首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to critically examine the influence of body size on maximal oxygen uptake (VO2 max) in boys and men using body mass (BM), estimated fat-free mass (FFM), and estimated lower leg muscle volume (Vol) as the separate scaling variables. VO2 max and an in vivo measurement of Vol were assessed in 15 boys and 14 men. The FFM was estimated after percentage body fat had been predicted from population-specific skinfold measurements. By using nonlinear allometric modeling, common body size exponents for BM, FFM, and Vol were calculated. The point estimates for the size exponent (95% confidence interval) from the separate allometric models were: BM 0.79 (0.53-1.06), FFM 1.00 (0.78-1.22), and Vol 0.64 (0.40-0.88). For the boys, substantial residual size correlations were observed for VO2 max/BM0.79 and VO2 max/FFM1.00, indicating that these variables did not correctly partition out the influence of body size. In contrast, scaling by Vol0.64 led to no residual size correlation in boys or men. Scaling by BM is confounded by heterogeneity of body composition and potentially substantial differences in the mass exponent between boys and men. The FFM is precluded as an index of involved musculature because Vol did not represent a constant proportion of FFM [Vol proportional, variantFFM1.45 (95% confidence interval, 1.13-1.77)] in the boys (unlike the men). We conclude that Vol, as an indicator of the involved muscle mass, is the most valid allometric denominator for the scaling of VO2 max in a sample of boys and men heterogeneous for body size and composition.  相似文献   

2.
3.
There are conflicting reports in the literature which imply that the decrement in maximal aerobic power experienced by a sea-level (SL) resident sojourning at high altitude (HA) is either smaller or larger for the more aerobically "fit" person. In the present study, data collected during several investigations conducted at an altitude of 4300 m were analyzed to determine if the level of aerobic fitness influenced the decrement in maximal oxygen uptake (VO2max) at HA. The VO2max of 51 male SL residents was measured at an altitude of 50 m and again at 4300 m. The subjects' ages, heights, and weights (mean +/- SE) were 22 +/- 1 yr, 177 +/- 7 cm and 78 +/- 2 kg, respectively. The subjects' VO2max ranged from 36 to 60 ml X kg -1 X min -1 (mean +/- SE = 48 +/- 1) and the individual values were normally distributed within this range. Likewise, the decrement in VO2max at HA was normally distributed from 3 ml X kg-1 X min-1 (9% VO2max at SL) to 29 ml X kg-1 X min-1 (54% VO2max at SL), and averaged 13 +/- 1 ml X kg-1 X min-1 (27 +/- 1% VO2max at SL). The linear correlation coefficient between aerobic fitness and the magnitude of the decrement in VO2max at HA expressed in absolute terms was r = 0.56, or expressed as % VO2max at SL was r = 0.30; both were statistically significant (p less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Ten men and 11 women were studied to determine the effect of experimentally equating haemoglobin concentration ([Hb]) on the sex difference in maximal oxygen uptake (VO2max). VO2max was measured on a cycle ergometer using a continuous, load-incremented protocol. The men were studied under two conditions: 1) with normal [Hb] (153 g X L-1) and 2) two days following withdrawal of blood, which reduced their mean [Hb] to exactly equal the mean of the women (134 g X L-1). Prior to blood withdrawal, VO2max expressed in L X min-1 and relative to body weight and ride time on the cycle ergometer test were greater (p less than .01) in men by 1.11 L X min-1 (47%), 4.8 ml X kg-1 min-1 (11.5%) and 5.9 min (67%), respectively, whereas VO2max expressed relative to fat-free weight (FFW) was not significantly different. Equalizing [Hb] reduced (p less than .01) the mean VO2max of the men by 0.26 L X min-1 (7.5%), 3.2 ml X kg-1 min-1 (6.9%) or 4.1 ml X kg FFW-1 min-1 (7.7%), and ride time by 0.7 min (4.8%). Equalizing [Hb] reduced the sex difference for VO2max less than predicted from proportional changes in the oxygen content of the arterial blood and arteriovenous oxygen content difference during maximal exercise. It was concluded that the sex difference in [Hb] accounts for a significant, but relatively small portion of the sex difference in VO2max (L X min-1). Other factors such as the dimensions of the oxygen transport system and musculature are of greater importance.  相似文献   

