首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Electrophoresis measurements on Micrococcus lysodeikticus have shown that the net surface charge density on the cell wall is constant at around -1.5 microC/cm2 for the pH range 4-8. This result has enabled a quantitative analysis to be made of how the electrostatic field associated with the negatively charged cell wall influences the ionic strength and pH dependency of the lytic activity of lysozyme towards M. lysodeikticus. A dominant effect is the creation of a local pH gradient at the cell wall, and at high ionic strengths the lytic activity is found to be controlled by an electrostatic force of attraction between the lysozyme molecule and the cell wall. As the ionic strength of the supporting electrolyte is decreased, however, an electrostatic force of repulsion becomes dominant and is associated with a negative charge carried by the lysozyme molecule, which could possibly be the ionized Asp-52 residue at the active site. This is considered to arise from the fact that at low ionic strengths the fine details of the heterogeneous charge distribution on the cell wall and lysozyme molecule are only partially screened by counter ions.  相似文献   

2.
L Polgár 《Biochemistry》1992,31(33):7729-7735
Prolyl oligopeptidase belongs to a new family of serine proteases which contains both exo- and endopeptidases, and this suggests that the enzyme binds its substrate in a special manner. Its secondary specificity, i.e., its interaction with the other residues linked to the proline that accounts for the primary specificity, has been investigated by using peptide substrates of various length and charge. Elongation of the classic dipeptide substrate Z-Gly-Pro-2-naphthylamide with 1-3 residues (Gln, Ala-Gln, Ala-Ala-Gln, and Ala-Lys-Gln) resulted in decreased specificity rate constants. This indicated a limited binding site for prolyl oligopeptidase, a major difference from the finding with other serine endopeptidases. Insertion of charged residues into the substrates, such as lysine or aspartic acid, considerably affected the rates and the pH-rate profiles. The rate constants were higher with the positively charged peptides and lower with the substrates bearing a negative charge. These electrostatic effects were reduced at high ionic strength. The results can be interpreted in terms of a negatively charged active site, which exists at high pH and exerts electrostatic attraction or repulsion toward charged substrates. The pH dependencies of the rate constants with neutral substrates exhibited roughly bell-shaped curves, whereas with charged substrates the existence of two active enzyme forms was clearly demonstrated. The physiologically competent high pH form preferred positively charged substrates (Z-Lys-Pro-2-(4-methoxy)naphthylamide, Z-Ala-Lys-Gln-Gly-Pro-2-naphthylamide), whereas the low pH form reacted faster with the negatively charged substrate (Z-Asp-Gly-Pro-2-naphthylamide).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The influence of chemical modification of His residues in Mb on the rate of redox reaction in system MbO2--Cyt c has been studied at different ionic strengths and pH medium. The products of alkylation of all available His by bromacetate and iodacetamide, CM-Mb and CA-Mb, respectively, and myoglobin, modified by spin label 2,2', 6,6'-tetramethyl-4-bromoacetoxypiperidine-1-oxyl (SL) at His residue A10--Sl (His-A10)--Mb have been studied. It has been shown, that the character of the ionic strength dependence of reaction SL(His-A10)--MbO2 with Cyt c at pH 6.0 ann 7.0 is basically analogues to that, observed for intact protein. It means that only His-GH1 of two His residues, His-A10 and His-GH1, situated in the region of "active contact" of Mg with Cyt c molecule, participates in the interactions, essential for electron transfer. The interaction of the charge of this His with the negatively charged group of Cyt c is necessary, probably for the proper arrangement of other interactions in the active complex, because the deprotonation of His-GHl in the studied pH interval decreases the rate of the process by more than one order of magnitude. The rate of oxidation of MC-MbO2 and CA-MbO2 by ferricytochrome c, in contrast to intact protein, shows a weak dependence on the ionic strength and does not depend on the pH medium, throughout the range of ionic strengths from 0.005 to 1.0. The cause of the radical change in the ionic strength dependence is, probably, nearly entire disturbance of electrostatic interactions in the active complex due to chemical modification of His residues in the site of "active contact", and first of all, the His-CHl residue. The fact, that during alkylation of all available His in Mb the electron transfer persists in the system, points to that in the process of electron transfer to cytochrome c, uncharged group, most probably "inner" His-B5, participates. Based on the data on spatial structure and the obtained results, the positions of the charged groups in the site of "active contact" of Mb with Cyt c molecule are presented.  相似文献   

