首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Caterpillars of the lycaenid butterfly Maculinea rebeli Hirschke (Lepidoptera: Lycaenidae) live for 11–23 months as social parasites in Myrmica (Hymenoptera: Formicidae) red ant nests, a trait that is believed to have evolved from mutualistic myrmecophilous ancestry. Although Maculinea rebeli caterpillars harm Myrmica larvae, they simultaneously produce copious secretions which the adult worker ants imbibe, perhaps representing a vestige of the ancestral mutualism. We report the results of laboratory experiments designed to test alternative hypotheses: (i) Maculinea rebeli caterpillars provide a beneficial source of sugar in return for being tended by Myrmicaworkers; (ii) Maculinea rebeli harms its host by stressing the workers by competing for available sugar. Comparisons were made of Myrmica worker fitness after 90–450 days under all possible combinations of three experimental treatments: ± M. rebeli caterpillars, ± sucrose and ± ant brood. Caterpillars always reduced the survival of both ant workers and their larvae, even when sugar was not provided, suggesting that M. rebeli is wholly parasitic on all stages in its host colony. The results also confirmed the importance of sucrose in the diet of Myrmica, and showed that M. rebeli caterpillars which eat ant brood to supplement their normal trophallactic feeding by workers develop more quickly - but have the same survival and pupal weights – as caterpillars that are fed solely by worker ants.  相似文献   

2.
Although it has always been assumed that chemical mimicry and camouflage play a major role in the penetration of ant societies by social parasites, this paper provides the first direct evidence for such a mechanism between the larvae of the parasitic butterfly Maculinea rebeli and its ant host Myrmica schencki. In the wild, freshly moulted fourth-instar caterpillars, which have no previous contact with ants, appear to be recognized as ant larvae by foraging Myrmica workers, which return them to their nest brood chambers. Three hypotheses concerning the mechanism controlling this behaviour were tested: (i) the caterpillars produce surface chemicals that allow them to be treated as ant larvae; (ii) mimetic compounds would include hydrocarbons similar to those employed by Myrmica to recognize conspecifics and brood; and (iii) the caterpillars'' secretions would more closely mimic the profile of their main host in the wild, M. schencki, than that of other species of Myrmica. Results of behavioural bioassays and chemical analyses confirmed all three hypotheses, and explained the high degree of host specificity found in this type of highly specialized myrmecophile. Furthermore, although caterpillars biosynthesized many of the recognition pheromones of their host species (chemical mimicry), they later acquired additional hydrocarbons within the ant nest (chemical camouflage), making them near-perfect mimics of their individual host colony''s odour.  相似文献   

3.
In recent spatial models describing interactions among a myrmecophilous butterfly Maculinea rebeli, a gentian Gentiana cruciata and two competing species of Myrmica ant, we predicted that apparent competition should exist between gentians (the food of young M. rebeli caterpillars) and Myrmica schencki, which supports M. rebeli in its final instar. Here we extend and quantify model predictions about the nature of this phenomenon, and relate them to ecological theory. We predict that: (i) Within sites supporting the butterfly, fewer M. schencki colonies occur in sub-areas containing gentians than in identical habitat lacking this plant. (ii) Where G. cruciata and M. schencki do co-exist, the ant colonies will be less than half the size of those living > 1.5 m from gentians; (iii) The turnover of M. schencki colonies will be much greater than that of other Myrmica species in nest sites situated within 1.5 m of a gentian. All three predictions were supported in the field on 3–6 sites in two mountain ranges, although the exact strength of the apparent competition differed from some model predictions. Field data were also consistent with predictions about apparent mutualisms between gentians and other ants. We suggest that apparent competition is likely to arise in any system in which a specialist enemy feeds sequentially on two or more species during its life-cycle, as occurs in many true parasite-host interactions. We also predict that more complex patterns involving other Myrmica species and G. cruciata occur in our system, with apparent competition existing between them in some sub-areas of a site being balanced by apparent mutualism between them in other sub-areas.  相似文献   

