首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cellular basis of internode elongation was studied in intact deep-water rice plants (Oryza sativa L. cv. Habiganj Aman II) and in isolated stem sections. In intact plants, growth was stimulated by submergence in water and by ethylene treatment. In isolated sections, growth was enhanced by submergence, by ethylene, and by exposure of the tissue to an atmosphere of 3% O2, 91% N2 and 6% CO2 or 3% O2, 91% N2, 6% CO2 and 1 l l-1 C2H4 (by vol.). Under all these conditions, growth was localized in the intercalary meristem at the bases of the internodes. Autoradiography of [3H]thymidine-labeled tissue showed activation of cell division and longitudinal expansion of the intercalary meristem. Increased production of new cells and their subsequent elongation thus form the basis for the growth response to submergence and ethylene treatment in deep-water rice plants.  相似文献   

2.
Submergence induces rapid elongation of internodes in floating rice(Oryza sativa L. cv. Habiganj Aman II). The initial signalfor such internodal elongation has been considered to be the reduced partialpressure of oxygen in submerged internodal cavities, which promotes theelongation of internodes through the enhancement of ethylene synthesis. Weexamined the relationship between low oxygen pressure and ethylene production inthe rapid elongation of floating rice internodes using ethylene biosynthesisinhibitors, aminooxyacetic acid (AOA) and CoCl2. When floating ricestem segments were incubated in an atmosphere of low O2, internodalelongation accelerated and ethylene production increased. However, in stemsegments treated with AOA or CoCl2, low O2 stillstimulated the elongation of internodes although the ethylene production by theinternodes was less than by those in control stem segments where internodalelongation was not promoted. These results indicate that low O2 iscapable of causing rapid elongation of internodes of floating rice independentlyof enhanced production of ethylene. In addition to low O2,submergence, ethylene and gibberellic acid each enhanced the production ofethylene by internodal tissues, suggesting that enhanced ethylene production isa common phenomenon accompanied by the acceleration of internodal elongation infloating rice.  相似文献   

3.
I. Raskin  H. Kende 《Planta》1984,162(6):556-559
Submergence induces rapid internodal elongation in deep-water rice (Oryza sativa L. cv. Habiganj Aman II). We investigated the metabolic activities which help to support such fast growth. Three days of submergence in water under continuous light led to the mobilization of 65% of the starch from those regions of rice internodes which had been formed prior to submergence. Disappearance of starch was accompanied by a 70-fold enhancement of amylolytic activity. Similar increases in amylolytic activity were detected in response to ethylene and gibberellic acid. Submergence also caused a 26-fold increase in the translocation of newly synthesized photosynthetic assimilates from the leaves to the internodes and younger regions of the culms. These physiological processes are likely to provide the metabolic energy required for internodal elongation in response to submergence.Abbreviation GA3 gibberellic acid  相似文献   

4.
Isoelectrofocusing, product analysis, thermal denaturation studies and affinity chromatography on cycloheptaamylose-Sephadex were used to identify the amylolytic enzymes in internodes of deepwater rice (Oryza sativa L.). Amylolytic activity in internodes of deepwater rice consists of -amylase (sometimes separated into two isoforms) and of -amylase. During submergence of whole plants, -amylase activity increases in young, growing internodes, but -amylase activity declines. Although non-growing, mature internodes contain higher levels of -amylase than do the elongating younger internodes, the effect of submergence on amylase activities in both tissues follows the same trend. Submergence, gibberellic acid (GA3) and ethylene all promote -amylase activity in growing and non-growing internodes of excised deepwater-rice stem sections. Inhibitor studies showed that submergence and ethylene promote -amylase activity in the absence of endogenous gibberellin (GA), and GA3 enhances -amylase activity when ethylene action is inhibited. Therefore, ethylene and GA appear to increase -amylase activity independently of each other. Enhanced -amylase activities are probably responsible for the mobilization of carbohydrates which are needed to support internode elongation during submergence of deepwater rice.Abbreviations CHA cycloheptaamylose - GA3 gibberellic acid - NBD 2,5-norbornadiene - TCY tetcyclacis  相似文献   

5.
Methods are described for the rigorous measurement of C2H4 metabolism and C2H4 binding in plant tissue. Comparisons are drawn between the results obtained using other methods and those which emerge from our studies, indicating that significant misapprehensions may have arisen in relation both to the distribution of metabolism and binding.  相似文献   