4.
Medical implants are often colonized by bacteria which may cause severe infections. The initial step in the colonization, the adhesion of bacteria to the artificial solid surface, is governed mainly by long-range van der Waals and electrostatic interactions between the solid surface and the bacterial cell. While van der Waals forces are generally attractive, the usually negative charge of bacteria and solid surfaces leads to electrostatic repulsion. We report here on the adhesion of a clinical isolate, Stenotrophomonas maltophilia 70401, which is, at physiological pH, positively charged. S. maltophilia has an electrophoretic mobility of +0.3 x 10(-8) m2 V-1 s-1 at pH 7 and an overall surface isoelectric point at pH 11. The positive charge probably originates from proteins located in the outer membrane. For this bacterium, both long-range forces involved in adhesion are attractive. Consequently, adhesion of S. maltophilia to negatively charged surfaces such as glass and Teflon is much favored compared with the negatively charged bacterium Pseudomonas putida mt2. While adhesion of negatively charged bacteria is impeded in media of low ionic strength because of a thick negatively charged diffuse layer, adhesion of S. maltophilia was particularly favored in dilute medium. The adhesion efficiencies of S. maltophilia at various ionic strengths could be explained in terms of calculated long-range interaction energies between S. maltophilia and glass or Teflon.  相似文献   

5.
We have measured the ionic strength dependence of the rate constants for the electron-transfer reactions of flavin mononucleotide (FMN) and flavodoxin semiquinones with 10 high redox potential ferredoxins (HiPIP's). The rate constants were extrapolated to infinite ionic strength by using a theoretical model of electrostatic interactions developed in our laboratory. In all cases, the sign of the electrostatic interaction was the same as the protein net charge, but the magnitudes were much smaller. The results are consistent with a model in which the electrical charges are approximately uniformly distributed over the HiPIP surface and in which there are both short- and long-range electrostatic interactions. An electrostatic field calculation for Chromatium vinosum HiPIP is consistent with this. The presumed site of electron transfer includes that region of the protein surface to which the iron-sulfur cluster is nearest and appears to be relatively hydrophobic. The principal short-range electrostatic interaction would involve the negative charge on the iron-sulfur cluster. For some net negatively charged proteins, this effect is magnified, and for net positively charged HiPIP's, it is counterbalanced. The rate constants extrapolated to infinite ionic strength can be correlated with redox potential differences between the reactants, as has previously been shown for cytochrome-flavin semiquinone reactions. Both electrostatic and redox potential effects are magnified for the flavodoxin semiquinone as compared to the FMN semiquinone-HiPIP reactions. This was also observed previously for the flavin semiquinone-cytochrome reactions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
We have expressed and characterized a mutant of Xenopus laevis Cu,Zn superoxide dismutase in which four highly conserved charged residues belonging to the electrostatic loop have been replaced by neutral side chains: Lys120 --> Leu, Asp130 --> Gln, Glu131 --> Gln, and Lys134 --> Thr. At low ionic strength, the mutant enzyme is one of the fastest superoxide dismutases ever assayed (k = 6.7 x 10(9) M(-1) s(-1), at pH 7 and mu = 0.02 M). Brownian dynamics simulations give rise to identical enzyme-substrate association rates for both wild-type and mutant enzymes, ruling out the possibility that enhancement of the activity is due to pure electrostatic factors. Comparative analysis of the experimental catalytic rate of the quadruple and single mutants reveals the nonadditivity of the mutation effects, indicating that the hyperefficiency of the mutant is due to a decrease of the energy barrier and/or to an alternative pathway for the diffusion of superoxide within the active site channel. At physiological ionic strength the catalytic rate of the mutant at neutral pH is similar to that of the wild-type enzyme as it is to the catalytic rate pH dependence. Moreover, mutation effects are additive. These results show that, at physiological salt conditions, electrostatic loop charged residues do not influence the diffusion pathway of the substrate and, if concomitantly neutralized, are not essential for high catalytic efficiency of the enzyme, pointing out the role of the metal cluster and of the invariant Arg141 in determining the local electrostatic forces facilitating the diffusion of the substrate towards the active site.  相似文献   

