首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The proximal femur has long been used to distinguish fossil hominin taxa. Specifically, the genus Homo is said to be characterized by larger femoral heads, shorter femoral necks, and more lateral flare of the greater trochanter than are members of the genera Australopithecus or Paranthropus. Here, a digitizing arm was used to collect landmark data on recent human (n=82), chimpanzee (n=16), and gorilla (n=20) femora and casts of six fossil hominin femora in order to test whether one can discriminate extant and fossil hominid (sensu lato) femora into different taxa using three-dimensional (3D) geometric morphometric analyses. Twenty proximal femoral landmarks were chosen to best quantify the shape differences between hominin genera. These data were first subjected to Procrustes analysis. The resultant fitted coordinate values were then subjected to PCA. PC scores were used to compute a dissimilarity matrix that was subjected to cluster analyses. Results indicate that one can easily distinguish Homo, Pan, and Gorilla from each other based on proximal femur shape, and one can distinguish Pliocene and Early Pleistocene hominin femora from those of recent Homo. It is more difficult to distinguish Early Pleistocene Homo proximal femora from those of Australopithecus or Paranthropus, but cluster analyses appear to separate the fossil hominins into four groups: an early australopith cluster that is an outlier from other fossil hominins; and two clusters that are sister taxa to each other: a late australopith/Paranthropus group and an early Homo group.  相似文献   

2.
On the basis of a well‐preserved pelvis of Anhanguera sp. from the Lower Cretaceous (Aptian) of the Chapada do Araripe, Brazil, the problem of terrestrial locomotion in pterosaurs is discussed. A three‐dimensional reconstruction of the pelvis led to a lateral, dorsal and posterior orientation of the acetabula. By use of the preserved proximal ends of the femora of the same individual, the articulation in the hip socket could be tested. The normal articulation of the femur resulted in a horizontal position of the femur shaft, probably during flight. For constructional reasons the femur could not be brought down to a vertical position. Therefore, a parasagittal swing of the femora necessary for a bird‐like stance and gait must have been impossible. It is suggested that in pterosaurs the wing membrane was attached to the upper leg, which helped in stretching, steering and cambering.

Moreover, on the basis of comparisons of the fossil preservation of pterosaurs Compsognathus and Archaeopteryx in the Solnhofen limestone, it is concluded that the femora of pterosaurs were splayed out laterally, and that they had a semi‐erect gait. They were not bipedal animals, but had to use their fore limbs as well on the ground. Nevertheless, as vertebrates extremely adapted to flight, they could not have been able quadrupeds, either.  相似文献   

3.
The proximal half of a hominid femur was recovered from deep within a paleokarst feature at the Berg Aukas mine, northern Namibia. The femur is fully mineralized, but it is not possible to place it in geochrono logical context. It has a very large head, an exceptionally thick diaphyseal cortex, and a very low collodiaphyseal angle, which serve to differentiate it from Holocene homologues. The femur is not attributable to Australopithecus, Paranthropus, or early Homo (i.e., H. habilis sensu lato). Homo erectus femora have a relatively longer and AP flatter neck, and a shaft that exhibits less pilaster than the Berg Aukas specimen. Berg Aukas also differs from early modern femora in several features, including diaphyseal cortical thickness and the degree of subtrochanteric AP flattening. The massive diaphyseal cortex of Berg Aukas finds its closest similarity within archaic H. sapiens (e.g., Castel di Guido) and H. erectus (e.g., KNM-ER 736) samples. It has more cortical bone at midshaft than any other specimen, although relative cortical thickness and the asymmetry of its cross-sectional disposition at this level are comparable with those of other Pleistocene fem ora. The closest morphological comparisons with Berg Aukas are in archaic (i.e., Middle Pleistocene) H. sapiens and Neandertal samples. © 1995 Wiley-Liss, Inc.  相似文献   

4.
Our knowledge concerning stature in earlyHomo is scanty. In this paper, based on comparison with the fossil femur KNM-ER 999, an estimate of 482 mm femur length is derived for KNM-ER 736, the latter dating from the Lower Pleistocene. From comparison with other fossil and modern femora, KNM-ER 736 appears to be the longest hominid femur so far recovered from a site of Early Pleistocene age. Moreover, the estimated femur length is higher than the published mean values of most modern populations. Provided that trunk and head proportions were not radically different from modernH. sapiens, the finding would suggest that a stature similar to that of modern man was already reached by East AfricanHomo as early as about 1.6 Myr before present.  相似文献   