4.
Larvae of Maculinea rebeli, one of the most endangered European butterflies, are obligatory social parasites of Myrmica ants. At present, this relationship is thought to be highly specific, with Myrmica schencki being regarded as the primary host. Here we present data on six populations from Poland and Austria, including the first record of Myrmica specioides as a host, together with published data from other central European countries, which severely questions the inference that M. schencki is the exclusive host of M. rebeli. Our results indicate that Myrmica sabuleti is the most frequently used host ant in central Europe, whereas M. scabrinodis, M. sulcinodis, M. specioides and M. schencki are used as secondary hosts. Possible explanations for this highly variable host use include (1) regional differences in semiochemicals, behaviour or social structure of the potential Myrmica host species and (2) the existence of different ecological subspecies or cryptic species of M. rebeli. Finally, we emphasize the importance of identifying local host ant species prior to further conservation strategies in order to avoid failure of management programs or even damage to populations on the edge of extinction.  相似文献   

5.
Summary Caterpillars of Maculinea arion are obligate predators of the brood of Myrmica sabuleti ants. In the aboratory, caterpillars eat the largest available ant larvae, although eggs, small larvae and prepupae are also palatable. This is an efficient way to predate. It ensures that newly-adopted caterpillars consume the final part of the first cohort of ant brood in a nest, before this pupates in early autumn and becomes unavailable as prey. At the same time, the fixed number of larvae in the second cohort is left to grow larger before being killed in late autumn and spring. Caterpillars also improve their feeding efficiency by hibernating for longer than ants in spring, losing just 6% of their weight while the biomass of ant larvae increases by 27%. Final instar caterpillars acquire more than 99% of their ultimate biomass in Myrmica nests, growing from 1.3 mg to an estimated 173 mg. A close correlation was found between the weights of caterpillars throughout autumn and the number of large ant larvae they had eaten. This was used to calculate the number of larvae eaten in spring, allowing both for the loss of caterpillar weight during winter and the increase in the size of their prey in spring. It is estimated that 230 of the largest available larvae, and a minimum nest size of 354 M. sabuleti workers, is needed to support one butterfly. Few wild M. sabuleti nests are this large: on one site, it was estimated that 85% of nests were too small to produce a butterfly, and only 5% could support two or more. This prediction was confirmed by the mortalities of 376 caterpillars in 151 wild M. sabuleti nests there. Mortalities were particularly high in nests that adopted more than two caterpillars, apparently due to scramble competition and starvation in autumn. Survival was higher than predicted in wild nests that adopted one caterpillar. These caterpillars seldom exhaust their food before spring, when there is intense competition among Myrmica for nest sites. Ants often desert their nests in the absence of brood, leaving the caterpillar behind. Vacant nests are frequently repopulated by a neighbouring colony, carrying in a fresh supply of brood. Maculinea arion caterpillars have an exceptional ability to withstand starvation, and sometimes survive to parasitize more than one Myrmica colony. Despite these adaptations, predation is an inefficient way to exploit the resources of a Myrmica nest. By contrast, Maculinea rebeli feeds mainly at a lower trophic level, on the regurgitations of worker ants. Published data show that Myrmica nests can support 6 times more caterpillars of Maculinea rebeli than of M. arion in the laboratory. This is confirmed by field data.  相似文献   

6.
The Alcon blue butterfly (Maculinea alcon) parasitizes the nests of several Myrmica ant species. In Denmark, it uses M. rubra and M. ruginodis, but never M. scabrinodis. To further examine the basis of this specificity and local co-adaptation between host and parasite, the pattern of growth and survival of newly-adopted caterpillars of M. alcon in Myrmica subcolonies was examined in the laboratory. M. alcon caterpillars were collected from three populations differing in their host use, and reared in laboratory nests of all three ant species collected from each M. alcon population. While there were differences in the pattern of growth of caterpillars from different populations during the first few months after adoption, which depended on host ant species and the site from which the ants were collected, there was no evidence of major differences in final size achieved. Survival was, however, much higher in nests of M. rubra than in nests of M. ruginodis and M. scabrinodis, even for caterpillars from a population that is never known to use M. rubra as a host in the field. The caterpillars of M. alcon thus do not show local adaptation in their pattern of growth and survival, but instead show a pattern that may reflect different nestmate recognition abilities of the host ants, related to their sociogenetic organisation. The pattern of observed host ant use in the field seems to result from a combination of differences in local host availability and locally adapted infectivity, modulated by smaller differences in survivorship in the nests of the different host ants.  相似文献   

