首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: We previously reported a new optical configuration, in which both the side scatter and the fluorescence are collected using the index-guided, total internal reflection of a flow stream in air (the flow-stream waveguide). METHODS: Using a mixture of 0.202-microm and 0.093-microm diameter polystyrene beads, we have characterized the side scatter (SSC) sensitivity of a custom-built flow cytometer (miniFlo) which incorporates a flow-stream waveguide. RESULTS: The SSC-triggered SSC signal of 0.093-microm polystyrene beads in water was almost baseline resolved from the background. We also measured the SSC-triggered SSC signal of the same beads in water on our FACScan, which is a commercial unit with the conventional optical arrangement that uses a custom imaging objective to collect light from a sheath flow cuvette in perpendicular direction-the signal from 0.093-microm beads was not resolved from the background. CONCLUSIONS: The SSC sensitivity of miniFlo is one of the best reported in the literature. Cytometry 37:160-163, 1999. Published 1999 Wiley-Liss, Inc.  相似文献   

2.
BACKGROUND: The type of antibody-conjugated polystyrene (PS) latex beads for use as light scatter shift agents for targeted lymphocyte populations in whole blood has been expanded to include gold and silver nanoparticle-aminodextran-PS latex bead conjugates with antibodies. The linkers between antibody and colloidal metal were an aminotrithiol ligand or aminodextran polymer molecules. METHODS: A modified flow instrument, including forward light scatter (FS), side light scatter (SS), light scatter at other intermediate angle ranges, LMALS (10-20 degrees ) and UMALS (20-65 degrees ) was used for simultaneous bead probe measurements. A conventional flow cytometer was used in simultaneous bead-fluorescent marker experiments. RESULTS: Two mutually exclusive cell populations, CD4+ and CD8+ lymphocytes, have been simultaneously enumerated in blood by using a mixture of CD4-PS, CD8-Au-PS or CD4-Au-PS, CD8-PS beads, and one laser line, 633 nm, excitation. Similar measurements were made with mixtures of CD4-PS, CD8-Ag-PS or CD4-Ag-PS, CD8-PS beads. Also, simultaneous use of bead and fluorescent markers mixed with whole blood was demonstrated with CD4-PS beads and with the CD4-RD1/CD8-FITC dual marker. CONCLUSIONS: Enumeration of CD4 and CD8 lymphocytes in whole blood by light scatter parameters only compared well with standard analyses with fluorescent markers. In simultaneous bead-fluorescent marker labeling of lymphocytes, the labeled bead had to be mixed first with cells in whole blood.  相似文献   

3.
Multiple wavelength operation in a flow cytometer is an exciting way for cell analysis based on both fluorescence and optical scattering processing. For example, this multiparametric technique is currently used to differentiate blood cells subpopulations. The choice of excitation wavelengths matching fluorochrome spectra (it is currently the opposite) and the use of a broader range of fluorochromes can be made by taking advantage of a filtered supercontinuum white light source. In this study, we first wished to validate the use of a specific triggered supercontinuum laser in a flow cytometer based on white light scattering and electric sizing on human blood cells. Subsequently, to show the various advantages of this attractive system, using scattering effect, electrical detections, and fluorescence analysis, we realized cells sorting based on DNA/RNA stained by thiazole orange. Discrimination of white blood cells is efficiently demonstrated by using a triggered supercontinuum-based flow cytometer operating in a "one cell-one shot" configuration. The discriminated leukocyte populations are monocytes, lymphocytes, granulocytes, immature granulocytes, and cells having a high RNA content (monoblasts, lymphoblasts, and plasma cells). To the best of our knowledge, these results constitute the first practical demonstration of flow cytometry based on triggered supercontinuum illumination. This study is the starting point of a series of new experiments fully exploiting the spectral features of such a laser source. For example, the large flexibility in the choice of the excitation wavelength allows to use a larger number of fluorochromes and to excite them more efficiently. Moreover, this work opens up new research directions in the biophotonics field, such as the combination of coherent Raman spectroscopy and flow cytometry techniques.  相似文献   