6.
Submergence of the stem induces rapid internodal elongation in deepwater rice (Oryza sativa L. cv. Habiganj Aman II). A comparative anatomical study of internodes isolated from airgrown and partially submerged rice plants was undertaken to localize and characterize regions of growth and differentiation in rice stems. Longitudinal sections were examined by light and scanning-electron microscopy. Based on cell-size analysis, three zones of internodal development were recognized: a zone of cell division and elongation at the base of the internode, designated the intercalary meristem (IM); a zone of cell elongation without concomitant cell division; and a zone of cell differentiation where neither cell division nor elongation occur. The primary effects of submergence on internodal development were a threefold increase in the number of cells per cell file resulting from a decrease in the cell-cycle time from 24 to 7 h within the IM; an expansion of the cell-elongation zone from 5 to 15 mm leading to a threefold greater final cell length; and a suppression of tissue differentiation as indicated by reduced chlorophyll content and a lack of secondary wall formation in xylem and cortical sclerenchyma. These data indicate that growth of deepwater-rice internoes involves a balance between elongation and differentiation of the stem. Submergence shifts this balance in favor of growth.Abbreviations GA gibberellin - IM intercalary meristem  相似文献   

7.
8.
As described previously, the sensitivity of rice (Oryza sativa L.) coleoptiles to auxin is modulated by oxygen. Under anoxia, coleoptile elongation is insensitive to exogenously applied indole-3-acetic acid (IAA), whereas its sensitivity increases in air in the presence of the exogenous stimulus. Here we report the presence of two independent classes of membrane-bound IAA-binding sites in air-grown coleoptiles. Their binding activity is strictly correlated with the system's sensitivity to IAA. We designate them as site A (high affinity) and site B (low affinity). Site A shows a relatively fast response to anoxia, and is highly specific for auxins. Regulation of site-A binding activity through ATP, whose availability decreases under anoxia, is postulated. A role as auxin carrier is suggested for site B.Abbreviations ABS(s) auxin-binding site(s) - IAA indole-3-acctic acid - NAA 2-naphthaleneacetic acid - ION3 valinomycin, nigericin, carbonylcyanide p-trifluoromethoxyphenyl hydrazone Dedicated to the memory of Professor G. Torti, who passed away on 2 May, 1988  相似文献   

9.
The possible role of C2H4 metabolism in mediating the responses of plants to C2H4 is re-examined. It is demonstrated that (i) the effects of inhibitors upon C2H4 action do not correspond with their effects on metabolism, (ii) elicitors of C2H4 effects do not have appropriate effects on C2H4 metabolism, (iii) inhibitors of C2H4 metabolism do not affect the response of plants to C2H4. It is concluded that metabolism of C2H4 is not linked to the mode of action of the growth regulator.Abbreviations DTC sodium diethyldithiocarbamate - FW fresh weight  相似文献   

10.
Tomato (Lycopersicon esculentum Mill.) plants homozygous for the mutant pro gene, exhibiting the distinctive procera phenotype, appeared virtually identical to gibberellic acid (GA3)-treated isogenic normal plants. The pro gene and GA3 caused analogous increases in internode length, and in the length and number of cells in the outer cell layers of each internode. Internode number was also increased by pro and GA3 over the period of the experiment. Despite their greater length, the internodes of GA3-treated and pro plants reached their final size within a time period similar to that of internodes of untreated normal plants. The pro mutant itself was responsive to GA3, especially in the seedling stage, but the proportional increase in height seen in the later stages of growth was less than that of normal plants.Abbreviations GA gibberellin - GA3 gibberellic acid - LSD least significant difference  相似文献   

11.
12.
Excised stem sections of deepwater rice (Oryza sativa L.) containing the highest internode were used to study the induction of rapid internodal elongation by gibberellin (GA). It has been shown before that this growth response is based on enhanced cell division in the intercalary meristem and on increased cell elongation. In both GA-treated and control stem sections, the basal 5-mm region of the highest internode grows at the fastest rate. During 24 h of GA treatment, the internodal elongation zone expands from 15 to 35 mm. Gibberellin does not promote elongation of internodes from which the intercalary meristem has been excised. The orientation of cellulose microfibrils (CMFs) is a determining factor in cell growth. Elongation is favored when CMFs are oriented transversely to the direction of growth while elongation is limited when CMFs are oriented in the oblique or longitudinal direction. The orientation of CMFs in parenchymal cells of GA-treated and control internodes is transverse throughout the internode, indicating that CMFs do not restrict elongation of these cells. Changes in CMF orientation were observed in epidermal cells, however. In the basal 5-mm zone of the internode, which includes the intercalary meristem, CMFs of the epidermal cell walls are transversely oriented in both GA-treated and control stem sections. In slowly growing control internodes, CMF orientation changes to the oblique as cells are displaced from this basal 5-mm zone to the region above it. In GA-treated rapidly growing internodes, the reorientation of CMFs from the transverse to the oblique is more gradual and extends over the 35-mm length of the elongation zone. The CMFs of older epidermal cells are obliquely oriented in control and GA-treated internodes. The orientation of the CMFs parallels that of the cortical microtubules. This is consistent with the hypothesis that cortical microtubules determine the direction of CMF deposition. We conclude that GA acts on cells that have transversely oriented CMFs but does not promote growth of cells whose CMFs are already obliquely oriented at the start of GA treatment.  相似文献   

