首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Time-dependent fluorescence measurements have been used to determine the distribution of distances between probes attached to residues 1 and (49 + 53) of bovine pancreatic ribonuclease A in the native, denatured, and reduced-denatured states. Measurements were made on donor and on doubly labeled (donor + acceptor) protein in 50% aqueous glycerol solutions at ?30°C and at room temperature. The fluorescence-decay curves were used to compute distribution functions for the interprobe distances. The native protein has a narrow distribution of interprobe distances at ?30°C (high-viscosity medium); this distribution is narrower at room temperature (low-viscosity medium), due primarily to the dynamic flexibility of the probes. Denaturation by 6M guanidine hydrochloride leads to a wider distribution of distances at ?30°C, with a shift of the distribution curve to larger distances, because of the increased disorder of the protein. Reduction of the disulfide bonds by dithiothreitol leads to further decreases in transfer efficiency (a unique distribution curve for the reduced protein was not obtained because of the low transfer efficiency). Both the denatured and reduced-denatured species have average interprobe distances of about 60 Å, compared to 36 Å for the native protein. Reduction of the solvent viscosity leads to nearly monoexponential decay of the donor fluorescence in the doubly labeled derivative. This is interpreted as a manifestation of fast local Brownian motions. It appears that large-scale segmental motions do not take place in the denatured protein within the excited-state lifetime of the donor (ca. 8 ns). The above results indicate that reduced-denatured ribonuclease A has residual structure that limits segmental Brownian motion in the N-terminal segment.  相似文献   

2.
Ribonuclease A contains two exposed loop regions, around Ala20 and Asn34. Only the loop around Ala20 is sufficiently flexible even under native conditions to allow cleavage by nonspecific proteases. In contrast, the loop around Asn34 (together with the adjacent beta-sheet around Thr45) is the first region of the ribonuclease A molecule that becomes susceptible to thermolysin and trypsin under unfolding conditions. This second region therefore has been suggested to be involved in early steps of unfolding and was designated as the unfolding region of the ribonuclease A molecule. Consequently, modifications in this region should have a great impact on the unfolding and, thus, on the thermodynamic stability. Also, if the Ala20 loop contributes to the stability of the ribonuclease A molecule, rigidification of this flexible region should stabilize the entire protein molecule. We substituted several residues in both regions without any dramatic effects on the native conformation and catalytic activity. As a result of their remarkably differing stability, the variants fell into two groups carrying the mutations: (a) A20P, S21P, A20P/S21P, S21L, or N34D; (b) L35S, L35A, F46Y, K31A/R33S, L35S/F46Y, L35A/F46Y, or K31A/R33S/F46Y. The first group showed a thermodynamic and kinetic stability similar to wild-type ribonuclease A, whereas both stabilities of the variants in the second group were greatly decreased, suggesting that the decrease in DeltaG can be mainly attributed to an increased unfolding rate. Although rigidification of the Ala20 loop by introduction of proline did not result in stabilization, disturbance of the network of hydrogen bonds and hydrophobic interactions that interlock the proposed unfolding region dramatically destabilized the ribonuclease A molecule.  相似文献   

3.
We used fluorescence energy transfer to examine the effects of solvent composition on the distribution of distances between the single tryptophan residue of melittin (residue 19) to the N-terminal alpha-amino group, which was labeled with a dansyl residue. The tryptophan intensity decays, with and without the dansyl acceptor, were measured by the frequency-domain method. The data were analyzed by a least-squares algorithm which accounts for correlation between the parameters. A wide distribution of tryptophan to dansyl distances was found for the random-coil state, with a Gaussian half-width of 25 A. Increasing concentrations of methanol, which were shown to induce and alpha-helical conformation, resulted in a progressive decrease in the width of the distribution, reaching a limiting half-width of 3 A at 80% (v/v) methanol. The distance from the indole moiety of Trp-19 to the dansyl group in 80% (v/v) methanol/water was found to be 25 A, as assessed from the center of the distance distribution. A distance of 24-25 A was recovered from the X-ray crystal structure of the tetramer, which is largely alpha-helical. At low ionic strength (less than 0.01) the CD spectra revealed a small fraction or amount of alpha-helix for melittin in water, which implies a small fraction of residual structure. This residual structure is apparently lost in guanidine hydrochloride as demonstrated by a further broadening in the distribution of distances. These results demonstrate the usefulness of frequency-domain measurements of resonance transfer for resolution of conformational distributions of proteins.  相似文献   

