首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
Genetically based variation in coloration occurs in populations of many organisms belonging to various taxa, including birds, mammals, frogs, molluscs, insects and plants. Colour polymorphism has evolved in raptors more often than in any other group of birds, suggesting that predator–prey relationships was a driving evolutionary force. Individuals displaying a new invading colour morph may enjoy an initial foraging advantage because prey have difficulties in learning the colour of a rare morph (apostatic selection), or because morphs provide alternative foraging benefits allowing differently coloured individuals to exploit distinct food niches (disruptive selection). Plumage polymorphism should therefore have evolved in species that prey upon animals having the physiological ability to distinguish between differently coloured predators but also to flee once a predator has been detected. From this assumption, we can predict that closely related polymorphic and monomorphic species prey upon different animals. They may also differ in morphology, because foraging upon different prey may require different foraging modes, and in turn different morphological structures. We tested these two predictions in a comparative study of raptors. As expected, polymorphic and monomorphic species had a different diet, and there was a difference in wing length between polymorphic and monomorphic species within two genera ( Buteo and Accipiter ). Across all raptors for which phylogenetic relationships are known, polymorphic species preyed more often upon mammals than did monomorphic ones. These two types of raptor did not differ in the frequency of birds, insects and reptiles in their diets. We discuss these results in the light of the hypothesis that predator–prey relationships played a role in the evolution of colour polymorphism. © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 81 , 565–578.  相似文献   

2.
A linkage disequilibrium between sexually selected and life history traits can be explained by three mutually non-exclusive mechanisms. Genes coding for two traits may be located close on the same chromosome, genes responsible for variation in one of the trait may pleiotropically alter the other, and non-random pairing with respect to two traits may generate a non-physical linkage disequilibrium between their genes. Knowledge of which of these three mechanisms is responsible for a covariation between two traits is of interest to understand why differently ornamented individuals differ in several phenotypic aspects. In Switzerland, barn owls Tyto alba mate randomly with respect to a colour polymorphism generating a large range of variants between reddish-brown and white, males being lighter coloured than females. Several studies have shown that plumage coloration is not neutral with respect to some life history components. To test whether coloration is genetically associated with body size, partial cross-fostering experiments were performed by exchanging some hatchlings between nests. These experiments showed that darker biological fathers produce longer-tailed offspring. This sex-specific pattern is consistent with the hypothesis of non-physical linkage disequilibrium. In line with this hypothesis, darker coloured males were mated with longer-tailed females, whereas female coloration was not associated with tail length of their mate. The finding that dark nestlings had a longer tail than their pale siblings also supports the physical linkage and pleiotropy hypotheses. Therefore, non-random pairing can generate or strengthen a genetic covariation between a secondary sexual character and a morphological trait.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 88 , 475–488.  相似文献   

3.
Heritabilities and genetic correlations for body size characters and development period in a coccinellid beetle,Harmonia axyridis were estimated by a sib-analysis experiment. Positive genetic correlations were detected between size characters and development rate. If this is upheld in the field, genetic variation would be eliminated, as the loci affecting the characters are supposed to be fixed. However, the results indicated moderate heritabilities for all characters. Possible explanations for the results are discussed.  相似文献   

4.
Categorizing individuals into discrete forms in colour polymorphic species can overlook more subtle patterns in coloration that can be of functional significance. Thus, quantifying inter-individual variation in these species at both within- and between-morph levels is critical to understand the evolution of colour polymorphisms. Here we present analyses of inter-individual colour variation in the Reunion grey white-eye (Zosterops borbonicus), a colour polymorphic wild bird endemic to the island of Reunion in which all highland populations contain two sympatric colour morphs, with birds showing predominantly grey or brown plumage, respectively. We first quantified colour variation across multiple body areas by using a continuous plumage colour score to assess variation in brown-grey coloration as well as smaller scale variation in light patches. To examine the possible causes of among-individual variation, we tested if colour variation in plumage component elements could be explained by genotypes at two markers near a major-effect locus previously related to back coloration in this species, and by other factors such as age, sex and body condition. Overall, grey-brown coloration was largely determined by genetic factors and was best described by three distinct clusters that were associated to genotypic classes (homozygotes and heterozygote), with no effect of age or sex, whereas variation in smaller light patches was primarily related to age and sex. Our results highlight the importance of characterizing subtle plumage variation beyond morph categories that are readily observable since multiple patterns of colour variation may be driven by different mechanisms, have different functions and will likely respond in different ways to selection.  相似文献   