7.
Bacterial symbionts are known to facilitate a wide range of physiological processes and ecological interactions for their hosts. In spite of this, caterpillars with highly diverse life histories appear to lack resident microbiota. Gut physiology, endogenous digestive enzymes, and limited social interactions may contribute to this pattern, but the consequences of shifts in social activity and diet on caterpillar microbiota are largely unknown. Phengaris alcon caterpillars undergo particularly dramatic social and dietary shifts when they parasitize Myrmica ant colonies, rapidly transitioning from solitary herbivory to ant tending (i.e., receiving protein‐rich regurgitations through trophallaxis). This unique life history provides a model for studying interactions between social living, diet, and caterpillar microbiota. Here, we characterized and compared bacterial communities within Palcon caterpillars before and after their association with ants, using 16S rRNA amplicon sequencing and quantitative PCR. After being adopted by ants, bacterial communities within P. alcon caterpillars shifted substantially, with a significant increase in alpha diversity and greater consistency in bacterial community composition in terms of beta dissimilarity. We also characterized the bacterial communities within their host ants (Myrmica schencki), food plant (Gentiana cruciata), and soil from ant nest chambers. These data indicated that the aforementioned patterns were influenced by bacteria derived from caterpillars’ surrounding environments, rather than through transfers from ants. Thus, while bacterial communities are substantially reorganized over the life cycle of P. alcon caterpillars, it appears that they do not rely on transfers of bacteria from host ants to complete their development.  相似文献   

8.
Summary Ecological studies have been made of all 5 European species of Maculinea. These confirm that M. nausithous and M. rebeli live underground in Myrmica ant nests for 10 months of the year, as has long been known for the other 3 species. The main discovery was that each Maculinea species depends on a single, and different, host species of Myrmica. This specificity contradicts previous papers and scientific reviews of the relationship between Maculinea and ants. Therefore, early records are re-examined and 3 reasons are given to explain why most are misleading when applied to wild populations. Dependence on a single, rather than any, species of Myrmica explains why Maculinea populations exist in only a small minority of biotopes where their foodplants and Myrmica ants abound. It also explains the puzzling disappearance of Maculinea populations from apparently suitable sites. The discovery that M. alcon and M. rebeli depend on separate species of Myrmica that are not even closely related strengthens the argument that these butterflies are good species.  相似文献   

9.
G. Elmes  T. Akino  J. Thomas  R. Clarke  J. Knapp 《Oecologia》2002,130(4):525-535
The chemical signatures on the cuticles of five common Myrmica ant species were analysed (49 colonies of M. rubra, M. ruginodis, M. sabuleti, M. scabrinodis and M. schencki), each ant being the specific host of one of the five threatened European species of Maculinea butterfly. The cuticular hydrocarbon profile (based on the relative abundance of each chemical) of each ant species was highly distinctive, even between the morphologically similar species M. sabuleti and M. scabrinodis. There was no significant difference in the chemical profiles of workers and larvae from any colony. Nor was there much pattern in the intraspecific variation: colonies from the same populations were significantly, but only slightly, more similar to each other than to colonies from distant populations. M. rubra showed remarkably little variation between populations sampled widely from northern Russia, Ukraine, Scotland and southern England. The data were compared with published profiles of M. rubra and two North American Myrmica species, and with a quantitative reanalysis of data for Maculinea rebeli caterpillars. We conclude that the hydrocarbon profiles of Myrmica species are sufficiently and consistently different for chemical mimicry to explain the pattern of host specificity recorded for the European Maculinea butterflies. The optimum strategy for chemical mimicry in each of the two life-styles of Maculinea larvae is discussed: we suggest that predatory species might benefit from mimicking the median profile of their model whereas the "cuckoo" species would benefit when variation between siblings encompasses a large range of the variation recorded within a local population of the model species.  相似文献   

