共查询到20条相似文献,搜索用时 0 毫秒
1.
Azithromycin, an important member of the azalide subclass is effective against both Gram-positive and Gram-negative organisms. Certain physicochemical properties of the drug like poor water solubility and relatively low bioavailability of 37% due to incomplete absorption after ingestion, aroused the need for the development of a novel drug delivery system to enhance the solubilization potential and antibacterial activity against Staphylococcus aureus at a very low concentration. Cinnamon oil (Cinnamonum zeylanicum)-based microemulsion system formulated using non-ionic surfactant, Tween 20, and water was characterized. The drug-incorporated system F4 (oil to surfactant ratio of 1:4 (v/v)) showed enhanced solubilization of the drug, droplet diameter of 5–8 nm, and a good thermodynamic stability. The effect of surfactant concentration exhibited a negative correlation with droplet size diameter and turbidity and a positive correlation with stability and viscosity. The system was investigated for its antibacterial activity that demonstrated a significantly higher activity at a minimum concentration (4 μg/ml) of the novel drug-loaded system in comparison with the conventional formulation (128 μg/ml). Examination through scanning electron microscopy analysis further confirmed a considerable morphologic variation due to alteration in the membrane permeability of the microemulsion-treated system. The small droplet size of the microemulsion system and the antibacterial property of cinnamon oil, together, accounts clearly for the enhanced efficacy of the new formulated system F4 and not just azithromycin alone. Staining with acridine orange/ethidium bromide dyes as examined through fluorescence microscopy also substantiated with the results of membrane permeability of bacteria. Thus, our study discloses a potential oral drug delivery system of azithromycin with improved biocompatibility. 相似文献
2.
新型纳米靶向给药系统的研究与开发对于难治愈性疾病(尤其是肿瘤)的治疗具有重大意义,而其发展很大程度上取决于载体材料 的设计。构思巧妙、设计合理的载体材料能使载体实现靶向功能,将药物定位浓集于病灶部位,并最大限度地发挥高效低毒的作用。基于 不同的靶向策略,包括被动靶向、主动靶向和响应肿瘤微环境的靶向,综述了近年来一些新型纳米载体材料的设计,为新型纳米靶向给药 系统的研究提供参考。 相似文献
3.
Lan Wu Yanli Qiao Lina Wang Jiahua Guo Guocheng Wang Wei He Lifang Yin Jinhua Zhao 《AAPS PharmSciTech》2015,16(5):1051-1058
AJS is the code name of an untitled novel medicative compound synthesized by the Tasly Holding Group Company (Tianjin, China) based on the structure of cinnamamide, which is one of the Biopharmaceutics Classification System (BCS) class II drugs. The drug has better antidepressant effect, achieved by acting on the 5-hydroxytryptamine receptor. However, the therapeutic effects of the drug are compromised due to its poor water solubility and lower bioavailability. Herein, a self-microemulsifying drug delivery system (SMEDDS) was developed to improve its solubility and oral bioavailability. AJS-SMEDDS formulation was optimized in terms of drug solubility in the excipients, droplet size, stability, and drug precipitation using a pseudo-ternary diagram. The pharmacokinetic study was performed in rats, and the drug concentration in plasma samples was assayed using the high-performance liquid chromatography-electrospray tandem mass spectrometry (HPLC-MS/MS) method. The optimized formulation for SMEDDS has a composition of castor oil 24.5%, Labrasol 28.6%, Cremphor EL 40.8%, and Transcutol HP 2.7% (co-surfactant). No drug precipitation or phase separation was observed from the optimized formulation after 3 months of storing at 25°C. The droplet size of microemulsion formed by the optimized formulation was 26.08 ± 1.68 nm, and the zeta potential was −2.76 mV. The oral bioavailability of AJS-SMEDDS was increased by 3.4- and 35.9-fold, respectively, compared with the solid dispersion and cyclodextrin inclusion; meanwhile, the Cmax of AJS-SMEDDS was about 2- and 40-fold as great as the two controls, respectively. In summary, the present SMEDDS enhanced oral bioavailability of AJS and was a promising strategy to orally deliver the drug.KEY WORDS: bioavailability, HPLC-MS/MS, self-microemulsifying drug delivery system, solubilization, stability 相似文献
4.
