首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A survey of the pathogenic fungi associated with mites on cassava in Benin, West Africa, revealed both geographical and seasonal variation in the presence of Neozygites cf. floridana (Weiser and Muma) and Hirsutella thompsonii Fisher on Mononychellus tanajoa (Bondar) and Oligonychus gossypii (Zacher). Few dead and infected mites were found during the dry season, regardless of vegetation zone. In three of 30 surveyed sites, N. floridana was found infecting 1% of the dead M. tanajoa and 2% of the dead O. gossypii, while H. thompsonii was observed infecting 20% of the dead M. tanajoa in a single site. The frequency of sites having infected mites during the wet season was 3.5 times greater than that seen during the dry season. N. floridana infected 10% of the dead M. tanajoa and 19% of the dead O. gossypii on young leaves. Mites infected with N. floridana were found either in the coastal Southern Forest Mosaic (SFM) or in the Northern Guinea Savanna vegetation zones. N. floridana was rare in the low mite densities associated with mature leaves. H. thompsonii was found on 19% and 29% of the dead M. tanajoa on young and mature leaves respectively. All M. tanajoa infected with H. thompsonii on young leaves and mature leaves (75%) were found in the SFM. A single M. tanajoa was the only infected mite found in the Southern Guinea Savanna. Relatively few O. gossypii were infected with H. thompsonii. N. floridana and H. thompsonii were found together in three sites, but never on the same host. Phytoseiids were never found infected with either pathogen. In a regression analysis, the number of dead mites was significantly estimated from the total number of mites for both species, regardless of leaf age. The numbers of dead M. tanajoa on mature leaves were also estimated from the proportion infected with H. thompsonii. The numbers of infected mites on young leaves were estimated from their association with the SFM for M. tanajoa infected with H. thompsonii, and from total mites for O. gossypii infected with N. floridana. On mature leaves, infected mite numbers were estimated from the numbers of dead M. tanajoa infected with H. thompsonii. The merit of introducing more virulent or better adapted isolates of N. floridana to control M. tanajoa in Africa is discussed.  相似文献   

2.
3.
Insect pests and phytophagous mites cause a considerable loss to tropical root crops in the field. Major pests include the sweet potato weevil Cylas puncticollis, cassava mealybug Phenacoccus manihoti, cassava green spider mite Mononychellus tanajoa, yam beetle Heteroligus meles, and taro hornworm Hippotion celerio. Field and laboratory evaluation experiments indicate that entomopathogenic microorganisms may be adequately used in the management of insect and mite pests in root crops. The highest promise probably lies with fungal pathogens (Beauvaria bassiana, Hirsutella thompsonii, Metarhizium anisopliae, Nomuraea rileyi, Entomophthora thaxteriana, and E. parvispora), but bacterial (Bacillus thuringiensis), microsporidian (Nosema locustae) nematode (Steinernema feltiae) and even viral (Baculoviruses) pathogens may be exploited in an integrated pest management programme of tropical root crop pests.  相似文献   

4.
The Varroa mite, Varroa destructor, is recognized as the most serious pest of both managed and feral Western honey bee (Apis mellifera) in the world. The mite has developed resistance to fluvalinate, an acaricide used to control it in beehives, and fluvalinate residues have been found in the beeswax, necessitating an urgent need to find alternative control measures to suppress this pest. Accordingly, we investigated the possibility of using the fungus, Hirsutella thompsonii, as a biocontrol agent of the Varroa mite. Among the 9 isolates of H. thompsonii obtained from the University of Florida and the USDA, only the 3 USDA isolates (ARSEF 257, 1947 and 3323) were infectious to the Varroa mite in laboratory tests. The mite became infected when it was allowed to walk on a sporulating H. thompsonii culture for 5 min. Scanning electron micrographs revealed that the membranous arolium of the mite leg sucker is the focus of infection where the fungal conidia adhered and germinated. The infected mites died from mycosis, with the lethal times to kill 50% (LT(50)s) dependent on the fungal isolates. Thus, the LT(50)s were 52.7, 77.2, and 96.7h for isolates 3323, 257, and 1947, respectively. Passage of H. thompsonii through Varroa mite three times significantly reduced the LT(50)s of isolates 257 and 1947 (P<0.05) but not the LT(50) of isolate 3323.The fungus did not infect the honey bee in larval, prepupal, pupal, and adult stages under our laboratory rearing conditions. Our encouraging results suggest that some isolates of H. thompsonii have the potential to be developed as a biocontrol agent for V. destructor. However, fungal infectivity against the mites under beehive conditions needs to be studied before any conclusion can be made.  相似文献   