10.
Maculinea butterflies are social parasites of Myrmica ants. Methods to study the strength of host ant specificity in the MaculineaMyrmica association include research on chemical and acoustic mimicry as well as experiments on ant adoption and rearing behaviour of Maculinea larvae. Here we present results of laboratory experiments on adoption, survival, development and integration of M. teleius larvae within the nests of different Myrmica host species, with the objective of quantifying the degree of specialization of this Maculinea species. In the laboratory, a total of 94 nests of four Myrmica species: M. scabrinodis, M. rubra, M. ruginodis and M. rugulosa were used. Nests of M. rubra and M. rugulosa adopted M. teleius larvae more readily and quickly than M. ruginodis colonies. No significant differences were found in the survival rates of M. teleius larvae reared by different ant species. Early larval growth of M. teleius larvae differed slightly among nests of four Myrmica host species. Larvae reared by colonies of M. rugulosa which were the heaviest at the beginning of larval development had the lowest mean larval body mass after 18 weeks compared to those reared by other Myrmica species. None of the M. teleius larvae was carried by M. scabrinodis or M. rubra workers after ant nests were destroyed, which suggests a lack of integration with host colonies. Results indicate that Myrmica species coming from the same site differ in their ability to adopt and rear M. teleius larvae but there was no obvious adaptation of this butterfly species to one of the host ant species. This may explain why, under natural conditions, all four ants can be used as hosts of this butterfly species. Slight advantages of particular Myrmica species as hosts at certain points in butterfly larval development can be explained by the ant species biology and colony structure rather than by specialization of M. teleius.  相似文献   

11.
12.
Maculinea butterflies show social parasitism via obligatory myrmecophily as their larvae are adopted and raised to pupation by Myrmica ants. Suitable hosts differ for different Maculinea species, and host ant specificity can further differ at the population-level. Although early studies suggested single ant species as main hosts for each Maculinea species, it has recently become clear that their host ant specificity is more complex. Maculinea alcon and Maculinea ‘rebeli’ have variously been separated according to adult and larval morphology, phenology, and their use of different ecosystems, including host plant and host ant species. However, recent genetic evidence has questioned their separation as good species. Here we compare the use of host ants by M. alcon and M. ‘rebeli’ at the regional scale in NE-Hungary and Transylvania (Romania), where molecular studies have found no species-level separation between the two forms. We opened 778 nests of Myrmica ants and searched for Maculinea specimens (larvae, pupae and exuviae) shortly before imago emergence from the nest in seven M. alcon sites, six M. ‘rebeli’- sites and one site where both M. alcon and M. ‘rebeli’ are syntopic. In all, Maculinea caterpillars were found in the nests of seven different ant species (M. alcon was recorded mainly with Myrmica scabrinodis and occasionally with M. salina and M. vandeli; M. ‘rebeli’ used mainly M. scabrinodis, M. sabuleti and M. schencki and occasionally M. lonae and M. specioides). Myrmica scabrinodis was found to be a general host of both M. alcon and M. ‘rebeli’, which is the first record for a common host ant of these two closely related butterflies within the same region. However there were also differences in host ant use patterns between the sites occupied by the two Maculinea taxa, which reflect differences in Myrmica communities between the two types of habitat. Possible explanations for the similar but not identical host use patterns of M. alcon and M. ‘rebeli’, and their relevance for the question of whether they are separate species are discussed. Received 27 November 2007; revised 28 May 2008; accepted 11 June 2008.  相似文献   

13.
Abstract.
  • 1 Caterpillars of the myrmecophilous butterfly Maculinea rebeli showed strong evidence of contest competition when introduced at high densities to laboratory nests of Myrmica ants.
  • 2 This is attributed to the direct feeding of caterpillars by workers, which select a few individuals to nurture when food or ant numbers are limiting. It contrasts with published data for a congener, Maculinea arion, which has predacious larvae and experiences scramble competition in crowded ant nests.
  • 3 Worker ants from two Myrmica rubra colonies (I and II) were used to found the laboratory nests hosting Maculinea rebeli. Nests from each source reared a similar biomass of Maculinea, but whereas those containing M. rubra I workers reared eight to ten lightweight caterpillars each, cultures from colony II reared half as many caterpillars, each of about double the weight.
  • 4 Differences in nest capacity may be due to the different social structures of colonies I and II at the start of the experiment.
  相似文献   

14.
Butterflies of the highly endangered genus Maculinea are parasites of red Myrmica ants. Prior to the adoption by Myrmica worker ants Maculinea caterpillars feed on a specific host plant. This field study aims to answer the question whether the density and distribution of the host plant Sanguisorba officinalis or the density of the host ant M. rubra limit the density of M. nausithous egg, larval and adult stage. We found that the density of M. nausithous egg stage and adult stage increased with the density of the host ant. The density of M. nausithous caterpillars was not associated with ant density or plant density. This study suggests that the density of M. nausithous is limited by the density of the host ant M. rubra. We conclude that habitat management for M. nausithous should focus on the maintenance of habitats that hold both resources, but that enable high densities of M. rubra. In addition, it is discussed why high densities of host ants might be more important in predatory than in cuckoo-feeding Maculinea.  相似文献   