5.
Colour polymorphism in vertebrates is usually under genetic control and may be associated with variation in physiological traits. The melanocortin 1 receptor (Mc1r) has been involved repeatedly in melanin-based pigmentation but it was thought to have few other physiological effects. However, recent pharmacological studies suggest that MC1R could regulate the aspects of immunity. We investigated whether variation at Mc1r underpins plumage colouration in the Eleonora's falcon. We also examined whether nestlings of the different morphs differed in their inflammatory response induced by phytohemagglutinin (PHA). Variation in colouration was due to a deletion of four amino acids at the Mc1r gene. Cellular immune response was morph specific. In males, but not in females, dark nestling mounted a lower PHA response than pale ones. Although correlative, our results raise the neglected possibility that MC1R has pleiotropic effects, suggesting a potential role of immune capacity and pathogen pressure on the maintenance of colour polymorphism in this species.  相似文献   

6.
A major goal in evolutionary biology is to determine how phenotypic variation arises and is maintained in natural populations. Recent studies examining the morphological, physiological and behavioural differences among discrete colour morphotypes (morphs) have revealed several mechanisms that maintain discrete variation within populations, including frequency‐dependence, density‐dependence and correlational selection. For example, trade‐offs over resource allocation to morphological, physiological and behavioural traits can drive correlational selection for morph‐specific phenotypic optima. Here, we describe a ventral colour polymorphism in the wall lizard (Podarcis muralis) and test the hypothesis that morphs differ along multivariate axes defined by trade‐offs in morphological, physiological, and immunological traits. We show that ventral colour is a discrete trait and that morphs differ in body size, prevalence of infection by parasites and infection intensity. We also find that morphs differ along multivariate phenotypic axes and experience different multivariate selection pressures. Our results suggest that multivariate selection pressures may favour alternative optimal morph‐specific phenotypes in P. muralis.  相似文献   

7.
8.
Telomere erosion has been proposed to be tightly associated with senescence, environmental stressors and life history trade‐offs. How telomere dynamics vary across life stages and especially in relation to (heritable) phenotypic traits is still unclear. The tawny owl Strix aluco display a highly heritable melanin‐based colour polymorphism, a grey and a brown morph, linked to several fitness traits including morph‐specific telomere dynamics. As adults, brown tawny owls have shorter relative telomere length (RTL) and exhibit faster telomere shortening rate than grey owls. Here we test if these morph‐specific telomere dynamics emerge already during growth, or if they are induced only in adult life through differential physiological costs associated with the life history of the morphs. We analysed RTL from 287 tawny owl offspring and 81 first breeding adults to evaluate at what life stage morph‐specific patterns emerge. We found no differences in RTL between the two morphs during the nestling period nor at the first breeding attempt. Sex, brood size or size rank in the nest did not affect offspring RTL. Among first‐breeders, females had shorter telomeres than males suggesting a sampling‐time dependent difference in reproductive costs between sexes, due to the prominent sex roles in tawny owls in the early nestling period. The probability to return to breed after the first breeding attempt was not affected by RTL, sex or colour morph. The lack of morph‐specific difference in RTL among nestlings and first breeders suggests that previously observed morph‐specific differences in RTL dynamics in adults emerge at the onset of the breeding career and is likely due to different physiological profiles and life‐history strategies adopted by adults. We conclude that different telomere dynamics and senescence patterns among highly heritable phenotypes (colour morphs) are likely to be a result of differential costs of reproduction and self‐maintenance.  相似文献   

9.
This article extends and adds more realism to Lande's analytical model for evolution under mate choice by using individual‐based simulations in which females sample a finite number of males and the genetic architecture of the preference and preferred trait evolves. The simulations show that the equilibrium heritabilities of the preference and preferred trait and the genetic correlation between them (rG), depend critically on aspects of the mating system (the preference function, mode of mate choice, choosiness, and number of potential mates sampled), the presence or absence of natural selection on the preferred trait, and the initial genetic parameters. Under some parameter combinations, preferential mating increased the heritability of the preferred trait, providing a possible resolution for the lek paradox. The Kirkpatrick–Barton approximation for rG proved to be biased downward, but the realized genetic correlations were also low, generally <0.2. Such low values of rG indicate that coevolution of the preference and preferred trait is likely to be very slow and subject to significant stochastic variation. Lande's model accurately predicted the incidence of runaway selection in the simulations, except where preferences were relative and the preferred trait was subject to natural selection. In these cases, runaways were over‐ or underestimated, depending on the number of males sampled. We conclude that rapid coevolution of preferences and preferred traits is unlikely in natural populations, but that the parameter combinations most conducive to it are most likely to occur in lekking species.  相似文献   