7.
The strong interaction of D-beta-hydroxybutyrate dehydrogenase with phospholipid monomolecular films is demonstrated by the surface pressure increase of a film compressed up to 33 mN/m. Although the D-beta-hydroxybutyrate apodehydrogenase was able to penetrate many phospholipid monolayers, it interacted preferentially with negatively charged monolayers such as those made from diphosphatidylglycerol. The weakest interaction was found with phosphatidylcholine, which is the reactivating phospholipid for the enzyme. These interactions were dependent on the phospholipid chain length, ionic strength, and pH. At basic pH the apoenzyme lost its specificity for negatively charged phospholipids, suggesting the deprotonation of a cationic amino acid residue of the enzyme polypeptide chain. The charge effects are in agreement with results obtained using phospholipid vesicles. Beside the electrostatic interactions, the influence of phospholipid chain length and the ionic strength indicate that D-beta-hydroxybutyrate apodehydrogenase penetrates into the hydrophobic part of the lipid interface.  相似文献   

8.
The dielectric constant in the active site cleft of subtilisin from Bacillus amyloliquefaciens has been probed by mutating charged residues on the rim and measuring the effect on the pKa value of the active site histidine (His64) by kinetics. Mutation of a negatively charged surface residue, which is 12 to 13 A from His64, to an uncharged one Asp----Ser99) lowers the pKa of the histidine by up to 0.4 unit at low ionic strength (0.005 to 0.01 M). This corresponds to an apparent dielectric constant of about 40 to 50 between Asp99 and His64. The mutation is in an external loop that is known to tolerate a serine at position 99 from homologies with subtilisins from other bacilli. The environment between His64 and Asp99 is predominantly protein. Another charged residue that is at a similar distance from His64 (14 to 15 A) and is also in an external loop that is known to tolerate a serine residue is Glu156, at the opposite side of the active site. There is only water in a direct line between His64 and Glu156. Mutation of Glu----Ser156 also lowers the pKa of His64 by up to 0.4 unit at low ionic strength. This change again corresponds to an apparent dielectric constant of about 40 to 50. The pKa values were determined from the pH dependence of kcat/KM for the hydrolysis of peptide substrates, with a precision of typically +/- 0.02 unit. The following suggests that the changes in pKa are real and not artefacts of experimental conditions: Hill plots of the data for pKa determination have gradients (h) of -1.00(+/- 0.02), showing that there are negligible systematic deviations from theoretical ionization curves involving a monobasic acid: the pH dependence for the hydrolysis of two different substrates (succinyl-L-alanyl-L-alanyl-L-prolyl-L-phenylalanyl p-nitroanilide and benzoyl-L-valyl-L-glycyl-L-arginyl p-nitroanilide) gives identical results so that the pKa is independent of substrate; the pH dependence is unaffected by changing the concentration of enzyme, so that aggregation is not affecting the results; the shift in pKa is masked by high ionic strength, as expected qualitatively for ionic shielding of electrostatic interactions.  相似文献   

