-0–0.5 bar. In 1 bar CO2 yields decreased by 20–30%.CH4 was found to be only slightly inhibitory; the inhibiting effects of 1 bar CH4 on acetate degradation rates were comparable to the effects of 0.3 bar CO2. Also gas sparging and rapid mixing had small effects compared with a non-sparged, slowly mixed culture.The redox potential was usually around –200 mV during fermentations and no connection was found between acetate degradation rate, Eh and pCO2.Acetate and propionate degradation were the reactions most sensitive to pCO2 and to obtain maximum rates as well as maximum methane yields pCO2-levels around 0.2 bar were found to be optimal.  相似文献   

20.
Eubacterium limosum KIST612 is one of the few acetogenic bacteria that has the genes encoding for butyrate synthesis from acetyl-CoA, and indeed, E. limosum KIST612 is known to produce butyrate from CO but not from H2 + CO2. Butyrate production from CO was only seen in bioreactors with cell recycling or in batch cultures with addition of acetate. Here, we present detailed study on growth of E. limosum KIST612 on different carbon and energy sources with the goal, to find other substrates that lead to butyrate formation. Batch fermentations in serum bottles revealed that acetate was the major product under all conditions investigated. Butyrate formation from the C1 compounds carbon dioxide and hydrogen, carbon monoxide or formate was not observed. However, growth on glucose led to butyrate formation, but only in the stationary growth phase. A maximum of 4.3 mM butyrate was observed, corresponding to a butyrate:glucose ratio of 0.21:1 and a butyrate:acetate ratio of 0.14:1. Interestingly, growth on the C1 substrate methanol also led to butyrate formation in the stationary growth phase with a butyrate:methanol ratio of 0.17:1 and a butyrate:acetate ratio of 0.33:1. Since methanol can be produced chemically from carbon dioxide, this offers the possibility for a combined chemical-biochemical production of butyrate from H2 + CO2 using this acetogenic biocatalyst. With the advent of genetic methods in acetogens, butanol production from methanol maybe possible as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号