首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Molecular mapping techniques have defined the region of gene loss in two patients with the 5q- syndrome and uncharacteristically small 5q deletions (5q31-q33). The allelic loss of 10 genes localized to 5q23-qter (centromere-CSF2-EGR1-FGFA-GRL-ADRB2-CSF1R-SPARC-GLUH1-NKSF1-FLT4-telomere) was investigated in peripheral blood cell fractions. Gene dosage experiments demonstrated that CSF2, EGR1, NKSF1, and FLT4 were retained on the 5q- chromosome in both patients and that FGFA was retained in one patient, thus placing these genes outside the critical region. GRL, ADRB2, CSF1R, SPARC, and GLUH1 were shown to be deleted in both patients. The proximal breakpoint is localized between EGR1 and FGFA in one patient and between FGFA and ADRB2 in the other, and the distal breakpoint is localized between GLUH1 and NKSF1 in both patients. Pulsed-field gel electrophoresis was used to map the 5q deletion breakpoints, and breakpoint-specific fragments were detected with FGFA in the granulocyte but not the lymphocyte fraction of one patient. This study has established the critical region of gene loss of the 5q- chromosome in the 5q- syndrome, giving the location for a putative tumor-suppressor gene in the 5.6-Mb region between FGFA and NKSF1.  相似文献   

2.
11q- syndrome: three cases and a review of the literature.   总被引:1,自引:0,他引:1  
We report on three children with de novo terminal deletions of the long arm of chromosome 11 (11q-) and breakpoints in 11q23-q24. Eighty-nine other patients with partial monosomy 11q have been reported and were reviewed by us. Salient features of 11q- syndrome are psychomotor retardation, trigonocephaly, telecanthus/hypertelorism, broad depressed nasal bridge, micrognathia, low set abnormal ears, cardiac anomalies and hand/foot anomalies. Renal agenesis and anal atresia are reported first here. Supratentorial white matter abnormality on CT and MRI present in our second patient was reported in three patients. Increased mortality is caused by cardiac anomalies. A third of all patients with partial monosomy 11q had thrombocytopenia or pancytopenia and this seems to be related to the absence of band 11q23-q24. Seventy-six percent of patients have de novo deletions with breakpoints in 11q21-q25. There is no obvious correlation between the length of the deleted segment and the severity of the symptoms. In unbalanced chromosomal patterns with deletions of 11q involving bands 11q23-q24 the typical phenotype of 11q- syndrome remains recognizable. Deletions distal to 11q24.1 do not produce the typical 11q- syndrome.  相似文献   

3.
The 18q- syndrome is one of several terminal deletion disorders that occur in humans. Previous G-banding studies suggest that the loss of a critical band, 18q21.3, results in mental retardation, craniofacial anomalies, and metabolic defects. However, it is difficult to reconcile the consistent loss of a single region with the large variability in clinical phenotype. The purpose of this study was to reassess the extent of chromosomal loss in a cohort of 17 18q- syndrome patients by using fluorescent-activated chromosome sorting, PCR, and FISH. Bivariate flow karyotypes revealed heterogeneity among the deletions; they ranged in size from 9 to 26 Mb. To confirm this heterogeneity at a molecular level, deleted and normal chromosomes 18 of six patients were collected by flow sorting, preamplified by random priming, and assayed for marker content by the PCR. This analysis defined five unique breakpoints among the six patients. We conclude that the terminal deletions in the 18q- syndrome occur over a broad region spanning the interval from 18q21.2 to 18q22.2. Our results suggest that the variability in clinical phenotype may be more representative of a contiguous-gene syndrome with a baseline deficit of 18q22.2-qter than of the loss of a single critical region within 18q21.3.  相似文献   