9.
Point mutations of dehaloperoxidase-hemoglobin A (DHP A) that affect the surface charge have been prepared to study the interaction between DHP A with its substrate 2,4,6-trichlorophenol (TCP). Kinetic studies of these surface mutations showed a correlation, in which the more positively charged mutants have increased catalytic efficiency compared with wild type DHP A. As a result, the hypothesis of this study is that there is a global electrostatic interaction between DHP A and TCP. The electrostatic nature of substrate binding was further confirmed by the result that kinetic assays of DHP A were affected by ionic strength. Furthermore, isoelectric focusing (IEF) gel study showed that the pI-6.8 for DHP A, which indicates that DHP A has a slight negative charge pH 7, consistent with the kinetic observations.  相似文献   

10.
In this paper we report the implementation of a finite-difference algorithm which solves the linearized Poisson-Boltzmann equation for molecules of arbitrary shape and charge distribution and which includes the screening effects of electrolytes. The microcoding of the algorithm on an ST-100 array processor allows us to obtain electrostatic potential maps in and around a protein, including the effects of ionic strength, in about 30 minutes. We have applied the algorithm to a dimer of the protein Cu-Zn superoxide dismutase (SOD) and compared our results to those obtained from uniform dielectric models based on coulombic potentials. We find that both the shape of the protein-solvent boundary and the ionic strength of the solvent have a profound effect on the potentials in the solvent. For the case of SOD, the cluster of positive charge at the bottom of the active site channel produces a strongly enhanced positive potential due to the focusing of field lines in the channel-a result that cannot be obtained with any uniform dielectric model. The remainder of the protein is surrounded by a weak negative potential. The electrostatic potential of the enzyme seems designed to provide a large cross-sectional area for productive collisions. Based on the ionic strength dependence of the size of the positive potential region emanating from the active site and the repulsive negative potential barrier surrounding the protein, we are able to suggest an explanation for the ionic strength dependence of the activity of the native and chemically modified forms of the enzyme.  相似文献   

11.
Olucha J  Ouellette AN  Luo Q  Lamb AL 《Biochemistry》2011,50(33):7198-7207
An isochorismate-pyruvate lyase with adventitious chorismate mutase activity from Pseudomonas aerugionsa (PchB) achieves catalysis of both pericyclic reactions in part by the stabilization of reactive conformations and in part by electrostatic transition-state stabilization. When the active site loop Lys42 is mutated to histidine, the enzyme develops a pH dependence corresponding to a loss of catalytic power upon deprotonation of the histidine. Structural data indicate that the change is not due to changes in active site architecture, but due to the difference in charge at this key site. With loss of the positive charge on the K42H side chain at high pH, the enzyme retains lyase activity at ~100-fold lowered catalytic efficiency but loses detectable mutase activity. We propose that both substrate organization and electrostatic transition state stabilization contribute to catalysis. However, the dominant reaction path for catalysis is dependent on reaction conditions, which influence the electrostatic properties of the enzyme active site amino acid side chains.  相似文献   

12.
The effect of ionic strength on the rate constant for electron transfer has been used to determine the magnitude and charge sign of the net electrostatic potential which exists in close proximity to the sites of electron transfer on various c-type cytochromes. The negatively charged ferricyanide ion preferentially reacts at the positively charged exposed heme edge region on the front side of horse cytochrome c and Paracoccus cytochrome c2. In contrast, at low ionic strength, the positively charged cobalt phenanthroline ion interacts with the negatively charged back side of cytochrome c2, and at high ionic strength at a positively charged site on the front side of the cytochrome. With horse cytochrome c, over the ionic strength range studied, cobalt phenanthroline reacts only at a positively charged site which is probably not at the heme edge. These inorganic oxidants do not react at the relatively uncharged exposed heme edge sites on Azotobacter cytochrome c5 and Pseudomonas cytochrome c-551, but rather at a negatively charged site which is away from the heme edge. The results demonstrate that at least two electron-transferring sites on a single cytochrome can be functional, depending on the redox reactant used and the ionic strength. Electrostatic interactions between charge distributions on the cytochrome surface and the other reactant, or interactions involving uncharged regions on the protein(s), are critical in determining the preferred sites of electron transfer and reaction rate constants. When unfavorable electrostatic effects occur at a site near the redox center, less optimal sites at a greater distance can become kinetically important.  相似文献   