5.
Monitoring of a population of the phytophagous cassava green mite, Mononychellus tanajoa (Bondar), and its natural enemies was undertaken in central Bahia, Brazil, in mid-1996. In spite of the presence of extremely high densities of the predatory phytoseiid mite Neoseiulus idaeus Denmark & Muma, the phytophagous mite population reached such high densities itself that there was total overexploitation of the cassava plants, leading to total leaf loss. Meanwhile, the mite-pathogenic fungus Neozygites tanajoae Delalibera, Humber & Hajek did not affect the M. tanajoa population in its growth phase as there was no inoculum present, even though we predict from a simple regression model that there was the potential for epizootics at that time. Soon after the M. tanajoa population crashed due to defoliation, there could have been an epizootic but there were simply no mite hosts to infect. These data demonstrate the ineffectiveness of one natural enemy (the predator) in terms of prey population regulation and demonstrate the importance of timing in the possible effectiveness of the other (the pathogen). For the pathogen, this probably explains its sporadic effect on host populations as previously reported. We conclude that the fungus is likely to be most useful as an adjunct to biological control with predatory mites other than N. idaeus.  相似文献   

6.
7.
The effects of plant age and infestation level of twospotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae), on visible plant damage, and the effect of plant age on spider mite population growth on impatiens, Impatiens wallerana Hook.f. (Ericales: Balsaminaceae), were determined by inoculating impatiens plants of three different ages with two densities of spider mites. Each plant was inoculated with either one adult female mite per three leaves or six leaves based on the average number of leaves on plants of each of the three age classes. Subsequently, leaf damage was correlated with mite-days (cumulative spider mite density) per leaf. The results showed that older aged plants exhibited greater damage than younger plants. Regression models of damage thresholds for each plant age suggest that monitoring for spider mites must be done periodically throughout the entire plant production cycle, but that more attention should be given toward the end of the cycle. Measurements of visible leaf damage were correlated with plant marketability. Specifically, the level of damage (proportion of damaged leaves per plant) at which plant marketability changes from a "premium" to a "discounted" category was 0.04-0.06. Thus, regression equations of the damage threshold could be used to estimate a cumulative spider mite density or mite-days equivalent to the economic threshold. Based on these equations, 5% leaf damage corresponds to 2.1, 1.51, and 1.25 mite-days for youngest, intermediate, and oldest plants, respectively. Because the damage threshold on impatiens was shown to be very low, the action threshold for biological control is essentially zero, and predators would need to be released as soon as damage is observed.  相似文献   

8.
A new quill mite species Syringophiloidus hirundinis (Acari: Syringophilidae) is described from the Barn Swallow Hirundo rustica. The species Syringophiloidus hirundinis had a prevalence of 17.1% in the two outermost tail feathers (N = 208 adult Barn Swallows) during the breeding season of the Barn Swallow host. Intensity of infestation was 9.7 adult mites per pair of infested tail feathers. The sex ratio was highly biased towards females, with only 7.5% of all individuals being males (20:3).  相似文献   