15.
1. Phengaris butterflies are obligatory social parasites of Myrmica ants. Early research suggested that there is a different Myrmica host species for each of the five European Phengaris social parasites, but more recent studies have shown that this was an oversimplification. 2. The pattern of host ant specificity within a Phengaris teleius metapopulation from southern Poland is reported. A combination of studying the frequency distribution of Phengaris occurrence and morphometrics on adult butterflies were used to test whether use of different host species is reflected in larval development. 3. Phengaris teleius larvae were found to survive in colonies of four Myrmica species: M. scabrinodis, M. rubra, M. ruginodis, and M. rugulosa. Myrmica scabrinodis was the most abundant species under the host plant but the percentage of infested nests was similar to other host ant species at two sites and lower in comparison to nests of M. rubra and M. ruginodis at the other two sites. Morphometric measurements of adult butterflies reared by wild colonies of M. scabrinodis and M. ruginodis showed that wing size and number of wing spots were slightly greater for adults eclosing from nests of M. ruginodis. 4. Our results suggest that P. teleius in the populations studied is less specialised than previously suggested. The results are consistent with the hypothesis that P. teleius is expected to be the least specific of the European Phengaris species, as it has the largest and best defended fourth‐instar caterpillars and, as a predatory species, it spends less time in the central larval chambers of the host colonies. The fact that individuals reared by M. ruginodis had wider hind wings may suggest that P. teleius had better access to resources in M. ruginodis than in M. scabrinodis colonies.  相似文献   

16.
Phengaris (=Maculinea) arion is an endangered social parasite of Myrmica ants, and for a very long time was considered as specific to Myrmica sabuleti. Previous studies carried out in Poland suggested some discrepancies within this assumption, and therefore a much more intensive survey was undertaken. The host ant use of P. arion was studied at five sites in different types of biotopes in Poland, i.e. xerothermal grasslands where Thymus pulegioides was used as a larval food plant by the butterfly, and more or less sandy biotopes with Thymus serpyllum. Altogether nine Myrmica species were recorded, and considerable variation in species composition and density of nests was recorded. At four localities M. sabuleti proved to be the most common ant. A total of 529 Myrmica nests were examined, and only 20 of them contained larvae and pupae of P. arion. Host ants belonged to five different species, i.e. M. sabuleti, Myrmica scabrinodis, Myrmica schencki, Myrmica lobicornis and Myrmica hellenica. Only at one site (NE Poland) was a significant heterogeneity in parasitation rates among Myrmica species detected. M. lobicornis was the most often infested ant there, which may suggest local specialisation of the butterfly. Overall low parasitism rates may explain the vulnerability of P. arion in Central Europe but further studies are also necessary.  相似文献   

17.
Maculinea butterflies obligatory parasitize certain species of Myrmica ants. Thus, the presence of the host ant species is a limiting factor for the survival of a Maculinea population. Here, we analyse the influence of vegetation structure and ground temperature on ant diversity and abundance on Maculinea habitats, with the final aim of identifying the environmental variables determining patterns of variation in species composition in order to recommend a mowing regime that will promote our three target species: Maculinea teleius, M. nausithous and M. alcon. Experimental plots with different mowing regimes were established at eight sites in South-Eastern Germany, a region which still contains a number of relatively large, stable populations of these threatened butterfly species. Among the seven different ant species recorded, four belong to the genus Myrmica (M. scabrinodis, M. rubra, M. ruginodis and M. vandeli). Among these, M. scabrinodis results most abundant at all sites. In a CCA analysis of environmental variables recorded at the studied plots, ant species diversity appears largely determined by litter cover, mean temperature, and mean grass cover. Mowing once a year, in the second half of September, after the larvae have left their host plants, enhances the abundance of Myrmica ants in the meadows, and would be the best management compromise for all three species.  相似文献   