4.
Molecular analysis of the 18q- syndrome--and correlation with phenotype.   总被引:10,自引:7,他引:3  
Seven individuals with deletions of the distal long arm of chromosome 18 were evaluated at the clinical, cytogenetic, and molecular levels. The patients had varying degrees of typical clinical findings associated with the 18q- syndrome. Cytogenetic analysis revealed deletions from 18q21.3 or 18q22.2 to qter. Somatic cell hybrids derived from the patients were molecularly characterized using ordered groups of probes isolated from a chromosome 18-specific library. In general, the size of the deletion could be correlated with the severity of the phenotype. Based on the clinical pictures of these seven patients, a preliminary phenotypic map for the clinical features associated with deletions of the distal portion of the long arm has been generated. Furthermore, genes previously localized to 18q21 were mapped relative to the chromosome breakpoints present in these patients.  相似文献   

5.
Interstitial deletions are not the main mechanism leading to 18q deletions.   总被引:5,自引:1,他引:4  
Most patients who present with the 18q- syndrome have an apparent terminal deletion of the long arm of chromosome 18. For precise phenotypic mapping of this syndrome, it is important to determine whether the deletions are terminal deletions or interstitial deletions. A human telomeric YAC clone has been identified that hybridizes specifically to the telomeric end of 18q. This clone was characterized and used to analyze seven patients with 18q deletions. By FISH and Southern blotting analysis, all patients were found to lack this chromosomal region on their deleted chromosome, demonstrating that the patients do not have cryptic interstitial deletions.  相似文献   

6.
J Kere 《Nucleic acids research》1989,17(4):1511-1520
Chromosome 7 long arm deletions (7q-) are recurring chromosome abnormalities in leukemic bone marrow cells. In four patients we have previously localized the breakpoints in band 7q22 between the erythropoietin (EPO) and plasminogen activator inhibitor type 1 (PLANH1) genes that map 3 cM apart. The pro alpha 2(I) collagen (COL1A2, in band 7q22) and T cell receptor beta chain genes (TCRB, in band 7q35) have been found undeleted in one patient with an interstitial deletion. Pulsed field gel electrophoresis was used to map the breakpoints more accurately in two patients with a 7q- chromosome. The results suggested that lymphocytes and granulocytes give identical restriction patterns with several enzyme-probe combinations, and that a breakpoint possibly was within 195 kb of EPO in one patient but not in another. The gene order cen-COL1A2-EPO-breakpoint-tel was suggested but physical linkage between COL1A2 and EPO was not found. A new putative TCRB restriction fragment length polymorphism or inherited methylation site was detected.  相似文献   

7.
A 34-year-old mother presented moderate mental retardation, short stature, microcephaly, and characteristic facial dysmorphism. Her 12-year-old daughter manifested moderate mental retardation, short stature, microcephaly, dysplastic external ear canals, hearing impairment, and characteristic facial dysmorphism. Cytogenetic analysis of the family revealed a normal karyotype, 46,XY, in the father, and a 46,XX,del(18)(q22.2) karyotype in both mother and daughter. Molecular marker analysis determined direct transmission of the distal 18q deletion from mother to daughter. The present case provides evidence of fertility of the affected females and a mother-to-daughter direct transmission in the familial 18q- syndrome. Identification of affected females with the 18q- syndrome should include genetic counseling of possible direct transmission and consideration of birth control or prenatal genetic testing at reproductive age.  相似文献   

8.
Velo-cardio-facial syndrome (VCFS) is the most common microdeletion syndrome in humans. It occurs with an estimated frequency of 1 in 4, 000 live births. Most cases occur sporadically, indicating that the deletion is recurrent in the population. More than 90% of patients with VCFS and a 22q11 deletion have a similar 3-Mb hemizygous deletion, suggesting that sequences at the breakpoints confer susceptibility to rearrangements. To define the region containing the chromosome breakpoints, we constructed an 8-kb-resolution physical map. We identified a low-copy repeat in the vicinity of both breakpoints. A set of genetic markers were integrated into the physical map to determine whether the deletions occur within the repeat. Haplotype analysis with genetic markers that flank the repeats showed that most patients with VCFS had deletion breakpoints in the repeat. Within the repeat is a 200-kb duplication of sequences, including a tandem repeat of genes/pseudogenes, surrounding the breakpoints. The genes in the repeat are GGT, BCRL, V7-rel, POM121-like, and GGT-rel. Physical mapping and genomic fingerprint analysis showed that the repeats are virtually identical in the 200-kb region, suggesting that the deletion is mediated by homologous recombination. Examination of two three-generation families showed that meiotic intrachromosomal recombination mediated the deletion.  相似文献   