9.
The fungus, Neozygitis cf. floridana is parasitic on the cassava green mite, Mononychellus tanajoa (Bondar) (Acari: Tetranychidae) in South America and may be considered for classical biological control of cassava green mites in Africa, where cassava is an important subsistence crop, cassava green mites are an imported pest and specific natural enemies are lacking. Spider mites generally have a viscous structure of local populations, a trait that would normally hamper the spread of a fungus that is transmitted by the contact of susceptible hosts with the halo of capilliconidia surrounding an infectious host. However, if infected mites search and settle to produce capilliconidia on sites where they are surrounded by susceptible mites before becoming infectious, then the conditions for maximal transmission in a viscous host population are met. Because the ratio between spider mites and the leaf area they occupy is constant, parasite-induced host searching behaviour leads to a constant per capita transmission rate. Hence, the transmission rate only depends on the number of infectious hosts. These assumptions on parasite-induced host search and constant host density lead to a simple, analytically tractable model that can be used to estimate the maximal capacity of the fungus to decimate local populations of the cassava green mite. By estimating the parameters of this model (host density, per capita transmission rate and duration of infected and infectious state) it was shown that the fungal pathogen can reduce the population growth of M. tanajoa, but cannot drive local mite populations to extinction. Only when the initial ratio of infectious to susceptible mites exceeds unity or the effective growth rate of the mite population is sufficiently reduced by other factors than the fungus (e.g. lower food quality of the host plant, dislodgement and death by rain and wind and predation), will the fungal pathogen be capable of decimating the cassava green mite population. Under realistic field conditions, where all of these growth-reducing factors are likely to operate, there may well be room for effective control by the parasitic fungus. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

10.
The potential of Hirsutella thompsonii Fisher and Metarhizium anisopliae (Metschinkoff) as biological control agents of the parasitic mite, Varroa destructor Anderson and Trueman was evaluated in the laboratory and in observation hives. In the laboratory, time required for 90% cumulative mortality of mites (LT(90)) was 4.16 (3.98-4.42) days for H. thompsonii and 5.85 (5.48-7.43) days for M. anisopliae at 1.1 x 10(3) conidia mm(-2). At a temperature (34+/-1 degrees C) similar to that of the broodnest in a honey bee colony, Apis mellifera L., H. thompsonii [LC(90)=9.90 x 10(1) (5.86-19.35) conidia mm(-2) at Day 7] and M. anisopliae [LC(90)=7.13 x 10(3) (2.80-23.45) conidia mm(-2) at Day 7] both showed significant virulence against V. destructor. The applications of H. thompsonii to observation hives resulted in significant mortality of mites, and reduction of the number of mites per bee 21 and 42 days post-treatments. The treatments did not significantly affect the mite population in sealed brood. However, the fungus must have persisted because infected mites were still observed [82.97+/-(0.6)%] 42 days post-treatment. In addition, the fungus was found to sporulate on the host. A small percentage [2.86+/-(0.2)%] of dead mites found in the control hives also showed fungal infection, suggesting that adult bees drifted between hives and disseminated the fungus. H. thompsonii was harmless to the honey bees at the concentrations applied and did not have any deleterious effects on the fecundity of the queens. Microbial control with fungal pathogens provides promising new avenues for control of V. destructor and could be a useful component of an integrated pest management program for the honey bee industry.  相似文献   

11.
Application of nitrogenous fertilisers (NPKS 25: 5: 5:5) for yield of tea and to induce tolerance to the red crevice ( Brevipalpus phoenicis Geijskes) mite was found to be rates between 150 and 200 Kg N ha-1 yr-1 rates above 400 Kg N ha-1 encouraged the build up of mites on tea. Damage symptoms resulting from mite infestation declined with increase in application of nitrogenous fertilisers.
The levels of nitrogen in the leaf tissues increased with soil applied nitrogen and also was related to the mite numbers found on the leaves suggesting a link. The symptoms of the discoloured necrotic leaf base that accompanied mite infestation was significantly ( P ≤ 0.05) and linearly correlated (r = 0.60) to mite numbers in the control plot. The levels of applied nitrogen were negatively correlated to % leaf necrosis suggesting a tolerance leading to reduction in necrotic symptoms with fertiliser applications.  相似文献   