Swati C. Jagdale Amit J. Agavekar Sudhir V. Pandya Bhanudas S. Kuchekar Aniruddha R. Chabukswar 《AAPS PharmSciTech》2009,10(3):1071-1079
The objective of present study was to develop a gastroretentive drug delivery system of propranolol hydrochloride. The biggest
problem in oral drug delivery is low and erratic drug bioavailability. The ability of various polymers to retain the drug
when used in different concentrations was investigated. Hydroxypropyl methylcellulose (HPMC) K4 M, HPMC E 15 LV, hydroxypropyl
cellulose (HPC; Klucel HF), xanthan gum, and sodium alginate (Keltose) were evaluated for their gel-forming abilities. One
of the disadvantages in using propranolol is extensive first pass metabolism of drug and only 25% reaches systemic circulation.
The bioavailability of propranolol increases in presence of food. Also, the absorption of various drugs such as propranolol
through P-glycoprotein (P-gp) efflux transporter is low and erratic. The density of P-gp increases toward the distal part
of the gastrointestinal tract (GIT). Therefore, it was decided to formulate floating tablet of propranolol so that it remains
in the upper part of GIT for longer time. They were evaluated for physical properties, in vitro release as well as in vivo behavior. In preliminary trials, tablets formulated with HPC, sodium alginate, and HPMC E 15 LV failed to produce matrix
of required strength, whereas formulation containing xanthan gum showed good drug retaining abilities but floating abilities
were found to be poor. Finally, floating tablets were formulated with HPMC K4 M and HPC. 相似文献
5.
Formulation Development and Bioavailability Evaluation of a Self-Nanoemulsified Drug Delivery System of Oleanolic Acid 总被引:1,自引:0,他引:1
Jia Xi Qi Chang Chak K. Chan Zhao Yu Meng Geng Nan Wang Jia Bei Sun Yi Tao Wang Henry H. Y. Tong Ying Zheng 《AAPS PharmSciTech》2009,10(1):172-182
This study aims to formulate and evaluate bioavailability of a self-nanoemulsified drug delivery system (SNEDDS) of a poorly
water-soluble herbal active component oleanolic acid (OA) for oral delivery. Solubility of OA under different systems was
determined for excipient selection purpose. Four formulations, where OA was fixed at the concentration of 20 mg/g, were prepared
utilizing Sefsol 218 as oil phase, Cremophor EL and Labrasol as primary surfactants, and Transcutol P as cosurfactant. Pseudo-ternary
phase diagrams were constructed to identify self-emulsification regions for the rational design of SNEDDS formulations. Sefsol
218 was found to provide the highest solubility among all medium-chained oils screened. Efficient self-emulsification was
observed for the systems composing of Cremophor EL and Labrasol. The surfactant to cosurfactant ratio greatly affected the
droplet size of the nanoemulsion. Based on the outcomes in dissolution profiles, stability data, and particle size profiles,
three optimized formulations were selected: Sefsol 218/Cremophor EL/Labrasol (50:25:25, w/w), Sefsol 218/Cremophor EL/Labrasol/Transcutol P (50:20:20:10, w/w), and Sefsol 218/Cremophor EL/Labrasol/Transcutol P (50:17.5:17.5:15, w/w). Based on the conventional dissolution method, a remarkable increase in dissolution was observed for the SNEDDS when compared
with the commercial tablet. The oral absorption of OA from SNEDDS showed a 2.4-fold increase in relative bioavailability compared
with that of the tablet (p < 0.05), and an increased mean retention time of OA in rat plasma was also observed compared with that of the tablet (p < 0.01). These results suggest the potential use of SNEDDS to improve dissolution and oral bioavailability for poorly water-soluble
triterpenoids such as OA. 相似文献
6.
Menglei Huan Bangle Zhang Zenghui Teng Han Cui Jieping Wang Xinyou Liu Hui Xia Siyuan Zhou Qibing Mei 《PloS one》2012,7(9)
Background
Conventional chemotherapy agent such as doxorubicin (DOX) is of limited clinical use because of its inherently low selectivity, which can lead to systemic toxicity in normal healthy tissue.Methods
A pH stimuli-sensitive conjugate based on polyethylene glycol (PEG) with covalently attachment doxorubicin via hydrazone bond (PEG-hyd-DOX) was prepared for tumor targeting delivery system. While PEG-DOX conjugates via amid bond (PEG-ami-DOX) was synthesized as control.Results
The synthetic conjugates were confirmed by proton nuclear magnetic resonance (NMR) spectroscopy, the release profile of DOX from PEG-hyd-DOX was acid-liable for the hydrazone linkage between DOX and PEG, led to different intracellular uptake route; intracellular accumulation of PEG-hyd-DOX was higher than PEG-ami-DOX due to its pH-triggered profile, and thereby more cytotoxicity against MCF-7, MDA-MB-231 (breast cancer models) and HepG2 (hepatocellular carcinoma model) cell lines. Following the in vitro results, we xenografted MDA-MB-231 cell onto SCID mice, PEG-hyd-DOX showed stronger antitumor efficacy than free DOX and was tumor-targeting.Conclusions
Results from these in vivo experiments were consistent with our in vitro results; suggested this pH-triggered PEG-hyd-DOX conjugate could target DOX to tumor tissues and release free drugs by acidic tumor environment, which would be potent in antitumor drug delivery. 相似文献7.