5.
The purpose of this study was to investigate the physical activity levels in eleven 9-10 year old boys with reference to aerobic power or lactate threshold (LT). Daily physical activity levels were evaluated from a HR monitoring system for 12 h on three different days. VO2max, VO2-HR relationship and LT were determined by the progressive treadmill test. LT was 36.7 +/- 3.1 ml X kg-1 X min-1 and 71.0 +/- 6.6% VO2max. Mean total time of activities with HR above the level corresponding to 60% VO2max (T-60%) and that above LT (T-LT) were 34 +/- 7 and 18 +/- 7 min, respectively. VO2max (ml X kg-1 X min-1) correlated significantly with T-60% (p less than 0.01), while no significant relationship was found with LT in ml X kg-1 X min-1. In conclusion, longer daily physical activities at moderate to higher intensity for preadolescent children seem to increase VO2max rather than LT.  相似文献   

6.
Mean values for body size, body composition and endurance indices have been obtained from a homogeneous group of 125 physically active men to find predicted values of AT (age 23.4 +/- 4.3 years; height 175.9 +/- 6.5 cm; weight 72.2 +/- 8.9 kg; body fat 17.9 +/- 4.7% body weight, muscularity index 19.0 +/- 1.5 kg fat-free mass/cm2 X 10(-4) height; forced vital lung capacity 5667 +/- 815 cm3; VO2max 48.5 +/- 6.0 cm3 X kg-1 X min-1; anaerobic threshold 61.0 +/- 7.8% VO2max). Endurance performance and fitness indices were a little higher than average, but about 10% lower than in endurance-trained athletes. The authors suggest that standards of anaerobic threshold (AT) for ergonomics and endurance training should be about 55-65% VO2max, but not lower than 1800 cm3 O2 X min-1. The coefficients of correlation of AT relating to VO2max, PFO2 and submaximal load were significant at the 0.01 level. Using regression analysis, predicted values of AT were developed. A predicted value of AT can be obtained from the regression line of AT on Lsubmax used as a nomogram, during a simple PWC170 exercise test without blood or gas analysis.  相似文献   

7.
The effects of a filtering device, an air-line breathing apparatus and a self-contained breathing apparatus ( SCBA ) on pulmonary ventilation, oxygen consumption and heart rate were studied in 12 well-trained firemen aged 21-35 years. Their average maximal oxygen consumption (VO2 max) was 64.9 ml X min-1 X kg-1. Sequential tests without and with the respirator were performed on a treadmill. The continuous test contained five components, each of which lasted 5 min: sitting at rest, walking at 20%, 40%, and 60% of the individual VO2 max, and recovery sitting. During the higher submaximal work levels and recovery, ventilation, heart rate, and oxygen consumption in particular increased more with respirators than without them. At the highest work level the increments in oxygen consumption caused by the respirators were 13%, (8.7 ml X min-1 X kg-1), 7% (4.4 ml X min-1 X kg-1), and 20% (12.7 ml X min-1 X kg-1) of VO2 max. All three respirators hampered respiration, resulting in hypoventilation. The additional effort of breathing and the weight of the apparatus (15 kg with the SCBA ) increased the subjects' cardiorespiratory strain so clearly that the need for rest periods and the individual's work capacity when the respirators are worn must be carefully considered, particularly with the SCBA .  相似文献   