12.
Although coconut (Cocos nucifera L.) is the predominant host for Raoiella indica Hirst (Acari: Tenuipalpidae), false spider mite infestations do occur on bananas and plantains (Musa spp. Colla). Since its introduction, the banana and plantain industries have been negatively impacted to different degrees by R. indica infestation throughout the Caribbean. Genetic resistance in the host and the proximity of natural sources of mite infestation has been suggested as two of the main factors affecting R. indica densities in Musa spp. plantations. Greenhouse experiments were established to try to determine what effect coconut palm proximities and planting densities had on R. indica populations infesting Musa spp. plants. Trials were carried out using potted Musa spp. and coconut palms plants at two different ratios. In addition, fourteen Musa spp. hybrid accessions were evaluated for their susceptibility/resistance to colonization by R. indica populations. Differences were observed for mite population buildup for both the density and germplasm accession evaluations. These results have potential implications on how this important pest can be managed on essential agricultural commodities such as bananas and plantains.  相似文献   

13.
The present experiment was aimed at determining the influence of the grape erineum strain of Colomerus vitis (GEM) (Acari: Eriophyidae) on responses of local grapevine cultivars. GEM was applied at five density levels to each of five cultivars, i.e. Shahani, Sahebi Uroomie, Khalili Bovanat, Rishbaba and Sezdang Ghalat (listed from early to late grape ripening). The experiment was performed in a full factorial design (12 replicates each) and effects of the mite on the relative content of leaf chlorophyll, internode and cane length, leaf area and weight, number and size of the erinea, and percentage of leaves with erinea were investigated. Also mite density on leaves and in buds was assessed. Data were analyzed with a two-way ANOVA followed by Tukey’s test to separate means among treatment levels and cultivars. The relative content of chlorophyll (expressed in Spad units) in infested leaves was reduced along with an increase in mite density and it was shown to be highly significant at the two higher mite density levels for Khalili Bovanat, Rishbaba and Sezdang Ghalat; Shahani and Sahebi Uroomie leaves appeared to be less affected by mite infestation. The highest mite density treatment displayed a strong correlation with weight (positive correlation) and size (negative correlation) of the leaves of four cultivars; leaves of Sahebi Uroomie appeared to be less affected. The reduced internode length was weak in infested plants. Most infested plants produced shorter canes and their lengths appeared to have a strong negative correlation with the highest mite density in four cultivars; canes of Sahebi Uroomie did not appear affected. At the highest mite density, canes of Khalili Bovanat and Sahebi Uroomie displayed the most and the least shortening effects, respectively. The percentage of leaves with erinea, as well as the number of erinea per leaves and the diameter of erinea increased along with the mite population density. The mite densities in buds (April 2014) and on leaves with erinea (in November 2013) were higher at the highest treatment level in the medium-late (Rishbaba) and late ripening (Sezdang Ghalat) cultivars, than in the early and early-medium ripening ones. Almost all data collected in the current experiment allowed the conclusion that Sahebi Uroomie and Shahani were less affected than the other cultivars (Khalili Bovanat, Rishbaba and Sezdang Ghalat).  相似文献   

