首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mutant IP7 of Escherichia coli B requires isoleucine or pyridoxine for growth as a consequence of a mutation in the gene coding for biosynthetic threonine deaminase. The mutation of IP7 was shown to be of the nonsense type by the following data: (1) reversion to isoleucine prototrophy involves the formation of external suppression at a high frequency, as shown by transduction experiments; and (ii) the isoleucine requirement is suppressed by lysogenization with a phage carrying the amber suppressor su-3. Cell extracts of the mutant strain contain a low activity of threonine deaminase. The possibility that this activity is biodegradative was ruled out by kinetic experiments. The mutant threonine deaminase was purified to homogeneity by conventional procedures. The enzyme is a dimer of identical subunits of an approximate molecular weight of 43,000 (Grimminger and Feldner, 1974), whereas the wild-type enzyme is a tetramer of 50,000-dalton subunits (Calhoun et al., 1973; Grimminger et al., 1973). The mutant enzyme is not inhibited by isoleucine and does not bind isoleucine, as shown by equilibrium dialysis experiments. Pyridoxal phosphate enhances the maximum catalytic activity of the mutant enzyme by a factor of five, whereas the wild-type enzyme is not affected. In wild-type and mutant threonine deaminase the ratio of protein subunits and bound pyridoxal phosphate is 2:1. The activation of threonine deaminase from strain IP7 is due to a second coenzyme binding site, as shown by (i) spectrophotometric titration of the enzyme with pyridoxal phosphate and by (ii) measurement the pyridoxal phosphate content of the enzyme after sodium borohydride reduction of the protein. The observation of one pyridoxal phosphate binding site per peptide dimer in the wild-type enzyme and of two binding sites per dimer in the mutant strongly suggests that one of the potential sites in the wild-type enzyme is masked by allosteric effects. The factors responsible for the half-of-the-sites reactivity of the coenzyme sites appear to be nonoperative in the mutant protein.  相似文献   

2.
B Mckel  L Eggeling    H Sahm 《Journal of bacteriology》1992,174(24):8065-8072
Threonine dehydratase activity is an important element in the flux control of isoleucine biosynthesis. The enzyme of Corynebacterium glutamicum demonstrates a marked sigmoidal dependence of initial velocity on the threonine concentration, a dependence that is consistent with substrate-promoted conversion of the enzyme from a low-activity to a high-activity conformation. In the presence of the negative allosteric effector isoleucine, the K0.5 increased from 21 to 78 mM and the cooperativity, as expressed by the Hill coefficient increased from 2.4 to 3.7. Valine promoted opposite effects: the K0.5 was reduced to 12 mM, and the enzyme exhibited almost no cooperativity. Sequence determination of the C. glutamicum gene for this enzyme revealed an open reading frame coding for a polypeptide of 436 amino acids. From this information and the molecular weight determination of the native enzyme, it follows that the dehydratase is a tetramer with a total mass of 186,396 daltons. Comparison of the deduced polypeptide sequence with the sequences of known threonine dehydratases revealed surprising differences from the C. glutamicum enzyme in the carboxy-terminal portion. This portion is greatly reduced in size, and a large gap of 95 amino acids must be introduced to achieve homology. Therefore, the C. glutamicum enzyme must be considered a small variant of threonine dehydratase that is typically controlled by isoleucine and valine but has an altered structure reflecting a topological difference in the portion of the protein most likely to be important for allosteric regulation.  相似文献   

3.
Threonine deaminase (l-threonine dehydratase EC 4.2.1.16) has been partially purified from a new extreme thermophilic bacterium, Thermus X-1, which is similar to T. aquaticus YT-1. The threonine deaminase of strain X-1 has a maximal rate of reaction at 85 to 90 C and is more thermostable than the threonine deaminase from mesophilic bacteria. The enzyme has an apparent molecular weight of 100,000 to 115,000, a K(m) for l-threonine of 14 mM, a pH optimum of 8.0, and like other threonine deaminases also catalyzes the deamination of serine. However the Thermus X-1 threonine deaminase does not show a strong feedback inhibition by isoleucine. It is suggested that the regulation of the biosynthesis of isoleucine in this extreme theromophile may resemble that reported in Rodospirillum rubrum.  相似文献   