13.
The ethylene-binding site (EBS) from Phaseolus vulgaris cv. Canadian Wonder cotyledons can be solubilised from 96,000 g pelleted material by Triton X-100 or sodium cholate. Extraction of 96,000 g pellets with acetone, butanol or butanol and ether results in a total loss of ethylene-binding activity. Like the membrane-bound form, the solubilised EBS has an apparent KD(liquid) of 10-10 M at a concentration of 32 pmol EBS per gram tissue fresh weight. Propylene and acetylene act as competitive inhibitors, carbon dioxide appears to promote ethylene binding and ethane has no significant effect. The solubilised EBS is completely denatured affect. The solubilised EBS is completely denatured after 10 min at 70°C, by 1 mM mercaptoethanol and 0.1 mM dithiothreitol, but not by trypsin or chymotrypsin. However, solubilisation decreases the rate constant of association from 103 M-1 s-1 to 101–102 M-1 s-1 and hence does not permit experimental determination of the rate constant of dissociation. The pH optimum for ethylene binding is altered from the range pH 7–10 in the membrane-bound form to the pH range 4–7 in the solubilised form. The EBS appears to be a hydrophobic, intergral membrane protein, which requires a hydrophobic environment to retain its activity. Partitioning of the EBS into polymer phases is determined by the detergent used for solubilisation indicating that when solubilised, the EBS forms a complex with detergent molecules.Abbreviations EBS ethylene-binding site - PEG polyethylene glycol  相似文献   

14.
The solubilised ethylene-binding site (EBS) of Phaseolus vulgaris L. cotyledons is an asymmetrical protein with a sedimentation coefficient of 2 S and a Stoke's radius of 6.1 nm (determined by ultracentrifugation on isokinetic gradients and gel-permeation chromatography, respectively). The molecular weight and frictional ratio were calculated as 52 000–60 000 and 2.37–2.48, respectively. The EBS has an isoelectric point at between pH 3–5, determined by isoelectric focussing and exhibits a negative charge at pH 8 during non-denaturing electrophoresis. The electrical charge on the EBS is shielded; the EBS does not bind to anion-exchange media under the experimental conditions reported here, is not precipitated by ammonium sulphate and does not precipitate at its isoelectric pH. The EBS preferentially partitions into detergent phases. The results indicate that the EBS is a hydrophobic protein complexed with detergent in aqueous solution. The techniques used to characterise the EBS also resulted in varying degress of purification.Abbreviations EBS ethylene-binding site - Tricine N-[2-hydroxy-1,1-bis(hydroxymethyl)-ethyl]glycine - Tris 2-amino-2-(hydroxymethyl)-1,3-propanediol  相似文献   

15.
The possible relationship between the levels of ethylene and 1-aminocylopropane-1-carboxylic acid (ACC) in the grains and the quality of rice (Oryza sativa L.) were investigated by using 12 rice cultivars. The results showed that both the ethylene evolution rate and ACC content in grains during the grain filling period correlated negatively with head rice production and positively with chalky kernels, chalky size, and chalkiness. The levels of ethylene and ACC were not significantly correlated with alkali spreading value and amylose content. Application of ethephon, an ethylene-releasing agent, or ACC to panicles at the early grain filling stage significantly reduced the rates of brown rice, milled rice, and head rice, and significantly increased the percentage of chalky kernels, chalky size, and chalkiness. Application of aminoethoxyvinylglycine, an inhibitor of ACC synthase, had the opposite effect. Chalkiness appears to be a senescence related phenomenon which is stimulated by ethylene. The results suggest that ethylene and ACC in grains play an important role in regulating rice quality, and that grain appearance and milling quality would be improved though the reduction of ethylene and ACC in grains during grain filling.  相似文献   