10.
The evolution and maintenance of colour polymorphisms remains a topic of considerable research interest. One key mechanism thought to contribute to the coexistence of different colour morphs is a bias in how conspicuous they are to visual predators. Although individuals of many species camouflage themselves against their background to avoid predation, differently coloured individuals within a species may vary in their capacity to do so. However, to date, very few studies have explicitly investigated the ability of different colour morphs to plastically adjust their colouration to match their background. The red devil (Amphilophus labiatus) is a Neotropical cichlid fish with a stable colour polymorphism, with the gold morph being genetically dominant and having a myriad of documented advantages over the dark morph. However, gold individuals are much rarer, which may be related to their heightened conspicuousness to would‐be predators. Here, we tested the ability of differently coloured individuals to phenotypically adjust the shade of their body colour and patterns to match their background. In particular, we filmed dark, gold and mottled (a transitioning phase from dark to gold) individuals under an identical set‐up on light vs. dark‐coloured substrates. We found that, in contrast to individuals of the dark morph, gold and mottled individuals were less capable of matching their body colouration to their background. As a result, gold individuals appeared to be more conspicuous. These results suggest that a difference in background matching ability could play an important role in the maintenance of colour polymorphisms.  相似文献   

11.
Co-evolution between phenotypic variation and other traits is of paramount importance for our understanding of the origin and maintenance of polymorphism in natural populations. We tested whether the evolution of plumage polymorphism in birds of prey and owls was supported by the apostatic selection hypothesis using ecological and life-history variables in birds of prey and owls and performing both cross taxa and independent contrast analyses. For both bird groups, we did not find any support for the apostatic selection hypothesis being the maintaining factor for the polymorphism: plumage polymorphism was not more common in taxa hunting avian or mammalian prey, nor in migratory species. In contrast, we found that polymorphism was related to variables such as sexual plumage dimorphism, population size and range size, as well as breeding altitude and breeding latitude. These results imply that the most likely evolutionary correlate of polymorphism in both bird groups is population size, different plumage morphs might simply arise in larger populations most likely because of a higher probability of mutations and then be maintained by sexual selection.  相似文献   

12.
We studied the evolution of colour polymorphism in diurnal raptors, owls and nightjars, the avian taxa in which this trait is most widespread, in relation to species ecological niche width and diet. Two main mechanisms have been put forward to explain the maintenance of polymorphism, namely apostatic selection and disruptive selection. The niche variation hypothesis states that species with broader ecological niches should be more variable compared with those with narrow niches because of the action of disruptive selection; the apostatic selection hypothesis conversely suggests that intraspecific colour variation should be promoted in predators by prey forming an avoidance image for the more common colour morph. Our aim was to determine if colour polymorphism occurrence was associated with broad ecological niches as predicted by the niche variation hypothesis, or with predation on intelligent and sharp‐sighted prey as predicted by the avoidance image hypothesis. Pairwise comparisons were made between pairs of closely related species differing in variables expected to influence the occurrence of polymorphism. We found that polymorphic species of all three groups showed wider and more continuous distribution ranges, frequented many different habitats, both open and closed, and lived in seasonally alternating dry/wet climates. Polymorphic species were more migratory compared with monomorphic ones, and they showed an activity pattern covering both day and night. Conversely, colour polymorphism was not higher in species preying on birds and mammals. All these findings support the hypothesis that colour polymorphism evolved in bird species with wider niche breadth and not in species preying on intelligent prey. Therefore, we propose that disruptive selection may be the main mechanism maintaining colour polymorphism in these bird groups by favouring different morphs in different environmental conditions. © 2004 The Linnean Society of London, Biological Journal of the Linnean Society, 2004, 82 , 237–248.  相似文献   