18.
The taxonomy of the myrmecophilous Maculinea alcon group (Lepidoptera: Lycaenidae) is highly debated. The host-plant and host-ant usage of these butterflies have conventionally been important in their identification. Maculinea ‘rebeli’ has generally been considered to be the xerophilous form of Ma. alcon (Ma. alcon X hereafter) with Gentiana cruciata as initial food plant. However, the type locality and all other known sites of Ma. rebeli are found above the coniferous zone, and are well separated from the lower regions where Ma. alcon X sites are found. Furthermore, no food plant and host ant data for the nominotypic Ma. rebeli have yet been published. Our aim was therefore to identify the host ant(s) of Ma. rebeli around the type locality and compare this with the host ant usage of nearby Ma. alcon X. Nests of Myrmica spp. (Hymenoptera: Formicidae) close to the host plants were opened on one Ma. alcon X (host plant: Gentiana cruciata) and two Ma. rebeli (host plant: Gentianella rhaetica, first record, confirmed by oviposition and emerging larvae) sites just before the flying period, to find prepupal larvae and pupae. Three Myrmica species (My. lobulicornis, My. ruginodis, My. sulcinodis) were found on the two Ma. rebeli sites, which parasitized exclusively My. sulcinodis (22 individuals in 7 nests). On the Ma. alcon X site Myrmica sabuleti and My. lonae were found, with My. sabuleti the exclusive host (51 individuals in 10 nests). Ichneumon cf. eumerus parasitized both butterflies. The results highlight the differentiation of Maculinea rebeli from Ma. alcon X, from both conservation biological and ecological points of view. Thus, it should be concluded that Ma. rebeli does not simply represent an individual form of Ma. alcon but it can be considered as at least an ecological form adapted to high mountain conditions both in its initial food plant and host ant species. In addition, it should be emphasized that Ma. alcon X (= Ma. rebeli auct. nec Hirschke) cannot be synonymised with Ma. rebeli (Hirschke, 1904).  相似文献   

19.
The tritrophic model featuring plants consumed by herbivores consumed by parasitoids or predators has become the primary paradigm used to describe herbivore dynamics. However, interactions involving herbivores can be habitat‐ specific and plants often provide habitat, as well as food. Structural complexity of the habitat may favor predators or may allow herbivore prey to escape detection and capture. This study considered the spatial and temporal dynamics of an arctiid caterpillar, Platyprepia virginalis. The tritrophic model that includes only a tachinid parasitoid that attacks P. virginalis and the caterpillars’ primary host‐plant, Lupinus arboreus, has failed to provide much insight into this system. Instead, we found that ants killed and removed many small caterpillars. Protecting caterpillars from ants increased their survival three‐fold and five‐fold in assays conducted during two years. Caterpillars were more likely to survive in short‐term assays at sites that naturally had a deeper cover of dead and living plant material. Experiments with baits showed that ant recruitment declined as litter depth increased on average. These survey results indicated that ant predation was an important source of mortality for young caterpillars and that the presence of thick litter reduced this mortality. These results were corroborated in an experiment that manipulated litter depth and ant access to caterpillars. Previous findings that other defoliating caterpillars increased litter depth and benefitted P. virginalis are also consistent with this hypothesis. Litter acts as an important non‐trophic resource, allowing caterpillars to avoid predation by ants such that wet sites with deep litter act as source populations for caterpillars. Our results show strong effects of both trophic and non‐trophic interactions since plants indirectly provided limiting habitat and this heterogeneous habitat strongly affected risk of predation and ultimately caterpillar abundance and distribution.  相似文献   

20.
Caterpillars of the parasitic lycaenid butterfly are often adopted by host ants. It has been proposed that this adoption occurs because the caterpillars mimic the cuticular hydrocarbons of the host ant. This study aimed to examine whether caterpillars of the Japanese lycaenid butterfly Niphanda fusca induce adoption by mimicking their host ant Camponotus japonicus. Behavioral observations conducted in the laboratory showed that most second‐instar caterpillars were not adopted, whereas most third‐instar caterpillars were successfully adopted by host workers. A chemical comparison detected no characteristic differences in the cuticular hydrocarbon profiles between second‐ and third‐instar caterpillars. However, morphological features of the caterpillars differed between the second and third instars; third‐instar caterpillars developed exocrine glands (ant organs) such as tentacle organs and a dorsal nectary organ. These results suggest that multiple chemical signatures, not only cuticular hydrocarbons, may be important for invasion of the host ant nest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号