首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This report concerns development of a cell-free system from rat liver to study transport of membrane constituents from the Golgi apparatus to the plasma membrane. Highly purified Golgi apparatus as donor and a mixture of sheets and vesicles as plasma membrane acceptor fractions were combined to analyze requirements for lipid and protein transport. In the reconstituted system, the Golgi apparatus donor was in suspension. To measure transfer, membrane constituents of the donor membranes were radiolabeled with [3H]acetate (lipids) or [3H]leucine (proteins). The plasma membrane vesicles were used as the acceptor and were unlabeled and immobilized on nitrocellulose for ease of recovery and analysis. The reconstituted cell-free transfer was dependent on temperature, but even at 37 degrees C, the amount of transfer did not increase with added ATP, was not specific for any particular membrane fraction or subfraction nor was it facilitated by cytosol. ATP was without effect both in the presence or absence of a cytosolic fraction capable of the support of cell-free transfer in other systems. In contrast to results with ATP, NADH added to the reconstituted system resulted in an increased amount of transfer. A further increase in transfer was obtained with NADH plus a mixture of ascorbate and dehydroascorbate to generate ascorbate free radical. The transfer of labeled membrane constituents from the Golgi apparatus to the plasma membrane supported by NADH plus ascorbate radical was stimulated by a cytosol fraction enriched in less than 10 kDa components. This was without effect in the absence of NADH/ascorbate radical or with ATP as the energy source. Specific transfer was inhibited by both N-ethylmaleimide and GTP gamma S. The findings point to the possibility of redox activities associated with the trans region of the Golgi apparatus as potentially involved in the transport of membrane vesicles from the Golgi apparatus to the cytoplasmic surface of the plasma membrane.  相似文献   

2.
Ubiquinone from rat liver Golgi apparatus fractions   总被引:2,自引:0,他引:2  
  相似文献   

3.
16,16'-Dimethylprostaglandin E2 was administered to rats in three doses: 30 min prior and 24 h and 48 h after a single intraperitoneal injection of streptozotocin. The Golgi membrane fraction was analyzed 6 days after streptozotocin injection. It has been found that prostaglandin restores the Golgi membrane fraction and the activity of UDP-Gal----GlcNAc transferase, both significantly decreased upon treatment with streptozotocin alone. Morphology of the liver Golgi apparatus studied by the electron microscopy was similar to that of control from untreated rats although streptozotocin alone significantly decreased the size of this organelle.  相似文献   

4.
Golgi apparatus from rat liver contain an ascorbate free radical oxidoreducatse that oxidizes NADH at neutral pH with monodehydroascorbate as acceptor to generate a membrane potential. At pH 5.0, the reverse reaction occurs from NAD+. The electron spin resonance signal of the ascorbate-free radical and its disappearance upon the addition of NADH (pH 7) or NAD+ (pH 5.0) confirms monodehydroascorbate involvement. Location of monodehydroascorbate both external to and within Golgi apparatus compartments is suggested from energization provided by inward or outward flux of electrons across the Golgi apparatus membranes. The isolated membranes are sealed, oriented cytoplasmic side out and impermeable to NAD+ and ascorbate. NAD+ derived through the action of Golgi apparatus β-NADP phosphohydrolase is simultaneously reduced to NADH with monodehydroascorbate present. The response of the NADH- (NAD+-) ascorbate free radical oxidoreductase system to pH in Golgi apparatus provides a simple regulatory mechanism to control vesicle acidification.  相似文献   