8.
The purpose of this study was to assess the validity of the American College of Sports Medicine's (ACSM's) submaximal treadmill running test in predicting VO2max. Twenty-one moderately well-trained men aged 18-34 years performed 1 maximal treadmill test to determine maximal oxygen uptake (M VO2max) and 2 submaximal treadmill tests using 4 stages of continuous submaximal exercise. Estimated VO2max was predicted by extrapolation to age-predicted maximal heart rate (HRmax) and calculated in 2 ways: using data from all submaximal stages between 110 b·min(-1) and 85% HRmax (P VO2max-All), and using data from the last 2 stages only (P VO2max-2). The measured VO2max was overestimated by 3% on average for the group but was not significantly different to predicted VO2max (1-way analysis of variance [ANOVA] p = 0.695; M VO2max = 53.01 ± 5.38; P VO2max-All = 54.27 ± 7.16; P VO2max-2 = 54.99 ± 7.69 ml·kg(-1)·min(-1)), although M VO2max was not overestimated in all the participants--it was underestimated in 30% of observations. Pearson's correlation, standard error of estimate (SEE), and total error (E) between measured and predicted VO2max were r = 0.646, 4.35, 4.08 ml·kg(-1)·min(-1) (P VO2max-All) and r = 0.642, 4.21, 3.98 ml·kg(-1)·min(-1) (P VO2max-2) indicating that the accuracy in prediction (error) was very similar whether using P VO2max-All or P VO2max-2, with up to 70% of the participants predicted scores within 1 SEE (~4 ml·kg(-1)·min(-1)) of M VO2max. In conclusion, the ACSM equation provides a reasonably good estimation of VO2max with no difference in predictive accuracy between P VO2max-2 and P VO2max-All, and hence, either approach may be equally useful in tracking an individual's aerobic fitness over time. However, if a precise knowledge of VO2max is required, then it is recommended that this be measured directly.  相似文献   

9.
In order to test for possible sex differences in endurance capacity, groups of young, physically active women (n = 6) and men (n = 7) performed bicycle ergometer exercise at 80% and 90% of their maximal oxygen uptakes (VO2 max). The groups were matched for age and physical activity habits. At 80% VO2 max the women performed significantly longer (P less than 0.05), 53.8 +/- 12.7 min vs 36.8 +/- 12.2 min, respectively (means +/- SD). Mid-exercise and terminal respiratory exchange ratio (R) values were significantly lower in women, suggesting a later occurrence of muscle glycogen depletion as a factor in their enhanced endurance. At 90% VO2 max the endurance times were similar for men and women, 21.2 +/- 10.3 min and 22.0 +/- 5.0 min, respectively. The blood lactate levels reached in these experiments were only marginally lower (mean differences 1.5 to 2 mmol X l-1) than those obtained at VO2 max, suggesting high lactate levels as a factor in exhaustion. The changes in body weight during the 80% experiments and the degree of hemoconcentration were not significantly different between men and women.  相似文献   

10.
The purpose of this investigation was to crossvalidate 2 equations that use the ratio of maximal heart rate (HRmax) to resting HR (HRrest) for predicting maximal oxygen consumption (VO2max) in white and black men. One hundred and nine white (n = 51) and black (n = 58) men completed a maximal exercise test on a treadmill to determine VO2max. The HRrest and HRmax were used to predict VO2max via the HRindex and HRratio equations. Validity statistics were done to compare the criterion versus predicted VO2max values across the entire cohort and within each race separately. For the entire group, VO2max was significantly overestimated with the HRindex equation, but the HRratio equation yielded no significant difference compared with the criterion. In addition, there were no significant differences shown between VO2max and either HR-based prediction equation for the white subgroup. However, both equations significantly overestimated VO2max in the black group. Furthermore, large standard error of estimates (ranging from 6.92 to 7.90 ml·kg(-1)·min(-1)), total errors (ranging from 8.30 to 8.62 ml·kg(-1)·min(-1)), and limits of agreement (ranging from upper limits of 16.65 to lower limits of -18.25 ml·kg(-1)·min(-1)) were revealed when comparing the predicted to criterion VO2max for both the groups. Considering the results of this investigation, the HRratio and HRindex methods appear to crossvalidate and prove useful for estimating the mean VO2max in white men as a group but not for an age-matched group of black men. However, because of inflated values for error, caution should be exercised when using these methods to predict individual VO2max.  相似文献   