4.
One of the new methods of studying the structure and dimensions of biological membranes is based on the F?rster's nonradiative energy transfer between special molecules, the so-called 'membrane fluorescent probes'. Further development of the approach is presented in this article. It consists of the combined use of the time-resolved and steady-state fluorescence data with subsequent computer simulation of the energy transfer in membranes. Anthracene as an energy donor, and 4-p-(dimethylamino)styryl-N-dodecylpyridinium (DSP-12) or 4-dimethylaminochalcone (DMC) as energy acceptors were bound with artificial phospholipid membrane vesicles ('liposomes'). The synchrotron radiation was used as an impulse source for the excitation light. The steady-state fluorescence data permit the area of possible probe localization in membranes to be distinguished, while the kinetic data allow them to be narrowed significantly. There is a good agreement between the obtained localization and our present-day knowledge of lipid bilayer structure. The accuracy of the method is ca. several Angstr?ms.  相似文献   

5.
A. M. Labhardt 《Biopolymers》1981,20(7):1459-1480
The thermal-denaturation transition of ribonuclease S (RNAase S) is measured by circular dichroism at 225 nm. Only conformational transitions involving the S-peptide–S-protein complex are detected at this wavelength. Different pathways of thermal unfolding at high and low concentrations are apparent: at low concentrations the temperature of half-completion of denaturation (Tm) varies with concentration. Above a total enzyme concentration of 50 μM, Tm remains constant. The observed data can be explained on the basis of a model where the association–dissociation step occurs between S-peptide and thermally (at least partly) unfolded S-protein. The complex as a whole undergoes a major folding–unfolding transition in the course of which the S-peptide μ-helix appears to be formed. The unfolded complex is well populated in the unfolding transition region for enzyme concentrations of 100 μM or more. The model succeeds in deducing thermodynamic parameters from the thermal denaturation curves in various different ways. The values thus obtained are fully self-consistent and, moreover, consistent with the values for the apparent association constant and apparent association enthalpy as measured in enzyme-dilution experiments and by batch calorimetry.  相似文献   

6.
The method of limited proteolysis has proven to be appropriate for the determination of unfolding rate constants (k(U)) of ribonuclease A in the transition region of thermal denaturation [Arnold, U. & Ulbrich-Hofmann, R. (1997) Biochemistry 36, 2166-2172]. The aim of the present paper was to extend this procedure to the pretransition region of thermally and urea-induced denaturation where spectroscopic methods do not allow direct measurement of k(U). The results show that the approach can be applied successfully to denaturing (free energy of unfolding Delta G < 10 kJ.mol(-1)) and to marginally native conditions (Delta G = 10-25 kJ.mol(-1)). Under moderately (Delta G = 25-30 kJ.mol(-1)) and strongly native conditions (Delta G > 30 kJ.mol(-1)), however, the determination of kU was not possible in this way as the proteolytic degradation of ribonuclease A by thermolysin or trypsin was no longer determined by global unfolding. Here, proteolysis proceeds via the native RNase A. In the presence of low concentrations of urea, the rate constants of proteolysis were, surprisingly, smaller than in the absence of urea. As the protease activity has been taken into account, this result points to a local stabilization of the RNase A molecule.  相似文献   

7.
Thermally induced unfolding of ribonuclease at low pH produces a large increase of Raman scattering intensity at ~ 2930cm?1 (CH3-stretching region). Comparisons of the CH3-stretching spectra of various model compounds in the presence or absence of H2O (2H2O), indicate that the changes observed with ribonuclease arise from the insertion of previously buried, aliphatic amino acid residues into water.  相似文献   

8.
pH dependence of the thermal unfolding of ribonuclease A   总被引:1,自引:0,他引:1  
P McPhie 《Biochemistry》1972,11(5):879-883
  相似文献   