4.
H M Shapiro  M Hercher 《Cytometry》1986,7(2):221-223
Optical waveguides represent alternatives to lenses for delivery of light to, and collection of light from, small regions of space such as the observation point(s) of a flow cytometer. The flow chamber and directly associated illumination and collection optics of a flow cytometer can be built using fiber optic waveguides in fixed positions or as an integrated optical assembly incorporating deposited or implanted waveguides, providing illumination and collection geometries and efficiencies comparable to conventional designs, with the advantage that the optical waveguide design, once assembled, never again requires alignment of the optics. A prototype apparatus in which fiber optics were used to illuminate and collect light from a point inside a thin-walled, round quartz capillary was observed to measure fluorescence of polystyrene spheres with precision close to that obtained from a conventional flow cytometer using the same laser source. The design of the fiber optic system is readily adaptable to construction of multiple illumination beam instruments; other optical waveguide flow cytometer designs that dispense with the capillary share this advantage and can also provide orifices for electronic volume sensing and for jetting prior to droplet sorting.  相似文献   

5.
The main flow laser cytometry principles, based on the elastic light scattering, spheres of its applications, problems of its realization and utilization in the immunological investigations and diagnostics are analysed. The experimental model of a flow cytometer with laser probing beam space scanning, originally proposed by the authors, is described. The apparatus was tested by polystyrene latex spheres and biological objects. The experiments showed that the achieved sensitivity was enough to register red blood cells, their complexes and bacterial cells.  相似文献   

6.
An experimental verification of an optical microscope technique to create spatial map images of dynamically scattered light fluctuation decay rates is presented. The dynamic light scattering microscopy technique is demonstrated on polystyrene beads and living macrophage cells. With a slow progressive scan charge-coupled device camera employed in a streak-like mode, rapid intensity fluctuations with timescales the order of milliseconds can be recorded from these samples. From such streak images, the autocorrelation function of these fluctuations can be computed at each location in the sample. The characteristic decay times of the autocorrelation functions report the rates of motion of scattering centers. These rates show reasonable agreement to theoretically expected values for known samples with good signal/noise ratio. The rates can be used to construct an image-like spatial map of the rapidity of submicroscopic motions of scattering centers.  相似文献   

7.
This study evaluated an automated immunoassay for bovine lactoferrin (LF) in dairy products based on latex beads coated with F(ab')2 fragments. Methods: F(ab')2 fragments were obtained by pepsin digestion of rabbit anti-bovine LF (IgG fraction) and polystyrene latex beads were coated with the F(ab')2 fragments. We used the beads to develop a rapid and homogeneous light scatter immunoassay employing an autoanalyzer (the Automated Latex assay). The Automated Latex assay was easy to perform and could rapidly determine bovine lactoferrin in lactoferrin-supplemented products. It was sensitive enough for testing products and showed good precision.  相似文献   

8.
BACKGROUND: Modern drug discovery has been based on high-throughput screening using whole-cell assays. A prominent role has been assigned to the reporter gene technology based on a beta-lactamase and the fluorogenic substrate CCF2. Successful application of this technology requires fluorescence-activated cell sorting. We describe the preparation and characterization of calibration beads for sorting cells expressing the beta-lactamase gene using the CCF2 substrate. METHODS: To model Forster resonance energy transfer (FRET) between the coumarin donor and the fluorescein acceptor of the CCF2 reporting dye, we used activated polystyrene beads with primary amino groups. Donor and acceptor fluorophores were attached to the beads at different ratios via succinimidyl esters. The beads were characterized with a fluorescence plate reader and a flow cytometer. RESULTS: We prepared polystyrene beads with five different ratios of donor and acceptor fluorophores and beads that carried a donor or a receptor fluorophore alone. Fluorescence measurements demonstrated that the prepared beads well represent the FRET of CCF2 substrate. CONCLUSION: We have demonstrated that the prepared beads can be successfully used for the setup of fluorescence-activated cell sorting to sort cells with CCF2 reporter substrate and the beta-lactamase reporter gene.  相似文献   