14.
Plants under herbivore attack often respond defensively by mounting chemical and physical defences. However, some herbivores can manipulate plant defences to their own benefit by suppressing the expression of induced defences. These herbivore‐induced changes specific to the attacking herbivore can either facilitate or impede the colonization and establishment of a second herbivore. Although recent studies have focused on the effect of multiple herbivory on plant induced response and the third trophic level, few have examined the ecological relevance of multiple herbivores sharing the host. Here, we investigated whether herbivory by the white mealybug Planococcus minor (Maskell) (Hemiptera: Pseudococcidae) or the red spider mite Olygonychus ilicis (McGregor) (Acari: Tetranychidae), two herbivores that peak in coffee plantations during the dry season, may facilitate the colonization and establishment of the other species in coffee plants. Dual‐choice arena tests showed that white mealybugs preferred mite‐infested over uninfested coffee plants as hosts. Fifteen days after the release of 50 first‐instar P. minor nymphs, greater numbers of nymphs and adults were found on mite‐infested than uninfested plants, indicating superior performance on mite‐infested plants. On the other hand, female red spider mites did not show clear preference between uninfested and mealybug‐infested plants and deposited similar numbers of eggs on both treatments. In a no‐choice test, red spider mites performed poorly on mealybug‐infested plants with a smaller number of eggs, nymphs, females and males found in mealybug‐infested plants relative to uninfested plants. Thus, our results indicate that coffee plants are more likely to be infested by the red spider mite before white mealybug, rather than the inverse sequence (i.e. mealybug infestation followed by red spider mites). Our findings are discussed in the context of plant manipulation reported for pseudococcid mealybugs and spider mites.  相似文献   

15.
Abstract 1 The response of Neoseiulus fallacis Garmen and Galendromus occidentalis (Acari: Phytoseiidae) to Tetranychus urticae Koch (Acari: Tetranychidae)‐damaged and undamaged hop, Humulus lupulus (L.), plants was tested using a Y‐tube olfactometer. 2 Neoseiulus fallacis but not G. occidentalis was attracted to volatiles from T. urticae‐damaged hop plants when paired with undamaged plants. 3 The response of N. fallacis to these volatiles was stronger for plants severed at the soil surface than for intact plants. 4 There was no difference in the response of N. fallacis to severed or intact hop plants that had no spider mite damage, indicating that artificial wounding by severing alone does not elicit the production of attractive volatiles detectable to N. fallacis. These results are consistent with the existence of cross‐talk between signalling pathways initiated by feeding damage and artificial wounding that result in elevated levels of predator‐attracting volatiles.  相似文献   

16.
Distribution patterns and numerical variability of the coconut mite Aceria guerreronis Keifer (Acari: Eriophyidae) and its predator Neoseiulus aff. paspalivorus DeLeon (Phytoseiidae) on the nuts of 3- to 7-month-old bunches of coconut palms were studied at two sites in Sri Lanka. At the two sites, coconut mites were present on 88 and 75% of the nuts but no more than three-quarters of those nuts showed damage symptoms. N. aff. paspalivorus was found more on mature nuts than on immature nuts. Spatial and temporal distribution of coconut mites and predatory mites differed significantly. The mean number of coconut mites per nut increased until 5-month-old bunches and declined thereafter. The densities of predatory mites followed a similar trend but peaked 1 month later. Variability in the numbers of mites among palms and bunches of the same age was great, but was relatively low on 6-month-old bunches. The results indicate that assessment of infestation levels by damage symptoms alone is not reliable. Sampling of coconut and/or predatory mite numbers could be improved by using several nuts of 6-month-old bunches. The effect of predatory mites on coconut mites over time suggests that N. aff. paspalivorus could be a prospective biological control agent of A. guerreronis.  相似文献   

17.
A total of 1,177 lice of four species were collected from 124 kelp gulls (Larus dominicanus) and 137 lice of the same four species from 60 Franklin's gulls (Larus pipixcan). The louse Saemundssonia lari (O Fabricius) (Phthiraptera: Philopteridae) was the most numerous on both gull species, with infestation rates of 4.9 on kelp gulls and 1.8 on Franklin's gulls. The second most abundant louse was Quadraceps punctatus (Burmeister), with a high infestation rate but low prevalence on kelp gulls; those parameters were much lower among lice from Franklin's gulls. The composition and community structure of the lice were similar on both host species, but not their infestation rates. In addition, the feather mite Zachvatkinia larica Mironov (Acari: Avenzoariidae) is recorded from kelp gulls and Franklin's gulls for the first time, while the gamasid mite Larinyssus sp. is recorded from kelp gulls, also for the first time. The population parameters of all species of ectoparasites are discussed.  相似文献   