4.
D M Chipman  A Lev 《Biochemistry》1983,22(19):4450-4459
Glutaraldehyde treatment of electroplax membrane preparations of Na,K-ATPase leads to irreversible changes in the enzymic behavior of the protein, which are not due to modification of the active site. When the glutaraldehyde treatment is carried out in a medium containing K+ and without Na+, the "K+-modified enzyme" so produced shows the following changes in enzymic properties: The steady-state phosphorylation by ATP and the rate of ATP-ADP exchange are decreased to approximately 40% of control, while Na,K-ATPase activity decreases to approximately 15% of control. Phosphatase activity is decreased very little, but the potassium activation parameters of the reaction are changed, from K0.5 approximately equal to 5 mM and nH = 1.9 in control to K0.5 approximately equal to 0.5 mM and nH = 1 in K+-modified enzyme. KI(app) for nucleotide inhibition of phosphatase activity is increased significantly. Changes in the cation dependence of the ATPase reaction are also observed. All of these effects can be explained by assuming that the cross-linking of surface groups in protein subunits when they are in conformation E2 shifts the intrinsic conformational equilibrium of the enzyme toward E2. We considered the simplest mathematical model for the coupling between K+ binding and the conformational equilibrium, with equivalent potassium sites that must be simultaneously in the same state. If one assumes that the potassium activation of phosphatase activity in the K+-modified enzyme reflects the affinity for K+ of E2, the behavior of the phosphatase activity in the native enzyme can be fit if there are only two potassium sites, whose affinity is 80-fold higher in E2 than in E1, and the equilibrium constant for E2 in equilibrium E1 is about 250. The same sites can explain the activation of dephosphorylation during ATP hydrolysis. Independent of the model chosen, potassium ions must be required for the catalytic action of form E2 and cannot be merely "allosteric activators". The enzyme modified with glutaraldehyde in a medium containing Na+ also has interesting properties, but their rationalization is less straightforward. The Na,K-ATPase activity is inhibited more than the "partial reactions", as in the K+-modified enzyme. We suggest that this is a generally expected result of modifications of the enzyme.  相似文献   

5.
AMP deaminase (AMP aminohydrolase, EC 3.5.4.6) was found in extract of baker's yeast (Saccharomyces cerevisiae), and was purified to electrophoretic homogeneity using phosphocellulose adsorption chromatography and affinity elution by ATP. The enzyme shows cooperative binding of AMP (Hill coefficient, nH, 1.7) with an s0.5 value of 2.6 mM in the absence or presence of alkali metals. ATP acts as a positive effector, lowering nH to 1.0 and s0.5 to 0.02 mM. P1 inhibits the enzyme in an allosteric manner: s0.5 and nH values increase with increase in Pi concentration. In the physiological range of adenylate energy charge in yeast cells (0.5 to 0.9), the AMP deaminase activity increases sharply with decreasing energy charge, and the decrease in the size of adenylate pool causes a marked decrease in the rate of the deaminase reaction. AMP deaminase may act as a part of the system that protects against wide excursions of energy charge and adenylate pool size in yeast cells. These suggestions, based on the properties of the enzyme observed in vitro, are consistent with the results of experiments on baker's yeast in vivo reported by other workers.  相似文献   

6.
Biosynthetic threonine deaminase (TD) from Schizosaccharomyces pombe has been partially purified from crude extracts by treatment with protamine sulfate, ammonium sulfate precipitation, and gel filtration through Sephadex G-25. In both crude extracts and purified preparations, TD showed marked stimulation by pyridoxal phosphate. A pH optimum for activity was found at pH 9.0, whereas the inhibition caused by the natural feedback inhibitor, l-isoleucine, was maximal at pH 7.4. l-Threonine exhibits homotropic cooperative effects at low pH (7.0-8.0), which are eliminated at pH 9.0, and the affinity for substrate (in terms of K(m)) increased with increasing pH. Enzyme activity could be completely inhibited by isoleucine over a pH range of 7.4 to 9.0; the amount of isoleucine required for 50% inhibition increased with increasing pH. Isoleucine inhibition was pseudocompetitive with respect to substrate and increased the cooperative effects of threonine. l-Valine was found to reverse isoleucine inhibition; it also activated the enzyme in a pH range of 7.0 to 8.0 by eliminating the cooperative effects of threonine, thus normalizing the substrate saturation curves at these pH values. l-Leucine was shown to be a competitive inhibitor with respect to threonine, and to be able partially to reverse isoleucine inhibition. Treatment of TD with mercurials did not result in desensitization to isoleucine inhibition. However, at pH 10, virtually no sensitivity of the enzyme to isoleucine was observed while activity remained strong, which suggests the existence of separate sites on the TD molecule for binding threonine and isoleucine. A tentative model is presented which unifies the kinetic results reported here in terms of the interactions of TD with its effector molecules.  相似文献   