9.
By use of a flow cytometer, the fluorescence of cells stained with hematoporphyrin derivative and the fluorescence of plastic beads stained with different dyes were analysed as a function of the intensity of the exciting laser light. The ratios of the fluorescence values of stained and unstained cells as well as of stained cells and beads were sensitively dependent on excitation intensities. As a consequence of this finding, the normalization of cellular fluorescence by use of reference particles needs to be made on a well-defined and reproduced intensity of the exciting laser light.  相似文献   

10.
We describe a photometer for time-resolved measurements of small changes in light scattering suited for suspensions of biological material. The time resolution is 35 μs, the amplitude resolution for bovine rot outer segments is typically ΔI/I = 5 · 10?4 at a scattering angle of ? = 20°. The use of the apparatus is demonstrated by recording the near infrared scattering of bovine rod outer segments after excitation with flashes of green light.Semiconductor detector arrays are arranged centrosymmetrically around a hemispherical cuvette. The optical characteristics of a hemispherical cuvette and the resulting geometry of cuvette and detection are discussed.Calculations of optimal signal transfer and noise of the detectors led to the following arrangement for each scattering angle: pairs of parallel connected photodiodes are fed into several current-to-voltage converters, whose output voltages are summed up by a summing amplifier.For the test of the device so-called N signals of fresh and liquid N2-frozen and thawed ROS samples were measured at four scattering angles simultaneously. A strong angular dependence (difference scattering curve) of the relative light scattering change is seen for fresh ROS which is transformed into a flat curve by freezing and thawing. It is concluded that the competence of the fresh sample to extend the light-induced local events — presumably rhodopsin conformational changes — into the gross-structural range is terminated by freezing.  相似文献   

11.
Three optical components of a fly's eye determine the angular sensitivity of the photoreceptors: the light diffracting facet lens, the wave-guiding rhabdomere and the light-absorbing visual pigment in the rhabdomere. How the integrated optical system of the fly eye shapes the angular sensitivity curves is quantitatively analyzed in five steps: (1) scalar diffraction theory for low Fresnel-number lenses is applied to four different facet lenses, with diameter 10, 20, 40, and 80 micro m, respectively, assuming a constant F-number of 2.2; (2) optical waveguide theory is used to calculate waveguide modes propagating in circular cylindrical rhabdomeres with diameter 1.0, 2.0, and 4.0 micro m, respectively; (3) the excitation of waveguide modes is studied with the tip of the waveguide positioned in the focal plane as well as outside this plane; (4) the light absorption from the various propagated modes by the visual pigment in the rhabdomere is calculated as a function of the angle of the incident light wave; and (5) the angular sensitivity of the photoreceptor is obtained by normalizing the total light absorption. Four wavelengths are considered: 300, 400, 500 and 600 nm. The analysis shows that the wavelength dependency of the lens diffraction is strongly compensated by that of the waveguide modes, an effect which is further enhanced by the decrease in light absorption when the mode number increases. The angular sensitivity of fly photoreceptors is robust to defocus and largely wavelength independent for all except very slender rhabdomeres.  相似文献   

12.
We present a new approach to probing single-particle dynamics that uses dynamic light scattering from a localized region. By scattering a focused laser beam from a micron-size particle, we measure its spatial fluctuations via the temporal autocorrelation of the scattered intensity. We demonstrate the applicability of this approach by measuring the three-dimensional force constants of a single bead and a pair of beads trapped by laser tweezers. The scattering equations that relate the scattered intensity autocorrelation to the particle position correlation function are derived. This technique has potential applications for measurement of biomolecular force constants and probing viscoelastic properties of complex media.  相似文献   