13.
Forty-one mixed samples of winkles containing the closely related species, Littorina rudis and L. arcana , were collected from different parts of the British Isles. Littorina rudis was the more ubiquitous species, with L. arcana being more-or-less confined to vertical cliffs and rocks. The frequencies of different shell colour patterns were determined for both species in each sample. Several colour morphs were diagnostic of one or other of the species over large areas, which confirms that these are separate species. The frequencies, in the two species, of the two commonest morphs, brown and fawn, were strongly correlated; in several other morphs their presence and absence in the two species was significantly associated; the levels of phenotypic diversity in the two species were also correlated. These patterns could not have arisen if the variation between shores was the result of genetic drift or founder effects, so some form of selection is implicated. In the brown morph there is some evidence for frequency-dependent selection, and it is suggested that the polymorphism may be maintained by visual predators through apostatic selection.  相似文献   

14.
Ontogenetic colour change is typically associated with changes in size, vulnerability or habitat, but assessment of its functional significance requires quantification of the colour signals from the receivers' perspective. The tropical python, Morelia viridis, is an ideal species to establish the functional significance of ontogenetic colour change. Neonates hatch either yellow or red and both the morphs change to green with age. Here, we show that colour change from red or yellow to green provides camouflage from visually oriented avian predators in the different habitats used by juveniles and adults. This reflects changes in foraging behaviour and vulnerability as individuals mature and provides a rare demonstration of the adaptive value of ontogenetic colour change.  相似文献   

15.
Visual patterns are common in animals. A broad survey of the literature has revealed that different patterns have distinct functions. Irregular patterns (e.g., stipples) typically function in static camouflage, whereas regular patterns (e.g., stripes) have a dual function in both motion camouflage and communication. Moreover, irregular and regular patterns located on different body regions (“bimodal” patterning) can provide an effective compromise between camouflage and communication and/or enhanced concealment via both static and motion camouflage. Here, we compared the frequency of these three pattern types and traced their evolutionary history using Bayesian comparative modeling in aquatic waterfowl (Anseriformes: 118 spp.), which typically escape predators by flight, and terrestrial game birds (Galliformes: 170 spp.), which mainly use a “sit and hide” strategy to avoid predation. Given these life histories, we predicted that selection would favor regular patterning in Anseriformes and irregular or bimodal patterning in Galliformes and that pattern function complexity should increase over the course of evolution. Regular patterns were predominant in Anseriformes whereas regular and bimodal patterns were most frequent in Galliformes, suggesting that patterns with multiple functions are broadly favored by selection over patterns with a single function in static camouflage. We found that the first patterns to evolve were either regular or bimodal in Anseriformes and either irregular or regular in Galliformes. In both orders, irregular patterns could evolve into regular patterns but not the reverse. Our hypothesis of increasing complexity in pattern camouflage function was supported in Galliformes but not in Anseriformes. These results reveal a trajectory of pattern evolution linked to increasing function complexity in Galliformes although not in Anseriformes, suggesting that both ecology and function complexity can have a profound influence on pattern evolution.  相似文献   

16.
Dimorphism in pollen colour is rare among flowering plants, but occurs in two geographically and morphologically distinct subspecies of Nigella degenii (Ranunculaceae). We evaluated the role of genotype-by-environment interactions in the maintenance of two pollen morphs within each of these subspecies. Morph frequencies in a number of populations were related to current habitat conditions, and an extensive common-garden experiment involving both optimal and stressful conditions (drought and nutrient deficiency) was carried out. The putatively derived (dark) pollen morph of N. degenii ssp. barbro has a higher frequency on slopes facing north or east than on slopes facing south or west. Plants of the dark morph also have a higher mortality under drought stress or nutrient deficiency. Data available for N. degenii ssp. jenny provide little evidence for habitat-correlated variation in morph frequency or morph-specific differences in fitness under optimal and stressful growth conditions. Our results suggest that morph-by-environment interactions in mortality could contribute to the maintenance of pollen-colour dimorphisms in N. degenii ssp. barbro.  相似文献   