11.
Aerobic performance of female marathon and male ultramarathon athletes.   总被引:8,自引:0,他引:8  
The aerobic performance of thirteen male ultramarathon and nine female marathon runners were studied in the laboratory and their results were related to their times in events ranging in distance from 5 km to 84.64 km. The mean maximal aerobic power output (VO2 max) of the men was 72.5 ml/kg . min compared with 58.2 ml/kg . min (p less than 0.001) in the women but the O2 cost (VO2) for a given speed or distance of running was the same in both sexes. The 5 km time of the male athletes was closely related to their VO2 max (r = -0.85) during uphill running but was independent of relative power output (%VO2 max). However, with increasing distance the association of VO2 max with male athletic performance diminished (but nevertheless remained significant even at 84.64 km), and the relationship between %VO2 max and time increased. Thus, using multiple regression analysis of the form: 42.2 km (marathon) time (h) = 7.445 - 0.0338 VO2 max (ml/kg . min) - 0.0303% VO2 max (r = 0.993) and 84.64 km (London-Brighton) time (h) = 16.998 - 0.0735 VO2 max (ml/kg . min) - 0.0844% VO2 max (r = 0.996) approximately 98% of the total variance of performance times could be accounted for in the marathon and ultramarathon events. This suggests that other factors such as footwear, clothing, and running technique (Costill, 1972) play a relatively minor role in this group of male distance runners. In the female athletes the intermediate times were not available and they did not compete beyond 42.2 km (marathon) distance but for this event a similar association though less in magnitude was found with VO2 max (r = -0.43) and %VO2 max (= -0.49). The male athletes were able to sustain 82% VO2 max (range 80--87%) in 42.2 km and 67% VO2 max (range 53--76%) in 84.64 km event. The comparable figure for the firls in the marathon was 79% VO2 max (ranges 68--86%). Our data suggests that success at the marathon and ultramarathon distances is crucially and (possibly) solely dependent on the development and utilisation of a large VO2 max.  相似文献   

12.
The purpose of this investigation was to compare differences between one- and two-legged exercise on the lactate (LT) and ventilation (VT) threshold. On four separate occasions, eight male volunteer subjects (1-leg VO2max = 3.36 l X min-1; 2-leg VO2max = 4.27 l X min-1) performed 1- and 2-legged submaximal and maximal exercise. Submaximal threshold tests for 1- and 2-legs, began with a warm-up at 50 W and then increased every 3 minutes by 16 W and 50 W, respectively. Similar increments occurred every minute for the maximal tests. Venous blood samples were collected during the last 30 s of each work load, whereas noninvasive gas measures were calculated every 30 s. No differences in VO2 (l X min-1) were found between 1- and 2-legs at LT or VT, but significant differences (p less than 0.05) were recorded at a given power output. Lactate concentration ([LA]) was different (p less than 0.05) between 1- and 2-legs (2.52 vs. 1.97 mmol X l-1) at LT. This suggests it is VO2 rather than muscle mass which affects LT and VT. VO2max for 1-leg exercise was 79% of the 2-leg value. This implies the central circulation rather than the peripheral muscle is limiting to VO2max.  相似文献   

13.
The StairMaster 4000 PT is a popular step ergometer which provides a submaximal test protocol (SM Predicted VO(2)max) for the prediction of VO(2)max (ml.kg(-1).min(-1)). The purpose of this study was to evaluate the SM Predicted VO(2)max protocol by comparing it to results from a VO(2)max treadmill test in 20 young healthy women aged 20-25 years. Subjects were 10 step-trained (ST) women who had performed aerobic activities and exercised on a step ergometer for 20-30 minutes at least 3 times per week for the past 3 months, and 10 non-step-trained (NST) women who had performed aerobic activities no more than twice a week during the past 3 months and had no previous experience on a step ergometer. The SM Predicted VO(2)max protocol used 2 steady state heart rates between approximately 115-150 b.min(-1) to estimate VO(2)max. The Bruce maximal treadmill protocol (Actual VO(2)max) was used to measure VO(2)max by open circuit spirometry. Each subject performed both tests within a 7-day period. The means and standard deviations for the Actual VO(2)max tests were 39.8 +/- 6.1 ml.kg(-1).min(-1) for the ST group, 37.6 +/- 6.3 ml.kg(-1).min(-1) for the NST group, and 38.7 +/- 6.2 ml.kg(-1).min(-1) for the Total group (N = 20); and for the SM Predicted VO(2)max tests, means and standard deviations were 40.78 +/- 14.0 ml.kg(-1).min(-1), 30.9 +/- 4.8 ml.kg(-1).min(-1) and 35.9 +/- 11.4 ml.kg(-1).min(-1). There was no significant difference (p > 0.05) between the means of the Actual VO(2)max and SM Predicted VO(2)max test for the Total group (N = 20) or the ST group (n = 10), but a significant difference (p < 0.05) was shown for the NST group. The coefficient of determination (R(2)) and standard error of estimate (SEE) for the SM Predicted VO(2)max and Actual VO(2)max tests were R(2) = 0.18, SEE = 5.72 ml.kg(-1).min(-1) for the Total group; R(2) = 0.00, SEE = 6.68 ml.kg(-1).min(-1) for the NST group; and R(2) = 0.33, SEE = 5.32 ml.kg(-1).min(-1) for ST group. In conclusion, the SM Predicted VO(2)max test has acceptable accuracy for the ST group, but significantly underpredicted the NST group by almost 7 ml; and, as demonstrated by the high SEEs, it has a low level of precision for both ST and NST subjects.  相似文献   