Hamid Reza Moslemi Hesamoddin Hoseinzadeh Mahdi Askari Badouei Khatereh Kafshdouzan Ramin Mazaheri Nezhad Fard 《Indian journal of microbiology》2012,52(4):601-604
The wound infection is one of the frequent complications in patients undergoing surgical operations. Staphylococcus aureus is the most common cause of surgical wounds. Artemisia absinthium has been shown to bear strong antimicrobial activity, especially against Gram-positive pathogens. This study was designed to investigate the antimicrobial effects of A. absinthium against surgical wounds infected by S. aureus in a rat model. Twenty male Sprague–Dawley rats were divided randomly into two equal groups of treated and control rats. A circular incision was created on the dorsal inter-scapular region of each rat. After skin wounding, rats were inoculated locally with 1 × 104 CFU of S. aureus at sites of skin wounds. The extract was applied topically twice a day throughout the experiment. Animals of the control group were left untreated. Results have revealed that topical application of A. absinthium extract on the infected wound sites produced significant antibacterial activity against S. aureus. 相似文献
8.
The objective of the study was to optimize the proportion of different components for formulating oil in water microemulsion formulation meant for simultaneous transdermal delivery of two poorly soluble antihypertensive drugs. Surface response methodology of Box-Behnken design was utilized to evaluate the effect of two oils (Captex 500 - x1 and Capmul MCM - x2) and surfactant (Acrysol EL135 - x3) on response y1 (particle size), y2 (solubility of valsartan), and y3 (solubility of nifedipine). The important factors which significantly affected the responses were identified and validated using ANOVA. The model was diagnosed using normal plot of residuals and Box-Cox plot. The design revealed an inverse correlation between particle size and concentration of Capmul MCM and Acrysol EL 135. However, an increase in concentration of Captex 500 led to an increase in particle size of microemulsion. Solubility of valsartan decreased while that of nifedipine increased with increase in concentration of Captex 500. Capmul MCM played a significant role in increasing the solubility of valsartan. The effect of Acrysol EL 135 on solubility of both drugs, although significant, was only marginal as compared to that of Captex 500 and Capmul MCM. The optimized microemulsion was able to provide an enhancement ratio of 27.21 and 63.57-fold for valsartan and nifedipine, respectively, with respect to drug dispersion in aqueous surfactant system when evaluated for permeation studies. The current studies candidly suggest the scope of microemulsion systems for solubilizing as well as promoting the transport of both drugs across rat skin at an enhanced permeation rate. 相似文献
9.
Rohan V. Karanje Yogita V. Bhavsar Kirti H. Jahagirdar Kiran S. Bhise 《AAPS PharmSciTech》2013,14(2):639-648
Rifaximin (RFX), a semi-synthetic antibiotic belonging to BCS class IV category, has been used in the treatment of traveler’s diarrhea. An attempt has been made to improve aqueous solubility of RFX in the presence of β-cyclodextrin (β-CD) and hydroxy propyl β-cyclodextrin (HP-β-CD) and control its release in the gut by enteric coating. The stoichiometric proportion of RFX and complexing agent’s β-CD and HP-β-CD were determined by phase solubility studies. RFX–β-CD and RFX–HP-β-CD were prepared in 1:2 ratio by solvent evaporation technique using rota-evaporator with yield of 78% and 84% respectively followed by their evaluation using different techniques such as saturation solubility, Fourier transform infrared, differential scanning calorimeter, powder X-ray diffractometer, in vitro antimicrobial activity. The saturation solubility of RFX had improved from 0.0736 mg/ml to 0.2354 mg/ml and 0.5681 mg/ml in presence of β-CD and HP-β-CD respectively resulting in an increased zone of inhibition in the later complex during antimicrobial studies. The RFX–HP-β-CD complex particles were coated with eudragit L 100 (EL 100) by spray drying technique. The 32 factorial design was applied to formulate the micro particles. All formulations exhibited pH dependant drug release. The % EE was 69% and the release of RFX was retarded by enteric coating in the optimized batch FB2. Therefore, it can be concluded that solubility of some BCS class IV drugs can be improved by β-CD complexation and release of such inclusion complexes can be retarded to increase the residence time of RFX in the gastrointestinal tract. 相似文献
10.