7.
Wessel PM  Graciet E  Douce R  Dumas R 《Biochemistry》2000,39(49):15136-15143
A three-dimensional structure comparison between the dimeric regulatory serine-binding domain of Escherichia coli D-3-phosphoglycerate dehydrogenase [Schuller, D. J., Grant, G. A., and Banaszak, L. J. (1995) Nat. Struct. Biol. 2, 69-76] and the regulatory domain of E. coli threonine deaminase [Gallagher, D. T., Gilliland, G. L., Xiao, G., Zondlo, J., Fisher, K. E., Chinchilla, D. , and Eisenstein, E. (1998) Structure 6, 465-475] led us to make the hypothesis that threonine deaminase could have two binding sites per monomer. To test this hypothesis about the corresponding plant enzyme, site-directed mutagenesis was carried out on the recombinant Arabidopsis thaliana threonine deaminase. Kinetic and binding experiments demonstrated for the first time that each regulatory domain of the monomers of A. thaliana threonine deaminase possesses two different effector-binding sites constituted in part by Y449 and Y543. Our results demonstrate that Y449 belongs to a high-affinity binding site whose interaction with a first isoleucine induces conformational modifications yielding a conformer displaying a higher activity and with enhanced ability to bind a second isoleucine on a lower-affinity binding site containing Y543. Isoleucine interaction with this latter binding site is responsible for conformational modifications leading to final inhibition of the enzyme. Y449 interacts with both regulators, isoleucine and valine. However, interaction of valine with the high-affinity binding site induces different conformational modifications leading to reversal of isoleucine binding and reversal of inhibition.  相似文献   

8.
Free Mg2+ is studied for its effect on the activation kinetics of pig kidney Na+, K+-ATPase by monovalent cations (nH and K0.5 for Na+ and K+ are determined). It is established that at the saturating concentration of complementary ion-activator an increase of free Mg2+ concentration up to 12 mM is accompanied by a rise of nH and K0.5 for Na+ and a fall of K0.5 for K+ without nH changes for this cation. The analysis of inhibition kinetics shows that free Mg2+ is a competitive inhibitor as to Na+ and noncompetitive as to K+. It is concluded that inhibition of Na+, K+-ATPase by free Mg2+ is a complex process including competition with Na+ at its binding sites and the "occluding" of enzyme at the stage, preceding dissociation of cation and also the weakening of subunit interactions in the enzyme.  相似文献   

9.
In plant, the first and the third steps of the synthesis of methionine and threonine are catalyzed by a bifunctional enzyme, aspartate kinase-homoserine dehydrogenase (AK-HSDH). In this study, we report the first purification and characterization of a highly active threonine-sensitive AK-HSDH from plants (Arabidopsis thaliana). The specific activities corresponding to the forward reaction of AK and reverse reaction of HSDH of AK-HSDH were 5.4 micromol of aspartyl phosphate produced min(-1) mg(-1) of protein and 18.8 micromol of NADPH formed min(-1) mg(-1) of protein, respectively. These values are 200-fold higher than those reported previously for partially purified plant enzymes. AK-HSDH exhibited hyperbolic kinetics for aspartate, ATP, homoserine, and NADP with K(M) values of 11.6 mM, 5.5 mM, 5.2 mM, and 166 microM, respectively. Threonine was found to inhibit both AK and HSDH activities by decreasing the affinity of the enzyme for its substrates and cofactors. In the absence of threonine, AK-HSDH behaved as an oligomer of 470 kDa. Addition of the effector converted the enzyme into a tetrameric form of 320 kDa.  相似文献   