5.
A study of the mass, volume and density of each of the wrist and hand bones of male and female human skeletons was undertaken. It was found that the mass and volume (i.e. size) of the bones are well correlated with the relative frequencies of preservation ofAustralopithecus and earlyHomo wrist and hand bones from fossil hominid sites in Africa. In general, the larger the bone, the greater its preservation frequency. In contrast to findings on bovid bones, the density of hand and wrist bones is not well correlated with the frequency of such bones recovered from these sites. These findings may be explained in terms of the agents of deposition of the bones, the physical nature of the deposit, and the methods of extraction of the fossils from the deposit.  相似文献   

6.
The assignment of fossil hominoid jaws from the Plio/Pleistocene of Hadar to a single genus,Australopithecus Dart, 1925, is a misnomer. They are morphologically unrestricted to and inconsistent with the diagnosis and evolutionary trend ofAustralopithecus. The morphological pattern of four large jaws is indeed australopithecine and similar toA. africanus Dart, 1925, but six small jaws reveal a pre-habilis stage of dental development early in theHomo lineage. On the basis of their unique hominine dentition, they are reinterpreted as representing a new species,Homo antiquus n.sp.  相似文献   

7.
A new fossil hominid partial skeleton (KNM-ER 803) that was discovered from the Plio-Pleistocene sediments to the east of Lake Rudolf is described. It includes parts of a femur, two tibiae, an ulna, two radii, a third metatarsal and several toe bones. There are also two teeth, an upper canine and an upper central incisor. A second new fossil hominid (KNM-ER 164) is represented by a parietal fragment, two vertebrae and some hand bones. A third is represented by a massive left femur (KNM-ER 999). The specimens are described in anatomical detail, some are illustrated and selected measurements are given. It is concluded that they should be attributed to the genus Homo sp. indet. Detailed comparative studies will be published in due course.  相似文献   

8.
Interpreting morphological variation within the early hominin fossil record is particularly challenging. Apart from the fact that there is no absolute threshold for defining species boundaries in palaeontology, the degree of variation related to sexual dimorphism, temporal depth, geographic variation or ontogeny is difficult to appreciate in a fossil taxon mainly represented by fragmentary specimens, and such variation could easily be conflated with taxonomic diversity. One of the most emblematic examples in paleoanthropology is the Australopithecus assemblage from the Sterkfontein Caves in South Africa. Whereas some studies support the presence of multiple Australopithecus species at Sterkfontein, others explore alternative hypotheses to explain the morphological variation within the hominin assemblage. In this review, I briefly summarize the ongoing debates surrounding the interpretation of morphological variation at Sterkfontein Member 4 before exploring two promising avenues that would deserve specific attention in the future, that is, temporal depth and nonhuman primate diversity.  相似文献   

9.
Up to the present, no complete femur of Australopithecus has been discovered. Several proximal and distal femoral fragments are available and a fairly complete pelvis. Using this material and the biomechanical requirements of the femur implicit in an erect biped, we have calculated the bicondylar length of the femur of A. africanus to have been about 28 cm. This is smaller than most previous estimates and is consistent with a body size as small as 42–43 inches and a weight of between 40 and 50 pounds.  相似文献   

10.
《Comptes Rendus Palevol》2008,7(8):607-627
This study compares fossil femora attributed to extinct African bunodont lutrines with extant mustelids and ursids to reconstruct locomotor behavior. Due to the immense size differences among taxa, shape data were used to compare morphology. Based on morphological differences, the fossil femora are suggested to belong to different taxa with different locomotor abilities and habitat preferences. The Langebaanweg femur is the oldest and has a typical mustelid morphology suggesting that it was a locomotor generalist like most mustelids. The West Turkana form is more like extant nonbunodont otters, but much larger, and may have belonged to a semiaquatic taxon. The enormous Omo femur shares some features with truly aquatic taxa (e.g., Enhydra) and is the most likely to have been fully aquatic. The same may hold true for the Hadar species as it is most similar to that from the Omo. If these femora truly belong to bunodont lutrines, then they are more diverse in postcranial morphology than in dental morphology.  相似文献   

11.
The nearly complete cranium DAN5/P1 was found at Gona (Afar, Ethiopia), dated to 1.5–1.6 Ma, and assigned to the species Homo erectus. Its size is, nonetheless, particularly small for the known range of variation of this taxon, and the cranial capacity has been estimated as 598 cc. In this study, we analyzed a reconstruction of its endocranial cast, to investigate its paleoneurological features. The main anatomical traits of the endocast were described, and its morphology was compared with other fossil and modern human samples. The endocast shows most of the traits associated with less encephalized human taxa, like narrow frontal lobes and a simple meningeal vascular network with posterior parietal branches. The parietal region is relatively tall and rounded, although not especially large. Based on our set of measures, the general endocranial proportions are within the range of fossils included in the species Homo habilis or in the genus Australopithecus. Similarities with the genus Homo include a more posterior position of the frontal lobe relative to the cranial bones, and the general endocranial length and width when size is taken into account. This new specimen extends the known brain size variability of Homo ergaster/erectus, while suggesting that differences in gross brain proportions among early human species, or even between early humans and australopiths, were absent or subtle.  相似文献   