14.
Ventilatory responsiveness to hypoxia (HVR) has been reported to be different between highly trained endurance athletes and healthy sedentary controls. However, a linkage between aerobic capacity and HVR has not been a universal finding. The purpose of this study was to examine the relationship between HVR and maximal oxygen consumption (VO2 max) in healthy men with a wide range of aerobic capacities. Subjects performed a HVR test followed by an incremental cycle test to exhaustion. Participants were classified according to their maximal aerobic capacity. Those with a VO2 max of >or=60 ml x kg(-1) x min(-1) were considered highly trained (n = 13); those with a VO2 max of 50-60 ml x kg(-1) x min(-1) were considered moderately-trained (n = 18); and those with a VO2 max of <50 ml x kg(-1) x min(-1) were considered untrained (n = 24). No statistical differences were detected between the three groups for HVR (P > 0.05), and the HVR values were variable within each group (range: untrained = 0.28-1.61, moderately trained = 0.23-2.39, and highly trained = 0.08-1.73 l x min.%arterial O2 saturation(-1)). The relationship between HVR and VO2 max was not statistically significant (r = -0.1723; P > 0.05). HVR was also unrelated to maximal minute ventilation and ventilatory equivalents for O2 and CO2. We found that a spectrum of hypoxic ventilatory control is present in well-trained endurance athletes and moderately and untrained men. We interpret these observations to mean that other factors are more important in determining hypoxic ventilatory control than physical conditioning per se.  相似文献   

15.
Six trained male cyclists and six untrained sedentary men were studied to determine whether the plasma lactate threshold (PLT) and ventilation threshold (VT) occur at the same work rate in both fit and unfit populations. The PLT was determined from a marked increase in plasma lactate concentration ([La]) and VT from a nonlinear increase in expired minute ventilation (VE) during incremental leg-cycling tests; work rate was increased 30 W every 2 min until volitional exhaustion. The trained subjects' mean VO2 max (63.8 ml O2 X kg-1 X min-1) and VT (65.8% VO2 max) were significantly higher (P less than 0.05) than the untrained subjects' mean VO2max (35.5 ml O2 X kg-1 X min-1) and VT (51.4% VO2 max). The trained subjects' mean PLT (68.8% VO2 max) and VT did not differ significantly, but the untrained subjects' mean PLT (61.6% VO2 max) was significantly higher than their VT. The trained subjects' mean peak [La] (10.5 mmol X l-1) did not differ significantly from the untrained subjects' mean peak [La] (11.5 mmol X l-1). However, the time of appearance of the peak [La] during passive recovery was inversely related to VO2 max. These results suggest that variance in lactate diffusion and/or removal processes between the trained and untrained subjects may account in part for the different relationships between the VT and PLT in each population.  相似文献   

16.
The maximal oxygen uptake (VO2 max) of 228 men and 47 women from the Indian agricultural community was measured. The VO2 max in 20-24-year-old men was about 17% less than in the 25-29-year-old group. With advancing age, the VO2 declined gradually to the ages 55-59, excepting the 36-39-year-old group. The loss in VO2 max was 0.65 ml/kg.min per year between 25 and 39 years of age and 0.16 ml/kg.min per year between 40 and 59 years of age. However, 30-39-year-old women had 7% higher VO2 max than the 20-29-year-old age group; and the difference in VO2 max between the group 30-39 and the group 40-49 years of age was 32%. The 20-29-and 40-49-year-old women had VO2 max 24 and 30% less than those of men in the same age range.  相似文献   