9.
The dynamics of the unfolding process of bovine pancreatic ribonuclease A (RNase A) unfolded by dithiothreitol (DTT) at a low concentration of 1:30 were investigated in alkaline phosphate-buffered saline solutions at 303K and 313K by using proton nuclear magnetic resonance ((1)H NMR) spectra. Three NMR spectral parameters including Shannon entropy, mutual information, and correlation coefficient were introduced into the analysis. The results show that the unfolding process of RNase A was slowed to the order of many hours, and the kinetics of the unfolding pathway described by the three parameters is best fit by a model of two consecutive first-order reactions. Temperature greatly influences the rate constants of the unfolding kinetics with different temperature effects observed for the fast and the slow processes. The consistencies and the differences between the three sets of parameters show that they reflect the same relative denaturation pathway but different spectra windows of the unfolding process of RNase A. The results suggest that the unfolding process of RNase A induced by low concentrations of DTT is a two-phase pathway containing fast and slow first-order reactions.  相似文献   

10.
A L Fink  B Painter 《Biochemistry》1987,26(6):1665-1671
The effect of methanol on the thermal denaturation of ribonuclease A has been investigated over the -40 to 70 degrees C range. The transition was fully reversible to at least 60% (v/v) methanol at an apparent pH of cryosolvent (pH) of 3.0 and was examined at methanol concentrations as high as 80%. The unfolding transition, as monitored by absorbance change at 286 nm, became progressively broader and occurred at increasingly lower temperatures as the alcohol concentration increased. In 50% methanol, increasing the pH from 2 to 6 shifted the transition to higher temperature. A substantial decrease in cooperativity was noted at the more acidic conditions. On the other hand, increasing concentrations of guanidine hydrochloride in 50% methanol caused the transition to shift to lower temperatures with little effect on the cooperativity. The observed effects on the cooperativity of the unfolding transition suggest that methanol and lower temperatures may increase the concentration of partially folded intermediate states in the unfolding of ribonuclease. Comparison of the transition in 50% methanol as determined by absorbance or fluorescence, which monitor the degree of exposure of buried tyrosines and hence the tertiary structure, to that determined by far-UV circular dichroism, which monitors secondary structure, indicated that the major unfolding transition occurred at a higher temperature in the latter case. Thus, the tertiary structure is lost at a lower temperature than the secondary structure. This observation is consistent with a model of protein folding in which initially formed regions of secondary structure pack together, predominantly by hydrophobic interactions, to give the tertiary structure.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
12.
Esposito L  Daggett V 《Biochemistry》2005,44(9):3358-3368
Bovine pancreatic ribonuclease (RNase A) deserves a special place among the numerous proteins that form oligomers by three-dimensional domain swapping. In fact, under destabilizing conditions and at high protein concentrations, it can swap two different domains, the N-terminal alpha-helix or the C-terminal beta-strand, leading to dimers with different quaternary structures. With the change in the unfolding conditions, the relative abundance of the two dimers varies, and the prevalence of one dimer over the other is inverted. To investigate the dynamic behavior of the termini, four independent 10 ns high-temperature molecular dynamics simulations of RNase A were carried out at two different pH values in an attempt to reproduce the experimental conditions of neutral and very low pH that favor the formation of the N- and C-terminal domain-swapped dimers, respectively. In agreement with experimental data, under mild unfolding conditions, a partial or complete opening of the N-terminal arm is observed, whereas the dislocation of the C-terminus away from the core of the structure occurs only during the low-pH simulations. Furthermore, the picture emerging from this study indicates that the same protein can have different pathways for domain swapping. Indeed, in RNase A the C-terminal swapping requires a substantial unfolding of the monomers, whereas the N-terminal swapping can occur through only partial unfolding.  相似文献   