5.
 Cell-free systems for the analysis of Golgi apparatus membrane traffic rely either on highly purified cell fractions or analysis by specific trafficking markers or both. Our work has employed a cell-free transfer system from rat liver based on purified fractions. Transfer of any constituent present in the donor fraction that can be labeled (protein, phospholipid, neutral lipid, sterol, or glycoconjugate) may be investigated in a manner not requiring a processing assay. Transition vesicles were purified and Golgi apparatus cisternae were subfractionated by means of preparative free-flow electrophoresis. Using these transition vesicles and Golgi apparatus subfractions, transfer between transitional endoplasmic reticulum and cis Golgi apparatus was investigated and the process subdivided into vesicle formation and vesicle fusion steps. In liver, vesicle formation exhibited both ATP-independent and ATP-dependent components whereas vesicle fusion was ATP-independent. The ATP-dependent component of transfer was donor and acceptor specific and appeared to be largely unidirectional, i.e., ATP-dependent retrograde (cis Golgi apparatus to transitional endoplasmic reticulum) traffic was not observed. ATP-dependent transfer in the liver system and coatomer-driven ATP-independent transfer in more refined yeast and cultured cell systems are compared and discussed in regard to the liver system. A model mechanism developed for ATP-dependent budding is proposed where a retinol-stimulated and brefeldin A-inhibited NADH protein disulfide oxidoreductase (NADH oxidase) with protein disulfide-thiol interchange activity and an ATP-requiring protein capable of driving physical membrane displacement are involved. It has been suggested that this mechanism drives both the cell enlargement and the vesicle budding that may be associated with the dynamic flow of membranes along the endoplasmic reticulum-vesicle-Golgi apparatus-plasma membrane pathway. Accepted: 26 January 1998  相似文献   

6.
Subfractionation of rat liver Golgi apparatus by free-flow electrophoresis   总被引:2,自引:0,他引:2  
Using the technique of preparative free-flow electrophoresis, cisternae of unstacked rat liver Golgi apparatus were separated into a series of fractions of increasing content of sialic acid, thiamine pyrophosphatase and 5'-nucleotidase, markers regarded as being concentrated toward the mature Golgi apparatus face. These same fractions showed a decreasing content of nucleoside diphosphatase, an endoplasmic reticulum marker. Fractions enriched in sialic acid also were enriched in cisternae from the mature or trans face of the Golgi apparatus as deduced from cytochemical criteria. Those fractions least enriched in sialic acid contained cisternae that accumulated deposits of reduced osmium under standard conditions, a test used to mark the opposite, forming or cis-face. Thus subfractionation along the functional polarity axis of the Golgi apparatus with separation of cis and trans face cisternae has been achieved.  相似文献   

7.
The participation of hepatic Golgi apparatus in the intracellular transport of blood-destined proteins has been analyzed using Golgi fractions enriched in cis and trans components of the Golgi apparatus. SDS-polyacrylamide gel electrophoresis of the liver Golgi fractions showed several proteins corresponding in relative proportions and mobilities with serum proteins. After a pulse injection of labeled leucine, the secretory content of the cis Golgi fraction was labeled earlier than the trans Golgi fraction. Taken together, the results show the participation of the liver Golgi apparatus in the secretion of most of the serum proteins and provide documentation for a sequential progression of secretory protein through the cis and trans components of the Golgi apparatus.  相似文献   

8.
Albumin was isolated immunologically from various subcellular fractions from livers of adult male rats receiving an intraperitoneal injection of [3H]leucine to investigate the kinetics and pathway of subcellular transfer of newly synthesized albumin during secretion. At appropriate time intervals, livers were excised and fractionated into endoplasmic reticulum and Golgi apparatus. Golgi apparatus were further subfractionated into cisternae and secretory vesicles. In endoplasmic reticulum fractions, labeled albumin appeared within 7.5 min of injection of isotope, followed by a rapid decline in specific activity. Albumin in Golgi apparatus was labeled and concentrated in secretory vesicles over 25 min. The radioactivity in albumin per mg total protein was highest in secretory vesicles and insignificant in the cisternal fraction. Labeled albumin was present in serum by 30 min and radioactivity in serum albumin reached a plateau within 60–90 min after injection of isotope. Results provide evidence for the migration of albumin from its site of synthesis on endoplasmic reticulum membrane-bound polyribosomes to its site of secretion into the circulation via the Golgi apparatus. The pathway of albumin transport to secretory vesicles is suggested to involve peripheral elemenst of the Golgi apparatus. Secretory vesicle formation and maturation required 20 to 30 min for completion, via a mechanism whereby the inner spaces of the central saccules may be bypassed.  相似文献   