Cassiana Mendes Aline Buttchevitz Jéssica Henriques Kruger Thiago Caon Patricia de Oliveira Benedet Elenara Lemos-Senna Marcos Antônio Segatto Silva 《AAPS PharmSciTech》2017,18(7):2494-2504
Hydrochlorothiazide (HCTZ) is a class IV drug according to the Biopharmaceutical Classification System. This study aimed the development of self-nanoemulsifying drug delivery system (SNEDDS) for HCTZ as an approach to overcome the biopharmaceutical limitations. Pre-formulation screening and ternary phase diagrams were carried out to select the oil phase, the surfactant, and the co-surfactant as the amount of each constituent. The optimized formulations, with reduced amount of surfactant, and composed of medium chain triglycerides, Cremophor EL and Transcutol P did not affect the pH or show drug incompatibilities. The SNEDDS were stabilized by the nanoscale globules and high negative zeta potential. All the physicochemical characterization assays were performed in biorelevant media to better predict the in vivo performance. The enhanced dissolution rate of the SNEDDS reflected in the in vivo diuretic activity, presenting a natriuresis, kaliuresis, and chloriuresis at early stages and an increased volume of total urine compared with HCTZ alone. The designed SNEDDS produced an improvement in the pharmacodynamics due to high dissolution and probable inhibition of intestinal efflux protein by Cremophor EL. The use of SNEDDS demonstrated to be an efficient approach to modulate the absorption of HCTZ and drug therapeutics. 相似文献
11.
Jennifer N. Walker Heidi A. Crosby Adam R. Spaulding Wilmara Salgado-Pabón Cheryl L. Malone Carolyn B. Rosenthal Patrick M. Schlievert Jeffrey M. Boyd Alexander R. Horswill 《PLoS pathogens》2013,9(12)
Staphylococcus aureus is a prominent bacterial pathogen that is known to agglutinate in the presence of human plasma to form stable clumps. There is increasing evidence that agglutination aids S. aureus pathogenesis, but the mechanisms of this process remain to be fully elucidated. To better define this process, we developed both tube based and flow cytometry methods to monitor clumping in the presence of extracellular matrix proteins. We discovered that the ArlRS two-component system regulates the agglutination mechanism during exposure to human plasma or fibrinogen. Using divergent S. aureus strains, we demonstrated that arlRS mutants are unable to agglutinate, and this phenotype can be complemented. We found that the ebh gene, encoding the Giant Staphylococcal Surface Protein (GSSP), was up-regulated in an arlRS mutant. By introducing an ebh complete deletion into an arlRS mutant, agglutination was restored. To assess whether GSSP is the primary effector, a constitutive promoter was inserted upstream of the ebh gene on the chromosome in a wildtype strain, which prevented clump formation and demonstrated that GSSP has a negative impact on the agglutination mechanism. Due to the parallels of agglutination with infective endocarditis development, we assessed the phenotype of an arlRS mutant in a rabbit combined model of sepsis and endocarditis. In this model the arlRS mutant displayed a large defect in vegetation formation and pathogenesis, and this phenotype was partially restored by removing GSSP. Altogether, we have discovered that the ArlRS system controls a novel mechanism through which S. aureus regulates agglutination and pathogenesis. 相似文献
12.
Mohamed M. Hafez Ibrahim A. Maghrabi Noha M. Zaki 《Probiotics and antimicrobial proteins》2013,5(3):216-226
The wide spread of antimicrobial resistance has urged the need of alternative therapeutic approach. In this context, probiotic lactobacilli have been reported for the prevention and treatment of many gastrointestinal and urogenital infections. However, very little is known about their antagonistic activity against skin pathogens. Accordingly, the present study aimed to investigate the potential of lactobacilli to interfere with pathogenesis features of two antibiotic-resistant skin pathogens, namely methicillin-resistant Staphylococcus aureus and multiple-resistant Pseudomonas aeruginosa. A total of 49 lactobacilli were recovered, identified and tested for their antagonistic activities against the aforementioned pathogens. Of these, eight isolates were capable of blocking the adherence of pathogens to mammalian cells independent of the skin pathogen tested or model adopted. Moreover, three Lactobacillus isolates (LRA4, LC2 and LR5) effectively prevented the pathogen internalization into epithelial cells in addition to potentiating phagocyte-mediated pathogen killing. Interestingly, the lactobacilli LC2, LF9 and LRA4 markedly inhibited the growth of P. aeruginosa and S. aureus isolates in coculture experiments. Besides, the lactobacilli LRA4, LC2, LR5 and LF9 have counteracted pathogen cytotoxicity. Taken together, the present study revealed some inhibitory activities of lactobacilli against two antibiotic-resistant skin pathogens. Moreover, it revealed two lactobacilli, namely LC2 and LRA4, with antagonistic capacity against different virulence determinants of skin pathogens. These lactobacilli are considered promising probiotic candidates that may represent an alternative therapeutic approach for skin infections. 相似文献
13.