12.
A biomechanical analysis of the pelvic and femoral samples available for Australopithecus is presented. No feature of these samples was found to distinguish their gait pattern from that of modern man or to differ in the two presently recognized allomorphs of Australopithecus. Morphological differences between Australopithecus and modern man appear to be the result of different degrees of encephalization rather than any difference in locomotor adaptation.  相似文献   

13.
Observations on petalial asymmetry for 190 hominoid endocasts are reported, and their statistical differences assessed. While all taxa of hominoids show asymmetries to various degrees, the patterns or combinations of petalial asymmetries are very different, with fossil hominids and modern Homo sapiens showing an identical pattern of left-occipital, right-frontal petalias, which contrasts with those found normally in pongids. Of the pongids, Gorilla shows the greater degree of asymmetry in left-occipital petalias. Only modern Homo and hominids (Australopithecus, Homo erectus, Neandertals) show a distinct left-occipital, right-frontal petalial pattern. Analysis by x2 statistics shows the differences to be highly significant. Due to small sample size and incompleteness of endocasts, small-brained hominids, i.e., Australopithecus, are problematical. To the degree that gross petalial patterns are correlated with cognitive task specialization, we speculate that human cognitive patterns evolved early in hominid evolution and were related to selection pressures operating on both symbolic and spatiovisual integration, and that these faculties are corroborated in the archaeological record.  相似文献   

14.
15.
The capacity of limb bones to resist the locomotor loads they encounter depends on both the pattern of those loads and the material properties of the skeletal elements. Among mammals, understanding of the interplay between these two factors has been based primarily on evidence from locomotor behaviors in upright placentals, which show limb bones that are loaded predominantly in anteroposterior bending with minimal amounts of torsion. However, loading patterns from the femora of opossums, marsupials using crouched limb posture, show appreciable torsion while the bone experiences mediolateral (ML) bending. These data indicated greater loading diversity in mammals than was previously recognized, and suggested the possibility that ancestral loading patterns found in sprawling lineages (e.g., reptilian sauropsids) might have been retained among basal mammals. To further test this hypothesis, we recorded in vivo locomotor strains from the femur of the nine‐banded armadillo (Dasypus novemcinctus), a member of the basal xenarthran clade of placental mammals that also uses crouched limb posture. Orientations of principal strains and magnitudes of shear strains indicate that armadillo femora are exposed to only limited torsion; however, bending is essentially ML, placing the medial aspect of the femur in compression and the lateral aspect in tension. This orientation of bending is similar to that found in opossums, but planar strain analyses indicate much more of the armadillo femur experiences tension during bending, potentially due to muscles pulling on the large, laterally positioned third trochanter. Limb bone safety factors were estimated between 3.3 and 4.3 in bending, similar to other placental mammals, but lower than opossums and most sprawling taxa. Thus, femoral loading patterns in armadillos show a mixture of similarities to both opossums (ML bending) and other placentals (limited torsion and low safety factors), along with unique features (high axial tension) that likely relate to their distinctive hindlimb anatomy. J. Morphol. 26:889–899, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

16.
Of Paleocene primates only Plesiadapis is complete enough to reconstruct locomotor patterns; it was an arboreal scrambler, perhaps functioning like a large squirrel. Eocene lemurs (adapids) show an array of locomotor types much like certain modern Malagasy lemurs. The European Eocene tarsiid Necrolemur and the American Hemiacodon show the beginning of saltatory specializations in possession of elongated calcaneum and astragalus. Although not a direct anthropoid ancestor Necrolemur seems one of the best models for representing the early locomotor type from which higher primates arose. The Oligocene primates of Egypt (among which are the earliest undoubted pongids) are preserved with a forest fauna. Structures of long bones suggest they were arboreal. A considerable number of Miocene ape bones are known and those of Pliopithecus and Dryopithecus indicate similar adaptations. Of African Miocene forms, Dryopithecus major was a large, gorilla-sized animal, and hence perhaps primarily terrestrial. D. africanus was somewhat more arboreally adapted and a partial brachiator. The Italian fossil Oreopithecus, a coal-swamp dweller, shows indications of bipedality in pelvic structure. Ramapithecus, which is presumably ancestral to Australopithecus, shows palatal and facial patterns much like these later hominids, and probably hence had locomotor patterns more like men than like living apes; its lack of the dental specializations of apes strongly supports this suggestion.  相似文献   