13.
Hicks SN  Smiley RD  Hamilton JB  Howell EE 《Biochemistry》2003,42(36):10569-10578
R67 dihydrofolate reductase (DHFR), which catalyzes the NADPH dependent reduction of dihydrofolate to tetrahydrofolate, belongs to a type II family of R-plasmid encoded DHFRs that confer resistance to the antibacterial drug trimethoprim. Crystal structure data reveals this enzyme is a homotetramer that possesses a single active site pore. Only two charged residues in each monomer are located near the pore, K32 and K33. Site-directed mutants were constructed to probe the role of these residues in ligand binding and/or catalysis. As a result of the 222 symmetry of this enzyme, mutagenesis of one residue results in modification at four related sites. All mutants at K32 affected the quaternary structure, producing an inactive dimer. The K33M mutant shows only a 2-4-fold effect on K(m) values. Salt effects on ligand binding and catalysis for K33M and wildtype R67 DHFRs were investigated to determine if these lysines are involved in forming ionic interactions with the negatively charged substrates, dihydrofolate (overall charge of -2) and NADPH (overall charge of -3). Binding studies indicate that two ionic interactions occur between NADPH and R67 DHFR. In contrast, the binding of folate, a poor substrate, to R67 DHFR.NADPH appears weak as a titration in enthalpy is lost at low ionic strength. Steady-state kinetic studies for both wild type (wt) and K33M R67 DHFRs also support a strong electrostatic interaction between NADPH and the enzyme. Interestingly, quantitation of the observed salt effects by measuring the slopes of the log of ionic strength versus the log of k(cat)/K(m) plots indicates that only one ionic interaction is involved in forming the transition state. These data support a model where two ionic interactions are formed between NADPH and symmetry related K32 residues in the ground state. To reach the transition state, an ionic interaction between K32 and the pyrophosphate bridge is broken. This unusual scenario likely arises from the constraints imposed by the 222 symmetry of the enzyme.  相似文献   

14.
How do lipases and esterases work: the electrostatic contribution   总被引:4,自引:0,他引:4  
This work explores the role of one of the factors explaining lipase/esterase activity: the contribution of electrostatic interactions to lipase/esterase activity. The electrostatic potential distribution on the molecular surface of an enzyme as a function of pH determines, to a large extent, the enzyme's pH activity profile. Other important factors include the presence and distribution of polar and hydrophobic residues in the active cleft. We have mapped the electrostatic potential distribution as a function of pH on the molecular surface of nine lipases/esterases for which the 3D structure is experimentally known. A comparison of these potential maps at different pH values with the corresponding pH-activity profile, pH optimum or pH range where the activity displayed by the enzyme is maximum, has revealed a considerable correlation. A negative potential in the active site appears correlated with maximum activity towards triglycerides, which has prompted us to propose a model for product release ('The electrostatic catapult model') after cleavage of an ester bond. At the same time as the bottom of the active site cleft becomes negatively charged, other nearby regions also titrate and become negatively charged when pH becomes more alkaline, for some of the studied lipases. If such lipases also show phospholipase activity (such as guinea pig lipase-related proteins 2 chimera) we raise the hypothesis that such other titratable regions after becoming negatively charged might stabilise the positive charge present in the polar head of phospholipids, such as phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. The distribution of polar, weak polar and non-polar residues on the molecular surface of each studied lipase, in particular the active site region, was compared for all the lipases studied. The combination of graphical visualisation of the electrostatic potential maps and the polarity maps combined with knowledge about the location of key residues on the protein surface allows us to envision atomic models for lipolytic activity.  相似文献   