13.
This paper examines the reversed-phase liquid chromatographic behavior of ribonuclease A (RNase) using an n-butyl chemically bonded phase and a gradient of 10 mM H3PO4 and l-propanol. At a column temperature of 25 degrees C, a broad band followed by an overlapped late-eluting sharp peak is observed. As the temperature is raised, the sharp peak grows at the expense of the broad band until at 37 degrees C, only a single narrow-eluting band is found. Using an absorbance ratio of A288/A254, it is demonstrated that the broad band represents a folded or native state of RNase and the late-eluting band a denatured state. Based on postcolumn absorbance ratio changes in the denatured state as a function of time and the known behavior of the protein, reversible refolding or renaturation is proposed to take place in solution. RNase is denatured upon adsorbing to the bonded phase, and upon migration down the column, reversible refolding takes place in the mobile phase. The relaxation time for native state formation is assumed to be comparable to the time spent by RNase in the mobile phase. As temperature is raised, both the native and denatured states exist at equilibrium in solution, thus slowing the refolding process, until at 37 degrees C only the denatured peak appears. Changes in peak shape with flow rate provide further evidence for this model. The use of HCl or H2SO4 instead of H3PO4 yields similar results except that the temperature at which only the denatured peak is observed follows the order of salt stabilization of the native state.  相似文献   

14.
We measured the nonradiative fluorescence resonance energy transfer between 7-nitro-2,1,3-benzoxadiazol-4-yl (NBD) labeled lipids (amine labeled phosphatidylethanolamine or acyl chain labeled phosphatidylcholine) and rhodamine labeled lipids in large unilamellar dioleoylphosphatidylcholine vesicles. Two new rhodamine labeled lipid analogues, one a derivative of monolauroylphosphatidylethanolamine and the other of sphingosylphosphorylcholine, were found to exchange through the aqueous phase between vesicle populations but not to be capable of rapid transbilayer movement between leaflets. Energy transfer from NBD to rhodamine was measured using liposomes with symmetric or asymmetric distributions of these new rhodamine labeled lipid analogues to determine the relative contributions of energy transfer between donor and acceptor fluorophores in the same (cis) and opposite (trans) leaflets. Since the characteristic R0 values for energy transfer ranged from 47 to 73 A in all cases, significant contributions from both cis and trans energy transfer were observed. Therefore, neither of these probes acts strictly as a half-bilayer quencher of NBD lipid fluorescence. The dependence of transfer efficiency on acceptor density was fitted to a theoretical treatment of energy transfer to determine the distances of closest approach for cis and trans transfer. These parameters set limits on the positions of the fluorescent groups relative to the bilayer center, 20-31 A for NBD and 31-55 A for rhodamine, and provide a basis for future use of these analogues in measurements of transbilayer distribution and transport.  相似文献   

15.
B T Nall  R L Baldwin 《Biochemistry》1977,16(16):3572-3576
We report an approach to the problem of detecting and characterising intermediates in the unfolding of ribonuclease A. Two distinct properties of the protein are compared at equilibrium within the unfolding transition zone: (1) a physical property of the protein, the absorbance of buried tyrosine residues, and (2) a functional property, the ability to bind the specific ligand, 2'-CMP. A direct comparison of these two properties is made within the pH 5.8 transition zone, and an indirect comparison is made by using the stopped-flow instrument to sample rapidly the equilibrium properties of the pH 2.0 transition. At both pH 2.0 and pH 5.8, the results indicate that there are no intermediates in folding which have the physical properties of the native enzyme but which have lost the ability to bind a specific ligand.  相似文献   

16.
The equilibrium stability and conformational unfolding kinetics of the [C40A, C95A] and [C65S, C72S] mutants of bovine pancreatic ribonuclease A (RNase A) have been studied. These mutants are analogues of two nativelike intermediates, des[40-95] and des[65-72], whose formation is rate-limiting for oxidative folding and reductive unfolding at 25 degrees C and pH 8.0. Upon addition of guanidine hydrochloride, both mutants exhibit a fast conformational unfolding phase when monitored by absorbance and fluorescence, as well as a slow phase detected only by fluorescence which corresponds to the isomerizations of Pro93 and Pro114. The amplitudes of the slow phase indicate that the two prolines, Pro93 and Pro114, are fully cis in the folded state of the mutants and furthermore that the 40-95 disulfide bond is not responsible for the quenching of Tyr92 fluorescence observed in the slow unfolding phase, contrary to an earlier proposal [Rehage, A., and Schmid, F. X. (1982) Biochemistry 21, 1499-1505]. The ratio of the kinetic unfolding m value to the equilibrium m value indicates that the transition state for conformational unfolding in the mutants exposes little solvent-accessible area, as in the wild-type protein, indicating that the unfolding pathway is not dramatically altered by the reduction of the 40-95 or 65-72 disulfide bond. The stabilities of the folded mutants are compared to that of wild-type RNase A. These stabilities indicate that the reduction of des[40-95] to the 2S species is rate-limited by global conformational unfolding, whereas that of des[65-72] is rate-limited by local conformational unfolding. The isomerization of Pro93 may be rate-limiting for the reduction of the 40-95 disulfide bond in the native protein and in the des[65-72] intermediate.  相似文献   