17.
The postcranial sample ofA. afarensis can be divided into two size groups. Among the best preserved elements which are represented by both morphs are the distal femur, proximal ulna, and capitate. The difference between the large and small fossil femora is similar to the difference between average male and femaleG. gorilla andP. pygmaeus. The distal femora ofH. sapiens are less sexually dimorphic while those ofP. paniscus, P. troglodytes, andH. lar are not significantly dimorphic at all. Large and small capitates and proximal ulnae ofA. afarensis differ slightly more than the highly dimorphic species of extant Hominoidea. In my sample of Amerindians, the capitate and proximal ulna are also strongly dimorphic. The two species ofPan have insignificant sexual dimorphism in these traits. There results imply that strong sexual dimorphism in body size is the primitive condition for the large bodied hominoids.  相似文献   

18.
The external morphology of a fragmentary right proximal femur from southwestern Uganda is described here. Discovered in the Kikorongo Crater of Queen Elizabeth National Park in 1961, this specimen was informally assigned to Homo sapiens (although never described) and tentatively dated to the late Pleistocene. However, because aspects of the external morphology of the femur align the fossil with the African great apes, we suggest that the Kikorongo femur may be the first postcranial fossil of the genus Pan. Like the African apes, the Kikorongo specimen lacks both an obturator externus groove and an intertrochanteric line. It has a short femoral neck with a circular cross section, and a narrow and deep superior notch. Using resampling statistics and discriminant function analysis, the Kikorongo femur clustered with the genus Pan, as opposed to Gorilla or Homo. However, if the specimen is from Pan, it would be large for this taxon. Furthermore, features that clearly distinguish the external morphology of Plio-Pleistocene hominin proximal femora from African ape femora, such as the shape of the femoral neck in cross section and femoral neck length, have converged in Holocene humans and African apes. Unfortunately, the internal morphology of the femoral neck of the Kikorongo fossil was not discernable. Although we hypothesize that the Kikorongo femur is from the genus Pan, there is such variability in the proximal femora of modern humans that, although it would be an unusual human, it remains possible that this fossil represents H. sapiens.  相似文献   

19.
The relationship between Homo habilis and early African Homo erectus has been contentious because H. habilis was hypothesized to be an evolutionary stage between Australopithecus and H. erectus, more than a half‐century ago. Recent work re‐dating key African early Homo localities and the discovery of new fossils in East Africa and Georgia provide the opportunity for a productive re‐evaluation of this topic. Here, we test the hypothesis that the cranial sample from East Africa and Georgia represents a single evolutionary lineage of Homo spanning the approximately 1.9–1.5 Mya time period, consisting of specimens attributed to H. habilis and H. erectus. To address issues of small sample sizes in each time period, and uneven representation of cranial data, we developed a novel nonparametric randomization technique based on the variance in an index of pairwise difference from a broad set of fossil comparisons. We fail to reject the hypothesis of a single lineage this period by identifying a strong, time‐dependent pattern of variation throughout the sequence. These results suggest the need for a reappraisal of fossil evidence from other regions within this time period and highlight the critical nature of the Plio‐Pleistocene boundary for understanding the early evolution of the genus Homo.  相似文献   

20.
The gravimetric density of humeri, radii, femora and tibiae from a series of 274 male and female skeletons of rhesus monkeys, Macaca mulatta, was determined for fetal, young and adult periods. The ages of 171 of the animals were known: they ranged from 57 days of gestation to 13.6 years; the ages of an additional 103 skeletons were estimated. The mean density of the fetal bones was found to increase linearly with age and was higher for males than females, and higher for the superior than for the inferior limb bones. During the young period the pattern of increase in density can be represented by a power-type curve, and the density is significantly higher in females than in males and in superior than in inferior limb bones. The densities of the long limb bones of the adult skeletons show a slight, but not significant, negative trend with increasing age. In this age group the mean densities are higher for males than females and higher for the superior than for the inferior limb bones. The percentage ash weight was determined for the total skeleton and for 21 subdivisions of 23 postnatal skeletons with estimated ages. The skull and long limb bones were found to have higher mean percentage ash weights than the vertebral segments and the sternum. Both the density and the percentage ash weight of the Macaca mulatta skeletons examined exceed those found in our earlier studies of the human skeleton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号