15.
The lysozyme dimerization reaction has been studied within the framework of encounter-complex (EC) formation theory using the MacroDox software package. Two types of energetically favorite ECs were determined. In the first of them, active-center amino acids of lysozyme take part in the complex formation or the second molecule blocks accessibility to active center sterically. Epitope amino-acid residues are involved in the complex of type II. The existence of both types of complexes does not contradict experimental data. Dimer-formation rate constants for different kinds of EC were calculated. Increasing the pH from 2.0 to 10.0 decreases the total positive lysozyme charge and eliminates the unfavorable repulsive electrostatic interaction. The rate constant of EC formation is inversely proportional to the protein total charge. The association rate constant was also enhanced by an increase of ionic strength that screened repulsive electrostatic interaction between positively charged proteins.  相似文献   

16.
The kinetics of dithionite reduction of the oxidized heme nonapeptide fragment of horse heart cytochrome c have been measured as a function of ionic strength at pH 7 and pH 9 by the stopped-flow technique. Dithionite concentration dependences indicate that the radical anion monomer, SO2-., is the active reductant. The pH 7 ionic strength dependence suggests that the heme peptide is reacting as a negatively charged molecule (its overall charge is calculated to be -1). Comparison of these results with the known rate of dithionite reduction of cytochrome c indicates that the heme nonapeptide has substantially greater inherent reactivity than cytochrome c, perhaps due to the greater accessibility of the heme.  相似文献   

17.
The electrostatic steering mechanism of bovine erythrocyte Cu/Zn superoxide dismutase (SOD) was investigated through the use of Brownian dynamics. Simulations of enzyme/substrate encounter were carried out on 14 different SOD models defined by simple changes in the enzyme's point charge distribution. The magnitude and ionic strength dependence of reaction rates, rates for collision anywhere on the enzyme surface, and collision efficiency factors were analyzed to elucidate both the general and specific roles for point charges associated with amino acid residues. Collision rates for the general enzyme surface appear to be solely determined by the net charge on the enzyme. At physiological ionic strength this effect is negligible, with only 6% variation in collision rates observed as the net charge ranges from +2e to -10e. With the exception of a few charged residues in the active-site channel of SOD, point charge modifications had modest effects on reaction rates. For a large region within and surrounding the channel, reaction rates increased or decreased by only 10-15% with the addition or subtraction of a protonic unit of charge, respectively. This effect simply disappeared with increasing distance from the active site. More dramatic effects were seen at only three residues: arginine-141, glutamate-131, and lysine-134. Implications for rate enhancement through site-directed mutagenesis are discussed.  相似文献   