9.
N H Fidge 《FEBS letters》1986,199(2):265-268
The existence of a cell receptor which recognises plasma high density lipoprotein (HDL) has been suggested from studies which demonstrate specific binding of HDL3 to cultured cells derived from various tissues in the body. This study provides evidence of a specific HDL-binding protein in crude plasma membranes prepared from rat kidney and liver. Following separation of solubilised membrane proteins on polyacrylamide gel slabs and 'Western' blotting, one major band was identified which bound HDL3, or apo AI or apo AII. The protein, which was present in both liver and kidney membranes, was partially purified by repetitive preparative SDS-polyacrylamide gel electrophoresis and although accompanied by considerable loss of binding activity, could still be detected by the ligand-blotting procedure used initially to detect its presence in cell membranes.  相似文献   

10.
Heparan sulfate proteoglycans (HSPG) of rat liver are associated with the plasma membrane in a hydrophobic intrinsic and a hydrophilic extrinsic form. We were interested in determining whether or not these two forms could be detected in the Golgi apparatus, the subcellular site of addition of oligosaccharides and sulfate to HSPG. In vivo and in vitro radiolabeled HSPG from rat liver Golgi apparatus membranes could only be solubilized with detergents that disrupt the membrane lipid bilayer, suggesting that they are solely associated via hydrophobic interactions. Both forms of HSPG were detected in plasma membranes of rat liver and isolated rat hepatocytes. The detergent-solubilized HSPG bound to octyl-Sepharose columns, whereas the hydrophilic form did not; this latter form, however, was released from the membrane by heparin. The hydrophobic anchor of HSPG in the Golgi and plasma membranes was insensitive to treatment with phosphatidylinositol-specific phospholipase C under conditions in which alkaline phosphatase was sensitive; this suggests that the hydrophobic anchor of HSPG is the core protein itself. Preliminary experiments suggest that the subcellular site of processing of the hydrophobic to the hydrophilic form of HSPG is the plasma membrane. A specific processing activity, probably a protease of the plasma membrane not present in serum or the endoplasmic reticulum membrane, converted hydrophobic HSPG of the Golgi membrane to the hydrophilic form. In addition, pulse-chase experiments with [35S]Na2SO4 in rats demonstrated that at short times, the bulk of the radiolabeled cellular HSPG was in the Golgi apparatus; later on, the bulk of the radioactivity was found in the plasma membrane, the only subcellular site where the hydrophilic form of HSPG was detected.  相似文献   

11.
The Golgi apparatus is a stack of compartments that serves as a central junction for membrane traffic, with carriers moving through the stack as well as arriving from, and departing toward, many other destinations in the cell. This requires that the different compartments in the Golgi recruit from the cytosol a distinct set of proteins to mediate accurate membrane traffic. This recruitment appears to reflect recognition of small GTPases of the Rab and Arf family, or of lipid species such as PtdIns(4)P and diacylglycerol, which provide a unique "identity" for each compartment. Recent work is starting to reveal the mechanisms by which these labile landmarks are generated in a spatially restricted manner on specific parts of the Golgi.  相似文献   

12.
A Golgi-rich fraction isolated from rat liver was found to contain GTP-binding proteins with 20-25 kDa, which were tightly bound to the Golgi membrane. The Golgi fraction also contained two species of proteins which were ADP-ribosylated by bacterial toxins. Protein(s) which was ADP-ribosylated by botulinum toxin had a similar molecular mass as those with GTP-binding activity but was easily released from the membrane. Another protein with 46 kDa which was ADP-ribosylated by pertussis toxin was tightly bound to the membrane but had no significant GTP-binding activity under conditions tested here. These proteins were much less or negligible in the plasma membrane and the endoplasmic reticulum.  相似文献   

13.
Vesicular fragments of Golgi apparatus, smooth- and rough-surfaced microsomes from rat liver are differently partitioned in aqueous polymer two-phase systems consisting of dextran, polyethylene glycol, and sodium phosphate buffer. At a given polymer concentration, the amount of material partitioned in the top phase increases in the following order: rough microsomes less than smooth microsomes less than Golgi fragments. Counter-current distribution of Golgi fragments in the system consisting of 6.8% (w/w) dextran T500 and 6.8% polyethylene glycol 4,000 results in the separation of the fragments into three fractions; i.e. Fractions I, II, and III. NADH- and NADPH-cytochrome c reductase activities are detected almost exclusively in Fraction I, whereas the activities of galactosyltransferase, acid phosphatase, 5'-nucleotidase, and thiamine pyrophosphatase are maximal in Fraction III and minimal in Fraction I. The distribution of these enzymes suggests that Fraction I is similar to, though not identical with, microsomes, Fraction III resembles plasma membrane and lysosomes, and Fraction II is between the two. It is concluded that NADH- and NADPH-cytochrome c reductases are localized in a restricted region of the Golgi structure and that intra-Golgi differentiation seems to proceed in a discontinuous manner.  相似文献   