9.
10.
Gorlin syndrome is an autosomal dominant disorder characterized by multiple basal cell carcinomas, medulloblastomas, ovarian fibromas, and a variety of developmental defects. All affected individuals share certain key features, but there is significant phenotypic variability within and among kindreds with respect to malformations. The gene (NBCCS) maps to chromosome 9q22, and allelic loss at this location is common in tumors from Gorlin syndrome patients. Two recessive cancer-predisposition syndromes, xeroderma pigmentosum group A (XPAC) and Fanconi anemia group C (FACC), map to the NBCCS region; and unusual, dominant mutations in these genes have been proposed as the cause of Gorlin syndrome. This study presents cytogenetic and molecular characterization of germ-line deletions in one patient with a chromosome 9q22 deletion and in a second patient with a deletion of 9q22-q3l. Both have typical features of Gorlin syndrome plus additional findings, including mental retardation, conductive hearing loss, and failure to thrive. That Gorlin syndrome can be caused by null mutations (deletions) rather than by activating mutations has several implications. First, in conjunction with previous analyses of allelic loss in tumors, this study provides evidence that associated neoplasms arise with homozygous inactivation of the gene. In addition, dominant mutations of the XPAC and FACC1 genes can be ruled out as the cause of Gorlin syndrome, since the two patients described have null mutations. Finally, phenotypic features that show variable expression must be influenced by genetic background, epigenetic effects, somatic mutations, or environmental factors, since these two patients with identical alterations (deletions) of the Gorlin syndrome gene have somewhat different manifestations of Gorlin syndrome.  相似文献   

11.
Keutel syndrome is a rare autosomal recessive disorder, characterized by brachytelephalangia (short, broad distal phalanges), midfacial hypoplasia, abnormal cartilage calcifications, peripheral pulmonary stenosis and hearing loss. Binder profile is a well known maxillonasal dysplasia composed of midfacial hypoplasia with absence of anterior nasal spine and facial dysmophism (short nose, flat nasal bridge, perialar flatness, convex upper lip). Here we report a Keutel syndrome presenting with Binder phenotype, abnormal calcifications, hearing loss and respiratory insufficiency in the newborn period. Keutel syndrome should be considered in the differential diagnosis of children with tracheobronchial calcifications, midfacial hypoplasia and stippled epiphysis.  相似文献   

12.
Cri-du-Chat syndrome (MIM 123450) is a chromosomal syndrome characterized by the characteristic features, including cat-like cry and chromosome 5p deletions. We report a family with five individuals showing chromosomal rearrangements involving 5p, resulting from rare maternal complex chromosomal rearrangements (CCRs), diagnosed post- and pre-natally by comprehensive molecular and cytogenetic analyses. Two probands, including a 4½-year-old brother and his 2½-year- old sister, showed no diagnostic cat cry during infancy, but presented with developmental delay, dysmorphic and autistic features. Both patients had an interstitial deletion del(5)(p13.3p15.33) spanning ∼26.22 Mb. The phenotypically normal mother had de novo CCRs involving 11 breakpoints and three chromosomes: ins(11;5) (q23;p14.1p15.31),ins(21;5)(q21;p13.3p14.1),ins(21;5)(q21;p15.31p15.33),inv(7)(p22q32)dn. In addition to these two children, she had three first-trimester miscarriages, two terminations due to the identification of the 5p deletion and one delivery of a phenotypically normal daughter. The unaffected daughter had the maternal ins(11;5) identified prenatally and an identical maternal allele haplotype of 5p. Array CGH did not detect any copy number changes in the mother, and revealed three interstitial deletions within 5p15.33-p13.3, in the unaffected daughter, likely products of the maternal insertions ins(21;5). Chromothripsis has been recently reported as a mechanism drives germline CCRs in pediatric patients with congenital defects. We postulate that the unique CCRs in the phenotypically normal mother could resulted from chromosome 5p chromothripsis, that further resulted in the interstitial 5p deletions in the unaffected daughter. Further high resolution sequencing based analysis is needed to determine whether chromothripsis is also present as a germline structural variation in phenotypically normal individuals in this family.  相似文献   