18.
The cassava green mite, Mononychellus tanajoa (Bondar), is an exotic pest in Africa and is the target of a classical biological control programme. Field data from the Neotropics, where it is indigenous, are presented for the first time, charting the variation in abundance of M. tanajoa over several seasons. This was highly variable, with a characteristic trough mid-year and a peak at the turn of the year. This pattern corresponded positively with rainfall levels, appearing to fit a phenology also characteristic of African studies, where rainfall at the start of the wet season promotes a leaf flush and so growth in M. tanajoa populations. Analyses implied some impact of leaf-inhabiting predatory mites (predominantly Neoseiulus idaeus Denmark & Muma) and a considerable impact of the fungal pathogen Neozygites floridana Fisher on M. tanajoa populations. This pathogen was not observed in the host population for several (generally dry) periods implying survival outside the host, perhaps as resting spores. This is a particularly desirable characteristic of a biological control agent. It is therefore proposed that N. floridana might be of particular use in drier cassava-growing areas where rainfall at the outset of the wet season is not sufficiently intense to cause heavy M. tanajoa mortality but may be sufficient to stimulate epizootics of the fungal pathogen, protecting the flush of new cassava growth.  相似文献   

19.
The use of a standardized beat sampling method for estimating spruce spider mite, Oligonychus ununguis (Jacobi) (Acari: Tetranychidae), densities on a widely used evergreen ornamental plant species, Juniperus chinensis variety 'Sargentii' A. Henry (Cupressaceae), was examined. There was a significant positive relationship between total spruce spider mite densities and spider mite densities from beat sampling on juniper. The slope and intercept of the relationship may be used by pest managers to predict total spider mite densities on plants from beat sample counts. Beat sampling dramatically underestimates the total number of spider mites on a foliage sample. The relationships between spruce spider mite feeding injury and spider mite density estimates from beat sampling juniper foliage and total spider mite counts on foliage were also examined. There was a significant positive relationship between spruce spider mite density as estimated from beat sampling and injury to the plants. There was a similar positive relationship between the total number of spruce spider mites and injury to the plants, suggesting that a pest manager could use beat sampling counts to estimate plant injury and related thresholds. These findings have important implications to decision-making for spruce spider mite control, especially as it relates to threshold levels and determining rates of predator releases. Further assessment of the effectiveness of beat and other sampling methods across multiple spider mite- host plant associations needs to be examined to enable pest managers to select sampling plans that are feasible and reliable.  相似文献   

20.
A laboratory trial evaluated four phytoseiid species for their potential as biological control agents of spruce spider mite, Oligonychus ununguis (Jacobi) (Acari: Tetranychidae). An augmentative biological control approach, using the predatory mites Neoseiulus fallacis Garman and Galendromus occidentalis Nesbitt (Acari: Phytoseiidae), was evaluated for reducing pest mite densities and injury, and economic costs on Juniperus chinensis 'Sargentii' A. Henry (Cupressaceae) in an outdoor nursery. Sequential releases of predator species, individually and in combination, were tested and compared with two commonly used miticides, a low-toxicity miticide, horticultural oil, and a conventional miticide, hexythiazox. Timing of treatments was based on grower-determined need, and predator release rates were based on guidelines in literature received from producers of beneficial organisms. Predator releases were more expensive and provided less effective suppression of spruce spider mites, resulting in greater spider mite injury to plants, compared with conventional pesticides. However, spider mite damage to plants did not differ in an economically meaningful way between treatments. Unsatisfactory levels of control seem related to under estimations of actual spider mite abundance based on grower perceptions and the beat sampling technique used to estimate predator release rates. These data suggest that when initial populations of spruce spider mite are high, it is unlikely that sequential releases of predator species, individually or in combination, will suppress spider mite populations. In this trial, augmentative biological control control was 2.5-7 times more expensive than chemical controls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号