10.
High-level expression of the regulatory enzyme threonine deaminase in Escherichia coli strains grown on minimal medium that are deficient in the activities of enzymes needed for branched-chain amino acid biosynthesis result in growth inhibition, possibly because of the accumulation of toxic levels of alpha-ketobutyrate, the product of the committed step in isoleucine biosynthesis. This condition affords a means for selecting genetic variants of threonine deaminase that are deficient in catalysis by suppression of growth inhibition. Strains harboring mutations in ilvA that decreased the catalytic activity of threonine deaminase were found to grow more rapidly than isogenic strains containing wild-type ilvA. Modification of the ilvA gene to introduce additional unique, evenly spaced restriction enzyme sites facilitated the identification of suppressor mutations by enabling small DNA fragments to be subcloned for sequencing. The 10 mutations identified in ilvA code for enzymes with significantly reduced activity relative to that of wild-type threonine deaminase. Values for their specific activities range from 40% of that displayed by wild-type enzyme to complete inactivation as evidenced by failure to complement an ilvA deletion strain to isoleucine prototrophy. Moreover, some mutant enzymes showed altered allosteric properties with respect to valine activation and isoleucine inhibition. The location of the 10 mutations in the 5' two-thirds of the ilvA gene is consistent with suggestions that threonine deaminase is organized functionally with an amino-terminal domain that is involved in catalysis and a carboxy-terminal domain that is important for regulation.  相似文献   

11.
The effect of cyclic-AMP-dependent phosphorylation on the activity of isolated pig liver pyruvate kinase was studied. It was found that the major kinetic effect of the phosphorylation was to reduce the affinity for the substrate phosphoenolpyruvate, K0.5 for this substrate increasing from 0.3 to 0.9 mM upon phosphorylation. The cooperative effect with phosphoenolpyruvate was enhanced, the Hill constant nH increasing concomitantly from 1.1 to 1.5. V was unaltered. The change in activity occurred in parallel with the phosphate incorporation, except during the initial part of the reaction, when inactivation was correspondingly slower. The affinity for the second substrate ADP was unchanged, with an apparent Km of 0.3 mM at saturating concentration of phosphoenolpyruvate. Likewise, the requirement for potassium was unaffected, whereas the phosphoenzyme required a higher concentration of magnesium ions for maximal activity, compared with the control enzyme. The inhibitory effect of the phosphorylation was counteracted by positive effectors, fructose 1,6-biphosphate in micromolar concentrations completely activated the phosphoenzyme, resulting in an enzyme with properties similar to the fructose 1,6-biphosphate-activated unphosphorylated enzyme, with K0.5 for phosphoenolpyruvate about 0.025 mM and with a Hill constant of 1.1. Hydrogen ions were also effective in activating the phosphoenzyme. Thus, when pH was lowered from 8 to 6.5 the inhibition due to phosphorylation was abolished. The phosphoenzyme was sensitive to further inhibition by negative effectors such as ATP and alanine. 2 mM ATP increased K0.5 for phosphoenolpyruvate to 1.5 mM and nH to 2.3. The corresponding values with alanine were 1.3 mM and 1.9. Phosphorylation is thought to be an additional mechanism of inhibition of the enzyme under gluconeogenetic conditions.  相似文献   

12.
Summary During derepression of threonine deaminase and acetolactate synthetase due to valine deficiency—initiated by -aminobutyric acid limited growth of E. coli K12 or by limited valine supply to an ilv/leu auxotroph of E. coli K12—no alteration of the specific activity of isoleucyl-tRNA-synthetase occurs. Leucine limited growth of the auxotroph, leading to an even higher derepression of the isoleucine biosynthetic enzymes, also does not affect the specific activity of isoleucyl-tRNA-synthetase. However, under growth conditions where the same degree of derepression of threonine deaminase is due to isoleucine deficiency, as in E. coli K12B or two valine resistant mutants thereof grown in the presence of valine, or in the auxotroph during growth-limiting isoleucine supply, a specific two- to three-fold derepression of the isoleucyl-tRNA-synthetase takes place. But there is no strict correlation between the degree of derepression of threonine deaminase due to isoleucine deficiency and the degree of derepression of isoleucyl-tRNA-synthetase, as especially shown in case of the valine resistant mutant Val R4 and Val R5 grown in the presence of valine.These results demonstrate that the rate of formation of isoleucyl-tRNA-synthetase and of threonine deaminase are not regulated by the same molecular devices and that a certain degree of isoleucine deficiency is a prerequisite for a derepression of isoleucyl-tRNA-synthetase.  相似文献   