14.
Budama-Kilinc Yasemin Kecel-Gunduz Serda Cakir-Koc Rabia Aslan Bahar Bicak Bilge Kokcu Yagmur Ozel Aysen E. Akyuz Sevim 《International journal of peptide research and therapeutics》2021,27(3):2015-2028
International Journal of Peptide Research and Therapeutics - The aim of the current study was to design a drug delivery nano-system of natural growth-modulating peptide known as GHK that naturally... 相似文献
15.
Junnan Xu Yueqin Ma Yuanbiao Xie Yingchong Chen Yang Liu Pengfei Yue Ming Yang 《AAPS PharmSciTech》2017,18(5):1572-1584
Poorly water-soluble drugs offer challenges in developing a formulation product with adequate bioavailability. This study took advantage of the features of nanocrystals and direct compression technologies to develop a novel solid self-nanodispersion delivery system for andrographolide (Andro) in order to increase its dissolution rate for enhancing bioavailability. Andro nanosuspensions (Andro-NS) with a particle size of about 500 nm were prepared by homogenization technology and further converted into dried nanocrystal particles (Andro-NP) via spray-drying. The solid self-nanodispersion delivery system (Andro-SNDS)-loaded Andro-NP was prepared via direct compression technology. The DSC and PXRD results demonstrated that the Andro nanocrystals retained its original crystallinity. The dissolution of the Andro-SNDS formulation was 85.87% in pure water over 30 min, better than those of the coarse Andro and physical mixture of Andro and stabilizer. And the C max (299.32?±?78.54 ng/mL) and AUC0-∞ (4440.55?±?764.13 mg/L?·?h) of the Andro-SNDS formulation were significantly higher (p?<?0.05) than those of the crude Andro (77.52?±?31.73 ng/mL and 1437.79?±?354.25 mg/L?·?h). The AUC of the Andro-SNDS was 3.09 times as high as that of the crude Andro. This study illustrated a novel approach to combine the features of nanocrystals and composite particles used to improve oral bioavailability of poorly soluble drug. 相似文献
16.
17.
Srujan Marepally Cedar H. A. Boakye Punit P. Shah Jagan Reddy Etukala Adithi Vemuri Mandip Singh 《PloS one》2013,8(12)
In the present study, we designed and developed novel lipids that include (Z)-1-(Octadec-9-en-1-yl)-pyrrolidine (Cy5T), 1, 1-Di-((Z)-octadec-9-en-1-yl)pyrrolidin-1-ium iodide (Cy5), (Z)-1-(Octadec-9-en-1-yl)-piperidine (Cy6T), and 1, 1-Di-((Z)-octadec-9-en-1-yl) piperidin-1-ium iodide (Cy6) to enhance the transdermal permeation of some selected drugs. Firstly, we evaluated the transdermal permeation efficacies of these lipids as chemical permeation enhancers in vehicle formulations for melatonin, ß-estradiol, caffeine, α-MSH, and spantide using franz diffusion cells. Among them Cy5 lipid was determined to be the most efficient by increasing the transdermal permeation of melatonin, ß-estradiol, caffeine, α-MSH, and spantide by 1.5 to 3.26-fold more at the epidermal layer and 1.3 to 2.5-fold more at the dermal layer, in comparison to either NMP or OA. Hence we developed a nanoparticle system (cy5 lipid ethanol drug nanoparticles) to evaluate any further improvement in the drug penetration. Cy5 lipid formed uniformly sized nanoparticles ranging from 150–200 nm depending on the type of drug. Further, Cy5 based nanoparticle system significantly (p<0.05) increased the permeation of all the drugs in comparison to the lipid solution and standard permeation enhancers. There were about 1.54 to 22-fold more of drug retained in the dermis for the Cy5 based nanoparticles compared to OA/NMP standard enhancers and 3.87 to 66.67-fold more than lipid solution. In addition, epifluorescent microscopic analysis in rhodamine-PE permeation studies confirmed the superior permeation enhancement of LEDs (detection of fluorescence up to skin depth of 340 μm) more than lipid solution, which revealed fluorescence up to skin depth of only 260 μm. In summary the present findings demonstrate that i) cationic lipid with 5 membered amine heterocyclic ring has higher permeating efficacy than the 6 membered amine hertocyclic ring. ii) The nanoparticle system prepared with Cy5 showed significant (p<0.05) increase in the permeation of the drugs than the control penetration enhancers, oleic acid and NMP. 相似文献
18.