16.
Activities of tricarboxylic acid (TCA) cycle enzymes in seedlings of barnyard grass (Echinochloa phyllopogon (Stapf.) Koss) and rice (Oryza sativa L.) germinated under aerobic and anaerobic conditions were investigated. In E. phyllopogon, development of TCA-cycle enzyme activities during 10 d of anoxia generally paralleled those in air, although at lower rates. After 5 d, E. phyllopogon seedlings germinating under N2 exhibited 50–80% of the activity of seedlings grown in air, except for 2-oxoglutarate dehydrogenase (EC 1.2.4.2) and fumarate reductase (EC 1.3.1.6) which exhibited only 25–35% of aerobic activity. In anaerobically germinated rice, development of TCA-cycle enzyme activities also paralleled those in air except for aconitase (EC 4.2.1.3), isocitrate dehydrogenase (EC 1.1.1.41), and 2-oxoglutarate dehydrogenase. Those enzymes did not increase in activity under anoxia. Development of maximum enzyme activities generally occurred more rapidly and persisted longer in E. phyllopogon compared to rice. The data indicate that mitochondria of E. phyllopogon function better during anaerobiosis than those of rice and this factor may contribute to the successful biochemical strategy of this weed in rice paddies throughout the world.Abbreviation TCA tricarboxylic acid This work was supported by U.S. Department of Agriculture Competitive Research grant No. 87-CRCR1-2595 and a Herman Frasch Foundation grant in Agricultural Chemistry to R.A.K.  相似文献   

17.
The abscission zone in tomato (Lycopersicon esculentum (L.) Mill. flower pedicels is morphologically distinguishable prior to separation and is delineated by an indentation of the epidermis. Exposure of excised pedicels with the flower attached to ethylene results in abscission within 12 h and this can be accelerated by flower removal. Abscission of excised pedicels with the flower removed takes place in the absence of exogenous ethylene but this is delayed by pretreatment with aminoethoxyvinyl glycine, an inhibitor of ethylene biosynthesis. The data presented support the hypothesis that flower tissue is the source of an abscission inhibitor.Abbreviations AVG aminoethoxyvinyl glycine - IAA indole-3-acetic acid  相似文献   

18.
The activity of the ethylene-forming enzyme (EFE) in suspension-cultured tomato (Lycopersicon esculentum Mill.) cells was almost completely abolished within 10 min by 0.4 mM of the metal-chelating agent 1,10-phenanthroline. Subsequent addition of 0.4 mM FeSO4 immediately reversed this inhibition. A partial reversion was also obtained with 0.6 mM CuSO4 and ZnSO4, probably as a consequence of the release of iron ions from the 1,10-phenanthroline complex. The inhibition was not reversed by Mn2+ or Mg2+. Tomato cells starved of iron exhibited a very low EFE activity. Addition of Fe2+ to these cells caused a rapid recovery of EFE while Cu2+, Zn2+ and other bivalent cations were ineffective. The recovery of EFE activity in iron-starved cells was insensitive to cycloheximide and therefore does not appear to require synthesis of new protein. The EFE activity in tomato cells was induced by an elicitor derived from yeast extract. Throughout the course of induction, EFE activity was blocked within 10–20 min by 1,10-phenanthroline, and the induced level was equally rapidly restored after addition of iron. We conclude that iron is an essential cofactor for the conversion of 1-aminocyclopropane-1-carboxylic acid to ethylene in vivo.  相似文献   

19.
H. Edelmann  R. Bergfeld  P. Schonfer 《Planta》1989,179(4):486-494
The involvement of cell-wall polymer synthesis in auxin-mediated elongation of coleoptile segments from Zea mays L. was investigated with particular regard to the growth-limiting outer epidermis. There was no effect of indole acetic acid (IAA) on the incorporation of labeled glucose into the major polysaccharide wall fractions (cellulose, hemicellulose) within the first 2 h of IAA-induced growth. 2,6-Dichlorobenzonitrile inhibited cellulose synthesis strongly but had no effect on IAA-induced segment elongation even after a pretreatment period of 24 h, indicating that the growth response is independent of the apposition of new cellulose microfibrils at the epidermal cell wall. The incorporation of labeled leucine into total and cell-wall protein of the epidermis was promoted by IAA during the first 30 min of IAA-induced growth. Inhibition of IAA-induced growth by protein and RNA-synthesis inhibitors (cycloheximide, cordycepin) was accompanied by an inhibition of leucine incorporation into the epidermal cell wall during the first 30 min of induced growth but had no effect on the concomitant incorporation of monosaccharide precursors into the cellulose or hemicellulose fractions of this wall. It is concluded that at least one of the epidermal cell-wall proteins fulfills the criteria for a growth-limiting protein induced by IAA at the onset of the growth response. In contrast, the synthesis of the polysaccharide wall fractions cellulose and hemicellulose, as well as their transport and integration into the growing epidermal wall, appears to be independent of growth-limiting protein and these processes are therefore no part of the mechanism of growth control by IAA.Abbreviations CHI cycloheximide - COR cordycepin - DCB 2,6-dichlorobenzonitrile - GLP growth-limiting protein(s) - IAA indole-3-acetic acid  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号