13.
Light-scattering diagrams (phase functions) from single living cells and beads suspended in an optical trap were recorded with 30-ms time resolution. The intensity of the scattered light was recorded over an angular range of 0.5-179.5 degrees using an optical setup based on an elliptical mirror and rotating aperture. Experiments revealed that light-scattering diagrams from biological cells exhibit significant and complex time dependence. We have attributed this dependence to the cell's orientational dynamics within the trap. We have also used experimentally measured phase function information to calculate the time dependence of the optical radiation pressure force on the trapped particle and show how it changes depending on the orientation of the particle. Relevance of these experiments to potential improvement in the sensitivity of label-free flow cytometry is discussed.  相似文献   

14.
OBJECTIVE: We evaluated the use of a high power, diode pulsed solid-state laser emitting 532 nm light for immunofluorescence applications. We compared the sensitivity and utility of this laser with the standard 488 nm excitation. METHODS: A flow cytometer was equipped with both a 488 nm and a 532 nm laser; fluorescence emissions from each laser were collected using the same filters and the same detector system. Cells or compensation beads (e.g. latex beads coated with anti-kappa antibodies) were stained with monoclonal antibodies conjugated to phycoerythrin (PE) as well as the PE tandem dyes TRPE, Cy5PE, Cy5.5PE, and Cy7PE. The sensitivity of detection of these reagents as well as those in heavily compensated channels was quantified by measuring the spreading error for a primary detector into a secondary detector. RESULTS: Measurement of the fluorescence emission of PE and PE-tandem dyes was considerably more sensitive when using 532 nm excitation (150 mW) as compared with 488 nm excitation (20 mW). In addition, as the absolute number of photoelectrons collected was greater, there was less measurement-error-induced spread into the compensated channels. As an example, when comparing the spreading error of PE labeled cells into the TRPE detector, the green laser was found to be 15-fold more sensitive as compared with the blue laser. In addition, the blue laser produced more autofluoresent signal from cells as compared with the green laser. Together, these advantages of the 532 nm excitation line provides for a significantly improved detection of immunofluorescence staining.  相似文献   

15.
Results of small angle laser light scattering experiments carried out on polystyrene latex beads coated with lysate of Plasmodium falciparum (Pf) antigen (Ag) and human seropositive sera (10:1 ratio) are reported for various NaCl concentrations (0-300 mM). The protein coated beads showed time-dependent coagulation. The normalised intensity of scattered light I(s)(t)/I(0) showed I(s)(t)/I(0)=1+(Gammat)(delta) behaviour with the coagulation rate, Gamma and exponent, delta showing anomalous dependence on NaCl concentration. The coagulation rate exhibited strong increase up to NaCl concentration of 50 mM, above this and up to 300 mM the coagulation rate was found to remain independent of NaCl concentration yielding non-DLVO behaviour. The same was true for delta which increased from 1.04+/-0.06 to 6.94+/-0.07 as NaCl concentration was raised from 0 to 50 mM. Above 50 mM it remained constant with delta=6.94+/-0.07. Results are discussed through Smoluchowski aggregation kinetics and theoretical construction of interparticle interaction potentials relevant to our problem.  相似文献   

16.
To determine the concentration of bacteria in a sample is important in the food industry, medicine and biotechnology. A disadvantage of the plate-counting method is that a microorganism colony could arise from one cell or from many cells. The other standard methodology, known as optical density determination, is based on the turbidity of a suspension and registers all bacteria, dead and alive. In this article, dynamic light scattering is proposed as a fast and reliable method to determine bacterial viability and, consequently, time evolution. Escherichia coli was selected because this microorganism is well known and easy to handle. A correlation between the data from these three techniques was obtained. We were able to calculate the growth rate, usually determined by plate counting or optical density measurement, using dynamic light scattering and to predict bacterial behavior. An analytical relationship between the colony forming units and the light scattered intensity was also deduced.  相似文献   