13.
A threonine deaminase susceptible to inhibition by isoleucine was purified over 3,000-fold from extracts of Pseudomonas multivorans, a bacterium able to use threonine or α-ketobutyrate as sole source of carbon and energy. The enzyme was characterized with respect to molecular weight, dissociation to subunits, and apparent affinities for threonine, isoleucine, and several other ligands. Certain features of the enzyme including its reversible dissociation to subunits, its high constitutive activity, its marked stability, and high apparent orders of binding for threonine and isoleucine were unusual compared to those of isoleucine-inhibitable enzymes from other bacteria. These findings suggested some relationship between properties of the enzyme and the ability of P. multivorans to use threonine as sole carbon source. However, mutant studies ruled out a direct role of the enzyme in threonine catabolism and indicated that another enzyme, threonine dehydrogenase, is essential for growth on threonine.  相似文献   

14.
Threonine dehydratase (TD; EC.4.2.1.16) is a key enzyme involved in the biosynthesis of isoleucine. Inhibition of TD by isoleucine regulates the flow of carbon to isoleucine. We have identified two different forms of TD in tomato (Lycopersicon esculentum) leaves. One form, present predominantly in younger leaves, is inhibited by isoleucine. The other form of TD, present primarily in older leaves, is insensitive to inhibition by isoleucine. Expression of the latter enzyme increases as the leaf ages and the highest enzyme activity is present in the old, chlorotic leaves. The specific activity of the enzyme present in older leaves is much higher than the one present in younger leaves. Both forms can use threonine and serine as substrates. Whereas TD from the older leaves had the same Km (0.25 mM) for both substrates, the enzyme from the young leaves preferred threonine (Km = 0.25 mM) over serine (Km = 1.7 mM). The molecular masses of TD from the young and the old leaves were 370,000 and 200,000 D, respectively. High levels of the isoleucine-insensitive form of threonine dehydratase in the older leaves suggests an important role of threonine dehydratase in nitrogen remobilization in senescing leaves.  相似文献   

15.
The catabolic or biodegradative threonine dehydratase (E.C. 4.2.1. 16) of Escherichia coli is an isoleucine feedback-resistant enzyme that catalyzes the degradation of threonine to alpha-ketobutyrate, the first reaction of the isoleucine pathway. We cloned and expressed this enzyme in Corynebacterium glutamicum. We found that while the native threonine dehydratase of C. glutamicum was totally inhibited by 15 mM isoleucine, the heterologous catabolic threonine dehydratase expressed in the same strain was much less sensitive to isoleucine; i.e., it retained 60% of its original activity even in the presence of 200 mM isoleucine. To determine whether expressing the catabolic threonine dehydratase (encoded by the tdcB gene) provided any benefit for isoleucine production compared to the native enzyme (encoded by the ilvA gene), fermentations were performed with the wild-type strain, an ilvA-overexpressing strain, and a tdcB-expressing strain. By expressing the heterologous catabolic threonine dehydratase in C. glutamicum, we were able to increase the production of isoleucine 50-fold, whereas overexpression of the native threonine dehydratase resulted in only a fourfold increase in isoleucine production. Carbon balance data showed that when just one enzyme, the catabolic threonine dehydratase, was overexpressed, 70% of the carbon available for the lysine pathway was redirected into the isoleucine pathway.  相似文献   

16.
The enzyme threonine deaminase (TD) is a key regulatory enzyme in the pathway for the biosynthesis of isoleucine. TD is inhibited by its end product, isoleucine, and this effect is countered by valine, the product of a competing biosynthetic pathway. Sequence and structure analyses have revealed that the protomers of many TDs have C-terminal regulatory domains, composed of two ACT-like subdomains, which bind isoleucine and valine, while others have regulatory domains of approximately half the length, composed of only a single ACT-like domain. The regulatory responses of TDs from both long and short sequence varieties appear to have many similarities, but there are significant differences. We describe here the allosteric properties of Bacillus subtilis TD ( bsTD), which belongs to the short variety of TD sequences. We also examine the effects of several mutations in the regulatory domain on the kinetics of the enzyme and its response to effectors. The behavior of bsTD can be analyzed and rationalized using a modified Monod-Wyman-Changeux model. This analysis suggests that isoleucine is a negative effector, and valine is a very weak positive effector, but that at high concentrations valine inhibits activity by competing with threonine for binding to the active site. The behavior of bsTD is contrasted with the allosteric behavior reported for TDs from Escherichia coli and Arabidopsis thaliana, TDs with two subdomains. We suggest a possible evolutionary pathway to the more complex regulatory effects of valine on the activity of TDs of the long sequence variety, e.g., E. coli TD.  相似文献   