14.
We have studied the reconstitution of the Golgi apparatus in vivo using an heterologous membrane transplant system. Endogenous glycopeptides of rat hepatic Golgi fragments were radiolabeled in vitro with [3H]sialic acid using detergent-free conditions. The Golgi fragments consisting of dispersed vesicles and tubules with intraluminal lipoprotein-like particles were then microinjected into Xenopus oocytes and their fate studied by light (LM) and electron microscope (EM) radioautography. 3 h after microinjection, radiolabel was observed by LM radioautography over yolk platelet-free cytoplasmic regions near the injection site. EM radioautography revealed label over Golgi stacked saccules containing the hepatic marker of intraluminal lipoprotein-like particles. At 14 h after injection, LM radioautographs revealed label in the superficial cortex of the oocytes between the yolk platelets and at the oocyte surface. EM radioautography identified the labeled structures as the stacked saccules of the Golgi apparatus, the oocyte cortical granules, and the plasmalemma, indicating that a proportion of microinjected material was transferred to the surface via the secretion pathway of the oocyte. The efficiency of transport was low, however, as biochemical studies failed to show extensive secretion of radiolabel into the extracellular medium by 14 h with approximately half the microinjected radiolabeled constituents degraded. Vinblastine (50 microM) administered to oocytes led to the formation of tubulin paracrystals. Although microinjected Golgi fragments were able to effect the formation of stacked saccules in vinblastine-treated oocytes, negligible transfer of heterologous material to the oocyte surface could be detected by radioautography. The data demonstrate that dispersed fragments of the rat liver Golgi complex (i.e., unstacked vesicles and tubules) reconstitute into stacked saccules when microinjected into Xenopus cytoplasm. After the formation of stacked saccules, reconstituted Golgi fragments transport constituents into a portion of the exocytic pathway of the host cell by a microtubule-regulated process.  相似文献   

15.
The bulk (60 to 65%) of the neuraminidase activity present in rat liver homogenates was found in the M + L (mitochondria plus lysosomes) fraction, The patterns of subcellular distribution were essentially identical whether disialogangliosides or neuramin-lactose (2 yields 3') were utilized as substrates. A new neuraminidase, which hydrolyzes sialyl trisaccharides but which does not act upon glycoproteins and gangliosides, was detected in Golgi apparatus. Unlike the other particulate neuraminidases of rat liver, the Golgi enzyme is stimulated by prior incubation and by the addition of Ca2+ or Zn2+ at 1 mM concentration. Although plasma membrane-rich fractions are often contaminated by Golgi membranes the marked differences in their enzymic properties allowed a clear distinction between the neuraminidases present in these two types of membranes.  相似文献   

16.
Chicken liver plasma membranes, minimally contaminated with Golgi apparatus-derived vesicles, were prepared from a low-speed (400 g) pellet by means of flotation in isotonic Percoll solution, followed by a hypotonic wash and flotation in a discontinuous sucrose gradient. Based on the analysis of suitable marker enzymes, alkaline phosphatase and alkaline phosphodiesterase, two plasma membrane fractions were isolated with enrichments, depending on the equilibrium density and marker of 28-97 and with a total yield of 4-5%. Golgi apparatus fractions were prepared by flotation of microsomes, obtained from the same homogenate as the low-speed pellet, in a discontinuous sucrose gradient. The trans-Golgi marker galactosyltransferase was 27-fold enriched in a fraction of intermediate density (d=1.077-1.116 g/ml). Approximately 12% of galactosyltransferase was recovered in the membranes equilibrating d=1.031-1.148 g/ml. Contamination with plasma membrane fragments was low in the light (d=1.031-1.077 g/ml) and intermediate density Golgi vesicles. The isolation of purified plasma membranes and Golgi vesicles from one liver homogenate will enable future studies on receptor cycling between these cell organelles.  相似文献   