17.
A technique for the detection of DNA damage induced by radiation insult has been developed. Cells were lysed with a buffer containing 2 M sodium chloride to release the DNA in a supercoiled form, the nucleoid. These were stained with the DNA intercalating dye, ethidium bromide, and exposed to laser light within a flow cytometer. Scattered and fluorescent light was analyzed from the laser/nucleoid interaction following irradiation of viable cells with gamma rays. The addition of ethidium bromide to prepared nucleoids caused a reduction in scattered light due to condensation of the nucleoid. Irradiation of cells prior to nucleoid production and ethidium bromide treatment restricted this condensation and produced a dose-dependent increase in laser scatter. Nucleoids derived from human lymphocytes showed enhanced light scatter from 5 Gy, compared to Chinese hamster ovary (CHO) fibroblasts where doses above 10 Gy were required. Up to 30 Gy CHO nucleoids showed a dose-dependent reduction in the ethidium bromide fluorescence. This technique allows detection of altered light scattering and fluorescent behavior of nucleoids after cellular irradiation; these may be related to structural changes within the nucleus induced by the radiation. The use of flow cytometry compared to other methods allows a rapid analysis of nuclear damage within individual cells.  相似文献   

18.
A fiber-optic retroreflective turbidimeter has been developed to automatically and continuously assay the cell concentration in a fermentor by measuring the turbidity of the solution as a function of the light scattered at 180° to the incident light. The output signal is nearly directly proportional to the cell concentration in a fermentor when the sample stream contains from 0 to more than 50 g of cells per liter (wet weight). The device consists of a bifurcated fiber-optics light pipe with its distal end inserted into a flow cell through which the material to be analyzed passes. A light source on one proximal branch of the light pipe illuminates the sample stream; light that is back-scattered from participates in the stream re-enters the light pipe and is returned to a photodetector on the other proximal branch of the light pipe. A signal conditioning system connected to the optical head by a cable provides gain and zero adjustment.  相似文献   

19.
The process of platelet aggregation as detected by turbidity changes in the platelet aggregometer was studied relative to light scattering by large particles. For latex beads a plot of light scattering intensity/unit mass versus particle size gave increased light scattering intensity for small particle sizes but decreased scattering at large particle size. This behavior is predicted by Rayleigh-Gans theory. These results were related to the platelet aggregometer, an optical instrument used to measure the association of small particles (monomeric platelets) to large particles (platelet aggregates). Formalin-fixed platelets do not show changes in light transmission due to energy-requiring processes, such as shape change, so that turbidity changes in the presence of aggregating agents could be attributed to a change in platelet aggregation state. Small platelet aggregates showed increased turbidity compared to a similar mass of monomeric platelets. In fact, very large platelet aggregates that were visible to the unaided eye were needed to produce a decrease in light scattering intensity. Thus, turbidity can either increase or decrease with platelet aggregation depending on the size of the aggregates. Studies of platelet aggregation that show no initial increase in turbidity must be characterized by dominance of large platelet aggregates and monomeric platelets.  相似文献   

20.
Formation mechanism of laser-induced spontaneous periodic nanostructures in thin light-sensitive AgCl waveguide films, doped by silver nanoparticles, is studied. It is found that the initial size, geometry, and surface coverage parameters of Ag nanoparticles instate preconditions for the nanostructure formation. These parameters play essential roles in coupled nanoplasmon excitation in silver nanoclusters, which in turn influences scattering of the incident light from the silver clusters. Some parts of the scattered light propagate as waveguide modes in the film and interference with the incident light. Afterward, migration of the Ag nanoparticles into the minima of the interference pattern forms the nanostructure. Simultaneously, excitation of coupled nanoplasmons in the neighboring clusters enhances the scattered light intensity. It is observed that longer exposure results in destruction of the formed nanostructures, because of creation of electrical joint between agglomerated clusters in the interference pattern’s minima, which leads to weakening of the TE mode excitation and, consequently, domination of the Gaussian profile of the incident light. This leads to the deceleration of the self-organized nanostructure development, growth rate, and quality. We have found that competition between the Gaussian profile of the incident laser field and the interference field causes a finally saturating oscillatory behavior of the self-organizing process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号