17.
In a strain of Escherichia coli K-12 lacking threonine deaminase, the enzyme converting alpha-ketoisovalerate and alpha-keto-beta-methylvalerate to valine and isoleucine, respectively, was multivalently repressed by valine, isoleucine, and leucine. This activity was due to transaminase B, specified by the ilvE structural gene.  相似文献   

18.
Adenylate deaminase (AMP deaminase, EC 3.5.4.6) of a high substrate specificity was purified from pig heart by chromatography on cellulose phosphate. The enzyme shows a co-operative binding of AMP [h (Hill coefficient) 2.35, with SO.5 (half-saturating substrate concentration) 5mM]. ATP and ADP act as positive effectors, lowering h to 1.55 and SO.5 to 1 mM. The addition of liposomes (phospholipid bilayers) to ATP-activated or ADP-activated enzyme causes a further shift of the h value to 1.04 and SO.5 to 0.5 mM. For ATP-activated enzyme the addition of liposomes increases Vmax. by about 100%, and for ADP-activated enzyme by 50%. Liposomes have no effect on the kinetics of AMP deaminase in the absence of ATP and ADP, and neither do they influence the inhibitory effect of orthophosphate on heart muscle AMP deaminase. Metabolic implications of these findings are discussed.  相似文献   

19.
Cytosine deaminase (cytosine aminohydrolase, EC 3.5.4.1) stoichiometrically catalyzes the hydrolytic deamination of cytosine and 5-fluorocytosine to uracil and 5-fluorouracil, respectively. Amino acid residues located in or near the active sites of the intracellular cytosine deaminase fromChromobacterium violaceum YK 391 were identified by chemical modification studies. The enzymic activity was completely inhibited by chemical modifiers, such as 1 mM NBS, chloramine-T, ρ-CMB, ρ-HMB and iodine, and was strongly inhibited by 1 mM PMSF and pyridoxal 5′-phosphate. This chemical deactivation of the enzymic activity was reversed by a high concentration of cytosine. Furthermore, the deactivation of the enzymic activity by ρ-CMB was also reversed by 1 mM cysteine-HCl, DTT and 2-mercaptoethanol. These results suggested that cysteine, tryptophan and methionine residues might be located in or near the active sites of the enzyme, while serine and lysine were indirectly involved in the enzymic activity. The intracellular cytosine deaminase fromC. violaceum YK 391 was assumed to be a thiol enzyme.  相似文献   

20.
The catabolic or biodegradative threonine dehydratase (E.C. 4.2.1.16) of Escherichia coli is an isoleucine feedback-resistant enzyme that catalyzes the degradation of threonine to α-ketobutyrate, the first reaction of the isoleucine pathway. We cloned and expressed this enzyme in Corynebacterium glutamicum. We found that while the native threonine dehydratase of C. glutamicum was totally inhibited by 15 mM isoleucine, the heterologous catabolic threonine dehydratase expressed in the same strain was much less sensitive to isoleucine; i.e., it retained 60% of its original activity even in the presence of 200 mM isoleucine. To determine whether expressing the catabolic threonine dehydratase (encoded by the tdcB gene) provided any benefit for isoleucine production compared to the native enzyme (encoded by the ilvA gene), fermentations were performed with the wild-type strain, an ilvA-overexpressing strain, and a tdcB-expressing strain. By expressing the heterologous catabolic threonine dehydratase in C. glutamicum, we were able to increase the production of isoleucine 50-fold, whereas overexpression of the native threonine dehydratase resulted in only a fourfold increase in isoleucine production. Carbon balance data showed that when just one enzyme, the catabolic threonine dehydratase, was overexpressed, 70% of the carbon available for the lysine pathway was redirected into the isoleucine pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号