13.
14.
DNA samples from nine previously reported patients with X-linked recessive glycerol kinase deficiency, associated in seven of them with adrenal hypoplasia and in five with developmental delay and myopathy, have been studied for deletions of the Duchenne/Becker muscular dystrophy gene by probing with the entire cDNA for the dystrophin protein. All five patients with myopathy, including two in whom no deletions had been detected before, were found to have variable-sized deletions extending through the 3' end of this gene. The 5' deletion breakpoints are intragenic in four cases and have been mapped precisely on the exon-containing HindIII fragment map. A correlation was found between severity and progression of the muscular dystrophy phenotype and the sizes of the gene deletions. In cases in which there was glycerol kinase deficiency/adrenal hypoplasia microdeletion syndrome without myopathy, no deletions were found with the dystrophin cDNA.  相似文献   

15.
NF1 microdeletion syndrome is caused by haploinsufficiency of the NF1 gene and of gene(s) located in adjacent flanking regions. Most of the NF1 deletions originate by non-allelic homologous recombination between repeated sequences (REP-P and -M) mapped to 17q11.2, while the remaining deletions show unusual breakpoints. We performed high-resolution FISH analysis of 18 NF1 microdeleted patients with the aims of mapping non-recurrent deletion breakpoints and verifying the presence of additional recombination-prone architectural motifs. This approach allowed us to obtain the sequence of the first junction fragment of an atypical deletion. By conventional FISH, we identified 16 patients with REP-mediated common deletions, and two patients carrying atypical deletions of 1.3 Mb and 3 Mb. Following fibre-FISH, we identified breakpoint regions of 100 kb, which led to the generation of several locus-specific probes restricting the atypical deletion endpoint intervals to a few kilobases. Sequence analysis provided evidence of small blocks of REPs, clustered around the 1.3-Mb deletion breakpoints, probably involved in intrachromatid non-allelic homologous recombination (NAHR), while isolation and sequencing of the 3-Mb deletion junction fragment indicated that a non-homologous end joining (NHEJ) mechanism is implicated.M. Venturin and C. Gervasini contributed equally to the study  相似文献   

16.
Low-copy repeats (LCRs) are genomic features that affect chromosome stability and can produce disease-associated rearrangements. We describe members of three families with deletions in 10q22.3-q23.31, a region harboring a complex set of LCRs, and demonstrate that rearrangements in this region are associated with behavioral and neurodevelopmental abnormalities, including cognitive impairment, autism, hyperactivity, and possibly psychiatric disease. Fine mapping of the deletions in members of all three families by use of a custom 10q oligonucleotide array-based comparative genomic hybridization (NimbleGen) and polymerase chain reaction-based methods demonstrated a different deletion in each family. In one proband, the deletion breakpoints are associated with DNA fragments containing noncontiguous sequences of chromosome 10, whereas, in the other two families, the breakpoints are within paralogous LCRs, removing approximately 7.2 Mb and 32 genes. Our data provide evidence that the 10q22-q23 genomic region harbors one or more genes important for cognitive and behavioral development and that recurrent deletions affecting this interval define a novel genomic disorder.  相似文献   

17.
Somatic cell hybrid deletion map of human chromosome 18.   总被引:10,自引:0,他引:10  
The creation of a physical map of chromosome 18 will be useful for the eventual identification of specific chromosomal regions that are critical in the occurrence of Edwards syndrome, the 18q- syndrome, and the 18p- syndrome. To begin the investigation of these syndromes, a physical map has been constructed to order random DNA fragments to specific portions of chromosome 18. A set of somatic cell hybrids that retain deletions or translocations involving chromosome 18 has been isolated and characterized. Over 200 lambda phage from a chromosome 18-specific library have been localized to 11 distinct regions of chromosome 18 using the chromosomal breakpoints present in the somatic cell hybrids.  相似文献   