17.
The major histocompatibility complex (MHC) has been studied in a multitude of mammals by now, but much less is known about its organisation and variation in other vertebrate species. The mammalian MHC is organised as a single gene cluster, but recent studies on birds suggest that this paradigm of MHC organisation has to be supplemented. The domestic chicken thus possesses two separate gene clusters which both contain MHC class I and class II B genes, and we have shown that the ring‐necked pheasant Phasianus colchicus also has two unlinked clusters of class II B genes. We are studying the effect of the MHC on mate choice, survival and reproductive success in natural populations of birds and reptiles. For this reason, we are developing DNA techniques to determine the animals' MHC genotype. The amplification of the hypervariable exon 3 of the class I gene from songbirds and reptiles has provided us with species specific probes that can be used in Southern blot analysis. The first results indicate very extensive variation in all studied species, that is starlings Sturnus vulgaris, great reed warblers Acrocephalus arundinaceus and water pythons Liasis fuscus. The restriction fragment length polymorphism (RFLP) analysis also suggests that the number of MHC genes is significantly larger in these species than in pheasants and domestic chickens. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
We used a quantitative trait locus (QTL) approach to study the genetic basis of population differentiation in wild barley, Hordeum spontaneum. Several ecotypes are recognized in this model species, and population genetic studies and reciprocal transplant experiments have indicated the role of local adaptation in shaping population differences. We derived a mapping population from a cross between a coastal Mediterranean population and a steppe inland population from Israel and assessed F3 progeny fitness in the natural growing environments of the two parental populations. Dilution of the local gene pool, estimated as the proportion of native alleles at 96 marker loci in the recombinant lines, negatively affected fitness traits at both sites. QTLs for fitness traits tended to differ in the magnitude but not in the direction of their effects across sites, with beneficial alleles generally conferring a greater fitness advantage at their native site. Several QTLs showed fitness effects at one site only, but no opposite selection on individual QTLs was observed across the sites. In a common-garden experiment, we explored the hypothesis that the two populations have adapted to divergent nutrient availabilities. In the different nutrient environments of this experiment, but not under field conditions, fitness of the F3 progeny lines increased with the number of heterozygous marker loci. Comparison of QTL-effects that underlie genotype x nutrient interaction in the common-garden experiment and genotype x site interaction in the field suggested that population differentiation at the field sites may have been driven by divergent nutrient availabilities to a limited extent. Also in this experiment no QTLs were observed with opposite fitness effects in contrasting environments. Our data are consistent with the view that adaptive differentiation can be based on selection on multiple traits changing gradually along ecological gradients. This can occur without QTLs showing opposite fitness effects in the different environments, that is, in the absence of genetic trade-offs in performance between environments.  相似文献   

19.
Both sexes of the planthopper Ribautodelphax imitans produce species specific acoustic signals. Earlier experiments have shown that isolation between Ribautodelphax species in captivity is at least partly due to male preference for calls of conspecific females. The genetic basis of the female call is studied by bi-directional artificial selection for large and small interpulse intervals (IPI). This resulted in non-overlapping distributions of IPI after only five generations. The mean of eight realized heritability estimates over five generations was above 80%; estimates over ten generations were generally well above 50%. The character is shown to be of a polygenic nature, determined by at least 6 segregating genetic factors. The other features of the female call, strophe duration, and modulation of pulse repetition frequency within the strophe, showed significantly correlated responses. Sexual isolation tests after 10 generations of selection revealed significant symmetrical assortative mating, but coselected males did not exhibit a significant preference for playback calls of females from their own selection line. In view of the high heritability for the call character, and the considerable ecological isolation among Ribautodelphax species, it seems unlikely that the female call differentiated as an adaptation to prevent hybridization (reinforcement). More likely, call and call preference were shaped by sexual selection during allopatry, and may have (had) incidentally an effect in species isolation.  相似文献   

20.
The colour polymorphic isopod Idotea baltica inhabits the brown alga Fucus vesiculosus which is often colonised by the white epizoite Electra crustulenta (Bryozoa). In an experiment the predation risk for the different colour morphs of I. baltica was highly dependent on background colouration. Morph frequencies and Electra density varied substantially among 10 collecting sites but correlated poorly with each other, suggesting that local selection for cryptic colouration may be counteracted by gene flow. Indeed, estimates based on four polymorphic allozymes suggested rate of gene flow to be high. These results support the hypothesis that locally varying selection for cryptic colouration counteracted by gene flow contributes to the maintenance of colour polymorphism in I. baltica. The visual differences between the microhabitats and the differential microhabitat use between males and females seem to result in different patterns of selection on males and females for cryptic colouration. Also this is likely to play an important role for the polymorphism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号