Due to its extreme lipophilicity, the oral delivery of cinnarizine (CN) encounters several problems such as poor aqueous solubility and pH-dependent dissolution, which result in low and erratic bioavailability. The current study aims to design self-nanoemulsifying drug delivery systems (SNEDDS) of CN that circumvent such obstacles. Equilibrium solubility of CN was determined in a range of anhydrous and diluted lipid-based formulations. Dynamic dispersion tests were carried out to investigate the efficiency of drug release and magnitude of precipitation that could occur upon aqueous dilution. Droplet sizes of selected formulations, upon (1:1,000) aqueous dilution, were presented. The optimal formulations were enrolled in subsequent dissolution studies. The results showed that increasing lipid chain length and surfactant lipophilicity raised the formulation solvent capacity, while adding co-solvents provoked a negative influence. The inclusion of mixed glycerides and/or hydrophilic surfactants improved the drug release efficiency. Generally, no significant precipitation was observed upon aqueous dilution of the formulations. Five formulations were optimal in terms of their superior self-emulsifying efficiency, drug solubility, dispersion characteristics, and lower droplet size. Furthermore, the optimal formulations showed superior dissolution profile compared to the marketed (Stugeron®) tablet. Most importantly, they could resist the intensive precipitation observed with the marketed tablet upon shifting from acidic to alkaline media. However, SNEDDS containing medium-chain mixed glycerides showed the highest drug release rate and provide great potential to enhance the oral CN delivery. Accordingly, the lipid portion seems to be the most vital component in designing CN self-nanoemulsifying systems. 相似文献
19.
Dhanam Selvam Arumugam Thangarasu Rajasekar Srinivasan 《International journal of peptide research and therapeutics》2021,27(4):2371-2379
International Journal of Peptide Research and Therapeutics - The methicillin-resistant Staphylococcus aureus (MRSA) causes serious health problems such as community-acquired infections and... 相似文献
20.
Design of an Inflammation-Sensitive Polyelectrolyte-Based Topical Drug Delivery System for Arthritis
Divya Bijukumar Yahya E. Choonara Karmani Murugan Bibi Fatima Choonara Pradeep Kumar Lisa C. du Toit Viness Pillay 《AAPS PharmSciTech》2016,17(5):1075-1085
The most successful treatment strategy for arthritis is intra-articular injections that are costly and have reduced patient compliance. The purpose of the current study was to develop an inflammation-sensitive system for topical drug administration. Multi-macromolecular alginate-hyaluronic acid-chitosan (A-H-C) polyelectrolyte complex nanoparticles, loaded with indomethacin were developed employing pre-gel and post-gel techniques in the presence of dodecyl-l-pyroglutamate (DLP). In addition to in vitro studies, in silico simulations were performed to affirm and associate the molecular interactions inherent to the formulation of core all-natural multi-component biopolymeric architectures composed of an anionic (alginate), a cationic (chitosan), and an amphi-ionic polyelectrolytic (hyaluronic acid) macromolecule. The results demonstrated that DLP significantly influenced the size of the synthesized nanoparticles. Drug-content analysis revealed higher encapsulation efficiency (77.3%) in the presence of DLP, irrespective of the techniques used. Moreover, in vitro drug release studies showed that indomethacin release from the nanosystem was significantly improved (98%) in Fenton’s reagent. Drug permeation across a cellulose membrane using a Franz diffusion cell system showed an initial surge flux (0.125 mg/cm?2/h), followed by sustained release of indomethacin for the post-gel nanoparticles revealing its effective skin permeation efficiency. In conclusion, the study presents novel nanoparticles which could effectively encapsulate and deliver hydrophobic drugs to the target site, particularly for arthritis. 相似文献