17.
The conformational changes in the thermal denaturation of bovine pancreatic ribonuclease A was followed with infrared spectra and analyzed by second derivative and two-dimensional correlation techniques. By analyzing the sequential events in each transition stage, the results were consistent with a step-wise thermal denaturation mechanism in which the structural adjustment of the N-terminal and the opening of the central structure of the protein come before the main unfolding process. Non-native turns were found to form along with the unfolding of the native structures. The central region that is composed of some beta-sheet and alpha-helical structures was found to be the most stable part that might form the residual structure at high temperatures.  相似文献   

18.
A formation of a molten globule in the unfolding of ribonuclease A could be considered as an evidence supporting a hypothesis on the existence of such intermediates on the pathway of a protein folding. Using a novel technique (tritium labeling method) we have showed that the ribonuclease A equilibrium unfolding in urea and guanidinium chloride (GuCl) solutions proceeds through a formation of intermediates whose properties (compactness, retention of the larger part hydrophobic core, secondary structure, and native-like folding pattern) correspond to the fundamental characteristics of the molten globule state. The both intermediates are the “wet” molten globules (the globule interior contains the water molecules). The results reveal the noticeable distinctions in intermediates structure, first of all, in the extent of their compactness. The urea intermediate is less compact than that in GuCl. It is shown that the refolding of the protein denatured by GuCl results in the formation of the intermediate which enzyme activity is virtually the same as the activity of the native protein.  相似文献   

19.
We have used time-resolved fluorescence to study proposed conformational transitions in the Ca-ATPase in skeletal sarcoplasmic reticulum (SR). Resonance energy transfer was used to measure distances between the binding sites of 5-[[2-[(iodoacetyl)amino]ethyl]amino]naphthalene-1-sulfonic acid (IAEDANS) and fluorescein 5-isothiocyanate (FITC) as a function of conditions proposed to affect the enzyme's conformation. When 1.0 +/- 0.15 IAEDANS is bound per Ca-ATPase, most (76 +/- 4%) of the probes have an excited-state lifetime (tau) of 18.6 +/- 0.5 ns, and the remainder have a lifetime of 2.5 +/- 0.9 ns. When FITC is bound to a specific site on each IAEDANS-labeled enzyme, most of the long-lifetime component is quenched into two short-lifetime components, indicating energy transfer that corresponds to two donor-acceptor distances. About one-third of the quenched population has a lifetime tau = 11.1 +/- 2.5 ns, corresponding to a transfer efficiency E = 0.40 +/- 0.07 and a donor-acceptor distance R1 = 52 +/- 3 A. The remaining two-thirds exhibit lifetimes in the range of 1.2-4.2 ns, corresponding to a second distance 31 A less than or equal to R2 less than or equal to 40 A. Addition of Ca2+ (in the micromolar to millimolar range), or vanadate (to produce a phosphoenzyme analogue), had no effect on the donor-acceptor distances. Addition of decavanadate results in the quenching of IAEDANS fluorescence but has no effect on the energy-transfer distance.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Although denaturation of ribonuclease by guanidine hydrochloride to a random coil has been considered to be a simple two-state mechanism, the time dependence of our calorimetric data indicate that a cooperative endothermic pretransition may occur near 1.25 M. guanidine hydrochloride (pH 6 and 25°C) without gross unfolding of the protein. Reexamination of other observables as a function of guanidine hydrochloride concentrations as well as activity measurements suggests the possibility of some process other than simple binding occurring in the concentration range below the onset of gross denaturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号