18.
M T Mas  R F Colman 《Biochemistry》1985,24(7):1634-1646
Spectroscopic, ultrafiltration, and kinetic studies have been used to characterize interactions of reduced and oxidized triphosphopyridine nucleotides (TPNH and TPN), 2'-phosphoadenosine 5'-diphosphoribose (Rib-P2-Ado-P), and adenosine 2',5'-bisphosphate [Ado(2',5')P2] with with TPN-specific isocitrate dehydrogenase. Close similarity of the UV difference spectra and of the protein fluorescence changes accompanying the formation of the binary complexes provides evidence for the binding of these nucleotides to the same site on the enzyme. From the pH dependence of the dissociation constants for TPNH binding to TPN-specific isocitrate dehydrogenase in the absence and in the presence of Mn2+, over the pH range 5.8-7.6, it has been demonstrated that the nucleotide binds to the enzyme in its unprotonated, metal-free form. The involvement of positively charged residues, protonated over the pH range studied, has been postulated. One TPNH binding site per enzyme subunit has been measured by fluorescence and difference absorption titrations. A dramatic effect of ionic strength on binding has been demonstrated: about a 1000-fold decrease in the dissociation constant for TPNH has been observed at pH 7.6 upon decreasing ionic strength from 0.336 (Kd = 1.2 +/- 0.2 microM) to 0.036 M (Kd = 0.4 +/- 0.1 nM) in the presence and in the absence of 100 mM Na2SO4, respectively. Weak competition of sulfate ions for the nucleotide binding site has been observed (KI = 57 +/- 3 mM). The binding of TPN in the presence of 100 mM Na2SO4 at pH 7.6 is about 100-fold weaker (Kd = 110 +/- 22 microM) than the binding of the reduced coenzyme and is similarly affected by ionic strength. These results demonstrate the importance of electrostatic interactions in the binding of the coenzyme to TPN-specific isocitrate dehydrogenase. The large enhancement of protein fluorescence caused by binding of TPN and Rib-P2-Ado-P (delta Fmax = 50%) and of Ado(2',5')P2 (delta Fmax = 41%) has been ascribed to a local conformational change of the enzyme. An apparent stoichiometry of 0.5 nucleotide binding site per peptide chain was determined for TPN, Rib-P2-Ado-P, and Ado(2',5')P2 from fluorescence titrations, in contrast to one binding site per enzyme subunit determined from UV difference spectral titration and ultrafiltration experiments. Thus, the binding of one molecule of the nucleotide per dimeric enzyme molecule is responsible for the total increase in protein fluorescence, while binding to the second subunit does not cause further change.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
The electrostatic potentials within the pore of the nicotinic acetylcholine receptor (nAChR) were determined using lanthanide-based diffusion-enhanced fluorescence energy transfer experiments. Freely diffusing Tb3+ -chelates of varying charge constituted a set of energy transfer donors to the acceptor, crystal violet, a noncompetitive antagonist of the nAChR. Energy transfer from a neutral Tb3+ -chelate to nAChR-bound crystal violet was reduced 95% relative to the energy transfer to free crystal violet. This result indicated that crystal violet was strongly shielded from solvent when bound to the nAChR. Comparison of energy transfer from positively and negatively charged chelates indicate negative electrostatic potentials of -25 mV in the channel, measured in low ionic strength, and -10 mV measured in physiological ionic strength. Debye-Hückel analyses of potentials determined at various ionic strengths were consistent with 1-2 negative charges within 8 A of the crystal violet binding site. To complement the energy transfer experiments, the influence of pH and ionic strength on the binding of [3H]phencyclidine were determined. The ionic strength dependence of binding affinity was consistent with -3.3 charges within 8 A of the binding site, according to Debye-Hückel analysis. The pH dependence of binding had an apparent pKa of 7.2, a value indicative of a potential near -170 mV if the titratable residues are constituted of aspartates and glutamates. It is concluded that long-range potentials are small and likely contribute little to selectivity or conductance whereas close interactions are more likely to contribute to electrostatic stabilization of ions and binding of noncompetitive antagonists within the channel.  相似文献   

20.
The chaperonin GroEL of the heat shock protein family from Escherichia coli cells can bind various polypeptides lacking rigid tertiary structure and thus prevent their nonspecific association and provide for acquisition of native conformation. In the present work we studied the interaction of GroEL with six denatured proteins (alpha-lactalbumin, ribonuclease A, egg lysozyme in the presence of dithiothreitol, pepsin, beta-casein, and apocytochrome c) possessing negative or positive total charge at neutral pH values and different in hydrophobicity (affinity for a hydrophobic probe ANS). To prevent the influence of nonspecific association of non-native proteins on their interaction with GroEL and make easier the recording of the complexing, the proteins were covalently attached to BrCN-activated Sepharose. At low ionic strength (lower than 60 mM), tight binding of the negatively charged denatured proteins with GroEL (which is also negatively charged) needed relatively low concentrations (approximately 10 mM) of bivalent cations Mg2+ or Ca2+. At the high ionic strength (approximately 600 mM), a tight complex was produced also in the absence of bivalent cations. In contrast, positively charged denatured proteins tightly interacted with GroEL irrespectively of the presence of bivalent cations and ionic strength of the solution (from 20 to 600 mM). These features of GroEL interaction with positively and negatively charged denatured proteins were confirmed by polarized fluorescence (fluorescence anisotropy). The findings suggest that the affinity of GroEL for denatured proteins can be determined by the balance of hydrophobic and electrostatic interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号