17.
Zhao B  Moochhala SM  Tham Sy  Lu J  Chia M  Byrne C  Hu Q  Lee LK 《Life sciences》2003,73(20):2625-2630
Several studies have shown that the angiotensin-converting enzyme (ACE) I allele is associated with enhanced physical performance. We investigated whether this phenomenon is observed in a cohort of 67 Chinese men in Singapore. Angiotensin-converting enzyme ID polymorphism was typed with PCR method and maximal oxygen uptake (VO(2max)) of the DD, ID, and II genotypes was compared. Analysis of covariance revealed that VO(2max) was significantly higher (p<0.05) for the DD genotype (57.86 +/- 3.5 ml.kg.(-1)min(-1)) versus the ID (50.58 +/- 1.80 ml.kg.(-1)min(-1)) or II (50.48 +/- 1.58 ml.kg.(-1) min(-1)) genotype. Our findings suggest that the ACE DD genotype in young adult Chinese males is associated with higher levels of VO(2max).  相似文献   

18.
VO2 VE, and heart rates (fH) were measured in 61 Colombian sugarcane cutters while harvesting cane in the AM and PM and in the laboratory during a VO2max test. Productivity and sweat rates were also measured in the field. The subjects had an estimated dietary intake of 2,970 kcal/day, which was lower than calculated daily energy expenditure. During the work measurements the VO2 was 1.5 1/min, VE 48 1/min, and fH 135 beats/min; there were no differences between AM and PM values. The subjects sustained about 35% of VO2max during the 8 h workday, but worked at 57% of VO2max during the tests. Measured energy cost was 7.4 +/- 1.5 kcal/min during the workday. Sweat rates were higher PM than AM (5 KG/8 h day). Grouping of the men according to productivity demonstrated that taller, heavier men were better producers and had lower calculated heart rates at VO2 1.51/min. Efficiency of cane cutting was higher (9%) PM.  相似文献   

19.
The aim of this pilot study was to evaluate the accuracy of a simple step-test procedure supplemented by the measurement of heart rate (HR) (STEP1) to assess the cardiorespiratory capacity i.e., maximal oxygen consumption (VO2max) of Thai workers. The subjects comprised 18 men and 17 women. Their ages varied from 19 to 20 years and all were physically active. The subjects performed three tests: a submaximal incremental cycle-ergometer (CYCLE) test supplemented by HR recordings and respiratory gas exchange, and two step-tests (STEP1 and STEP2). In the STEP1 test HR was recorded continuously. The STEP2 test included the measurements of HR and respiratory gas exchange. For the male subjects the mean difference of the estimated VO2 max values obtained from the CYCLE and STEP1 test was 15% (p < 0.05). With the female subjects the mean VO2 max values were equal when predicted according to the CYCLE and STEP1 tests. The present STEP1 test is not sufficiently accurate to predict the VO2 max of Thai men. The results of this pilot study need to be confirmed with larger samples of subjects with various backgrounds in terms of individual characteristics and occupations.  相似文献   

20.
The purpose of this study was to examine the effects of short-term high-intensity interval training (HIIT) on cardiovascular function, cardiorespiratory fitness, and muscular force. Active, young (age and body fat = 25.3 ± 4.5 years and 14.3 ± 6.4%) men and women (N = 20) of a similar age, physical activity, and maximal oxygen uptake (VO2max) completed 6 sessions of HIIT consisting of repeated Wingate tests over a 2- to 3-week period. Subjects completed 4 Wingate tests on days 1 and 2, 5 on days 3 and 4, and 6 on days 5 and 6. A control group of 9 men and women (age and body fat = 22.8 ± 2.8 years and 15.2 ± 6.9%) completed all testing but did not perform HIIT. Changes in resting blood pressure (BP) and heart rate (HR), VO2max, body composition, oxygen (O2) pulse, peak, mean, and minimum power output, fatigue index, and voluntary force production of the knee flexors and extensors were examined pretraining and posttraining. Results showed significant (p < 0.05) improvements in VO2max, O2 pulse, and Wingate-derived power output with HIIT. The magnitude of improvement in VO2max was related to baseline VO2max (r = -0.44, p = 0.05) and fatigue index (r = 0.50, p < 0.05). No change (p > 0.05) in resting BP, HR, or force production was revealed. Data show that HIIT significantly enhanced VO2max and O2 pulse and power output in active men and women.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号