17.
Golgi apparatus were isolated from untreated rat liver and separated into three fractions. One consisted mainly of vesicles, a second of tubular particles (dictyosomes) and the third was a mixed fraction. Large differences between these fractions could be seen in the electron microscope and by enzyme analysis. The total lipid content of the vesicles was 3.5-times greater than that of the dictyosomes and the neutral lipid value was 7-times greater. The ratio of phospholipids to protein was approximately the same in the three fractions. However, the phospholipid patterns differed between the vesicle and dictyosome fractions.  相似文献   

18.
We carried out a kinetic characterization of the Ca(2+)active transport in the rat liver Golgi Apparatus (GA) membrane. Calcium accumulation by vesicles of a GA enriched fraction was found to be a function of both Ca(2+)and ATP-Mg concentrations, it was inhibited by 2 microm thapsigargin but not stimulated by 3 microm calmodulin. The kinetic parameter values obtained for the GA Ca(2+)pump were: J(max)of 3.96 nmol/mg min, K(m)for Ca(2+)of 0.150 microm and two K(m)'s for ATP of 1.14 microm and 519 microm. These results were almost identical to those obtained for the endoplasmic reticulum (ER) fraction, indicating that the GA Ca(2+)pump is a sarco/endoplasmic reticulum (SERCA) P-type, analogous-if not identical-to that present in the ER.  相似文献   

19.
Isolated Golgi apparatus, highly purified from rat liver, were found to contain an acyl transfer activity capable of restoring the acyl chains of the lysophospholipid products of the action of phospholipase A2 on phosphatidylcholine. The activity was located primarily in cis and medial Golgi apparatus fractions, had a pH optimum of 6.0 to 7.5 and was stimulated by various acyl-CoA derivatives but not by fatty acids plus ATP. The activity, determined from the conversion of [14C]lysophosphatidylcholine to [14C]phosphatidylcholine, was unaffected by EGTA, inhibited by manoalide at high concentrations (0.2 mM), and temperature-dependent. Temperature dependency, however, showed no definite transition temperature over the range 15 to 37°C. The results demonstrated that cis Golgi apparatus membranes have the enzymatic capacity to restore fatty acids lost from phospholipids through the action of phospholipase A. The latter has been previously suggested to occur at the cis Golgi apparatus membranes based on analyses of cell-free transfer of radiolabeled phosphatidylcholine.  相似文献   

20.
We have studied in rat liver the subcellular sites and topography of xylosylation and galactosylation reactions occurring in the biosynthesis of the D-glucuronic acid-galactose-galactose-D-xylose linkage region of proteoglycans and of glucuronosylation reactions involved in both glycosaminoglycan biosynthesis and bile acid and bilirubin conjugation. The specific translocation rate of UDP-xylose into sealed, "right-side-out" vesicles from the Golgi apparatus was 2-5-fold higher than into sealed right-side-out vesicles from the rough endoplasmic reticulum (RER). Using the above vesicle preparations, we only detected endogenous acceptors for xylosylation in the Golgi apparatus-rich fraction. The specific activity of xylosyltransferase (using silk fibroin as exogenous acceptor) was 50-100-fold higher in Golgi apparatus membranes than in those from the RER. Previous studies had shown that UDP-galactose is translocated solely into vesicles from the Golgi apparatus. In these studies, we found the specific activity of galactosyltransferase I to be 40-140-fold higher in membranes from the Golgi apparatus than in those from the RER. The specific translocation rate of UDP-D-glucuronic acid into vesicles from the Golgi apparatus was 10-fold higher than into those from the RER, whereas the specific activity of glucuronosyltransferase (using chondroitin nonasaccharide as exogenous acceptor) was 12-30-fold higher in Golgi apparatus membranes than in those from the RER. Together, the above results strongly suggest that, in rat liver, the biosynthesis of the above-described proteoglycan linkage region occurs in the Golgi apparatus. The specific activity of glucuronosyltransferase, using bile acids and bilirubin as exogenous acceptor, was 10-25-fold higher in RER membranes than those from the Golgi apparatus. This suggests that transport of UDP-D-glucuronic acid into the RER lumen is not required for such reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号