18.
We have developed an integrated map for a 35-cM area of human chromosome 8 surrounding the Langer-Giedion syndrome deletion region. This map spans from approximately 8q22 to 8q24 and includes 10 hybrid cell intervals, 89 polymorphic STSs, 118 ESTs, and 37 known genes or inferred gene homologies. The map locations of 25 genes including osteoprotegerin, syndecan-2, and autotaxin have been refined from the general locations previously reported. In addition, the map has been used to indicate the location of nine deletions in patients with Langer-Giedion syndrome and trichorhinophalangeal syndrome type I to demonstrate the potential usefulness of the map in the analysis of these complex syndromes. The map will also be of interest to anyone trying to clone positionally disease genes in this region, such as Cohen syndrome (8q22-q23), Klip-Feil syndrome (8q22.2), hereditary spastic paraplegia (8q24), and benign adult familial myoclonic epilepsy (8q23.3-q24.1).  相似文献   

19.
Velo-cardio-facial syndrome (VCFS) is a relatively common developmental disorder characterized by craniofacial anomalies and conotruncal heart defects. Many VCFS patients have hemizygous deletions for a part of 22q11, suggesting that haploinsufficiency in this region is responsible for its etiology. Because most cases of VCFS are sporadic, portions of 22q11 may be prone to rearrangement. To understand the molecular basis for chromosomal deletions, we defined the extent of the deletion, by genotyping 151 VCFS patients and performing haplotype analysis on 105, using 15 consecutive polymorphic markers in 22q11. We found that 83% had a deletion and >90% of these had a similar approximately 3 Mb deletion, suggesting that sequences flanking the common breakpoints are susceptible to rearrangement. We found no correlation between the presence or size of the deletion and the phenotype. To further define the chromosomal breakpoints among the VCFS patients, we developed somatic hybrid cell lines from a set of VCFS patients. An 11-kb resolution physical map of a 1,080-kb region that includes deletion breakpoints was constructed, incorporating genes and expressed sequence tags (ESTs) isolated by the hybridization selection method. The ordered markers were used to examine the two separated copies of chromosome 22 in the somatic hybrid cell lines. In some cases, we were able to map the chromosome breakpoints within a single cosmid. A 480-kb critical region for VCFS has been delineated, including the genes for GSCL, CTP, CLTD, HIRA, and TMVCF, as well as a number of novel ordered ESTs.  相似文献   

20.
Derivative 22 (der[22]) syndrome is a rare disorder associated with multiple congenital anomalies, including profound mental retardation, preauricular skin tags or pits, and conotruncal heart defects. It can occur in offspring of carriers of the constitutional t(11;22)(q23;q11) translocation, owing to a 3:1 meiotic malsegregation event resulting in partial trisomy of chromosomes 11 and 22. The trisomic region on chromosome 22 overlaps the region hemizygously deleted in another congenital anomaly disorder, velo-cardio-facial syndrome/DiGeorge syndrome (VCFS/DGS). Most patients with VCFS/DGS have a similar 3-Mb deletion, whereas some have a nested distal deletion endpoint resulting in a 1.5-Mb deletion, and a few rare patients have unique deletions. To define the interval on 22q11 containing the t(11;22) breakpoint, haplotype analysis and FISH mapping were performed for five patients with der(22) syndrome. Analysis of all the patients was consistent with 3:1 meiotic malsegregation in the t(11;22) carrier parent. FISH-mapping studies showed that the t(11;22) breakpoint occurred in the same interval as the 1.5-Mb distal deletion breakpoint for VCFS. The deletion breakpoint of one VCFS patient with an unbalanced t(18;22) translocation also occurred in the same region. Hamster-human somatic hybrid cell lines from a patient with der(22) syndrome and a patient with VCFS showed that the breakpoints occurred in an interval containing low-copy repeats, distal to RANBP1 and proximal to ZNF74. The presence of low-copy repetitive sequences may confer susceptibility to chromosome rearrangements. A 1.5-Mb region of overlap on 22q11 in both syndromes suggests the presence of dosage-dependent genes in this interval.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号